劉芳 趙思淇 盧立彬
摘 ?要: 分析椎動脈的動脈瘤血流動力學(xué)指標(biāo)在動脈瘤發(fā)生、發(fā)展及治療后的作用,判斷引起動脈瘤發(fā)生與治療后復(fù)發(fā)的特定血流動力學(xué)因素,并為動脈瘤的預(yù)防、治療提供理論依據(jù)。選取一例顱內(nèi)動脈瘤患者的CTA影像數(shù)據(jù)三維建模和仿真計算獲取血流動力學(xué)指標(biāo):time average wall shear stress、time average wall shear stress grade、oscillatory shear index 、aneurysm formation index、relative retention time等參數(shù)作為觀察指標(biāo)分析。結(jié)果顯示:1. 動脈瘤TAWSS及TAWSSG的不穩(wěn)定,栓塞手術(shù)能夠降低動脈瘤破裂的風(fēng)險性,而在栓塞術(shù)后的血管交叉處,血管壁則較易受損;2. OSI值較高,改變瘤體內(nèi)震蕩水平導(dǎo)致血流紊亂,OSI值減低,血流趨于穩(wěn)定;3. 隨著動脈瘤AFI值逐漸升高,血液流動可逐漸平穩(wěn),可降低動脈瘤破裂危險性。
關(guān)鍵詞: 顱內(nèi)動脈瘤;計算流體力學(xué)
中圖分類號: TP319 ? ?文獻(xiàn)標(biāo)識碼: A ? ?DOI:10.3969/j.issn.1003-6970.2020.08.028
本文著錄格式:劉芳,趙思淇,盧立彬,等. 基于CTA的椎動脈瘤血流動力學(xué)分析[J]. 軟件,2020,41(08):97-102
【Abstract】: To analyze the role of vertebral artery aneurysm parameters in the occurrence, development and post treatment of aneurysms, ? ?to determine the specific Hemodynamics that cause the occurrence and recurrence of aneurysms after treatment, and to provide a theoretical basis for the prevention and treatment of aneurysms. Three-dimensional modeling and simulation of CTA images of a patient with cerebral aneurysm were used to obtain Hemodynamics parameters: Time average wall shear stress, time average wall shear stress, Oscillatory Shear Index, Eurasian SM Formation Index and relative retention time. 1. The instability of TAWSS and Tawssg, embolization can reduce the risk of aneurysm rupture, but the vessel wall is more vulnerable at the cross-section after embolization. 2. Osi Value is higher, changes in the level of turbulence in the tumor lead to blood flow disorder, Osi value is reduced, blood flow tends to be stable; 3. With the gradual increase of AFI, the blood flow could be stabilized and the risk of aneurysm rupture could be reduced.
【Key words】: Cerebral aneurysm; Computational fluid dynamics
0 ?引言
顱內(nèi)動脈瘤(Intracranial aneurysm,IA)是多種因素導(dǎo)致的動脈壁的異常瘤樣擴(kuò)張,常發(fā)生于顱內(nèi)大動脈的分叉及彎曲處,破裂會導(dǎo)致蛛網(wǎng)膜下腔出血,具有極高的致死率及致殘率。影響動脈瘤生長和破裂的因素主要包括先天生理性、病理性及血流動力學(xué)因素。對于IA的治療主要包括開顱夾閉術(shù)及血管內(nèi)介入栓塞兩種方法[1-3]。無論是哪種方法,由于動脈瘤自身的復(fù)雜性及不完全閉塞的發(fā)生,即使是有經(jīng)驗的臨床醫(yī)生,術(shù)后的復(fù)發(fā)率依舊很高[4-7]。栓塞手術(shù)由于創(chuàng)傷小,操作相對簡單等優(yōu)勢和栓塞材料及技術(shù)的不斷發(fā)展進(jìn)步逐漸被廣泛應(yīng)用于臨床。但同時由于彈簧圈具有可壓縮性使得動脈瘤復(fù)發(fā)的可能性大大增加,有研究表明栓塞程度是動動脈瘤復(fù)發(fā)的重要影響因素,Brzegowy等人回顧性分析破裂與未破裂前交動脈瘤的栓塞治療,同樣得出影響顱內(nèi)動脈瘤復(fù)發(fā)的最大因素就是栓塞密度,初始栓塞的不完全極易引起動脈瘤的復(fù)發(fā)[8-9]。栓塞程度低,彈簧圈會隨著血流的沖擊逐漸壓縮,進(jìn)而向遠(yuǎn)側(cè)移位、復(fù)發(fā)。趙慶平等提出瘤腔內(nèi)的血流速度與瘤腔大小呈負(fù)相關(guān),即栓塞程度越低,腔內(nèi)血流速度加快時,血液對壁面產(chǎn)生的力就可能導(dǎo)致動脈瘤的復(fù)發(fā)[10]。近年來隨著計算機(jī)的發(fā)展及有限元軟件的開發(fā),尤其是計算流體動力學(xué)數(shù)值模擬方法的應(yīng)用,使得血流建模能更好解釋血流動力學(xué)在IA發(fā)病機(jī)制中的作用[11-16]
1 ?材料與方法
原始影像數(shù)據(jù)采集:采集解放軍第78集團(tuán)軍醫(yī)院一椎動脈瘤患者CTA影像數(shù)據(jù),男性患者,62歲,患者主訴頭部持續(xù)頭痛,臨床表現(xiàn)為:行走不穩(wěn)三個月。經(jīng)臨床診斷為頭部椎最動脈瘤。經(jīng)患者本人知情同意并簽署意見書與醫(yī)院倫理委員會批準(zhǔn)。
圖像后處理工作站:DELL圖像向工作站:DELL 7810/CPU E5/16G內(nèi)存/英偉達(dá)K2200顯卡;
圖像后處理軟件:醫(yī)學(xué)交互式影像控制系統(tǒng)(Materialis Interative Medical Image Control System,MIMICS,比利時Materialise公司)、醫(yī)學(xué)建模軟件3-matic medical(比利時Materialis公司);
計算機(jī)仿真軟件:ANSYS 19.2:流體仿真軟件CFX,網(wǎng)格劃分軟件FLUENT MESHING
計算結(jié)果分析軟件:ENSIGHT10.6。
椎動脈瘤三維重建:將頭部影像DICOM數(shù)據(jù)導(dǎo)入MIMICS軟件,使用MIMICS分割工具:閾值分割等算法,最后三維計算生成動脈瘤三維初步模型以stl格式導(dǎo)入3-matic medical軟件中,使用光順表面、去除細(xì)小分支、切好出、入口平面,最后形成動脈瘤三維模型,如圖1所示。
網(wǎng)格劃分:由于模型結(jié)構(gòu)復(fù)雜,使用非結(jié)構(gòu)化的四面體網(wǎng)格劃分,為保證計算精度,在動脈瘤管壁進(jìn)行五層加密。
邊界條件:本計算不考慮能量的傳遞,不考慮重力。血液密度為1056 kg/m3,動力粘度為0.0035 。計算采用瞬態(tài)計算,兩個入口,兩個出口,壁面無滑移。入口采用速度入口,出口采用壓力出口。為保證盡快收斂,入口速度采用極小的速度差。出口采用壓力出口,壓力曲線如圖3所示。
血流作用在內(nèi)皮細(xì)胞上的力的血流動力學(xué)參數(shù)GON,壁面切向和正交向上的向量,如果空間梯度G數(shù)值變化,代表對內(nèi)皮細(xì)胞產(chǎn)生震蕩張力和壓縮力,在一個心動周期內(nèi),如果某個點(diǎn)發(fā)生較大的梯度變化,單位面積內(nèi)發(fā)生強(qiáng)烈的震蕩張力或者壓縮力作用于內(nèi)皮細(xì)胞上,GON是用來量化震蕩張力和壓縮力的程度。
CFX無法直接實現(xiàn)上述參數(shù)指標(biāo),使用CFX ccl語言編程,如下為子程序的部分內(nèi)容:
IBRARY:
CEL:
EXPRESSIONS:
DOMAIN: FLUIDdom
Coord Frame = Coord 0
Domain Type = Fluid
Location = Assembly
BOUNDARY: INLET1
Boundary Type = INLET
Location = INLET1
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Option = Zero Flux
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Normal Speed = invel1
Option = Normal Speed
END
END
END
BOUNDARY: INLET2
Boundary Type = INLET
Location = INLET2
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Option = Zero Flux
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Normal Speed = invel2
Option = Normal Speed
END
END
END
BOUNDARY: OUTLET1
Boundary Type = OPENING
Location = OUTLET1
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Option = Zero Flux
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
FLOW DIRECTION:
Option = Normal to Boundary Condition
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Opening Pressure and Direction
Relative Pressure = OUTLET1f
END
END
END
BOUNDARY: OUTLET2
Boundary Type = OPENING
Location = OUTLET2
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Option = Zero Flux
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
FLOW DIRECTION:
Option = Normal to Boundary Condition
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Opening Pressure and Direction
Relative Pressure = OUTLET2f
END
END
END
BOUNDARY: OUTLET3
Boundary Type = OPENING
Location = OUTLET3
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Option = Zero Flux
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
FLOW DIRECTION:
Option = Normal to Boundary Condition
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Opening Pressure and Direction
Relative Pressure = OUTLET3f
END
END
END
BOUNDARY: OUTLET4
Boundary Type = OPENING
Location = OUTLET4
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Option = Zero Flux
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
FLOW DIRECTION:
Option = Normal to Boundary Condition
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Opening Pressure and Direction
Relative Pressure = OUTLET4f
END
END
END
BOUNDARY: WALL_VESSEL
Boundary Type = WALL
Location = WALL_PARENT_VESSEL
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Additional Variable Value = WallShearMag
Option = Value
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = Wall Shear X
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = Wall Shear Y
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = Wall Shear Z
Option = Value
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
END
END
DOMAIN MODELS:
BUOYANCY MODEL:
Option = Non Buoyant
END
2.2 ?TAWSS云圖分析
從平均壁面切應(yīng)力(TAWSS)的云圖(圖4)上來看,云圖顏色越偏紅,代表平均壁面切應(yīng)力越大,越接近藍(lán)色則平均壁面切應(yīng)力越小。載瘤動脈由于其具有較高的流速,因此載瘤動脈的平均壁面切應(yīng)力要大于動脈瘤。
2.3 ?動脈瘤的TAWSSG云圖分析
從TAWSSG云圖中(圖5)可以看出,瘤體的TAWSSG開始時低于載瘤動脈,而后逐漸接近??赡苁怯捎陂_始時動脈瘤體積較大[18-20],血液流速較慢,壁面切應(yīng)力數(shù)值變化不變明顯,所示動脈瘤偏藍(lán)色,TAWSSG值較低。
2.4 ?動脈瘤的OSI云圖分析
圖6為動脈瘤OSI云圖,在動脈瘤頂端存在小部分高OSI區(qū)域。動脈瘤頂端的高OSI區(qū)域較之前擴(kuò)大,振蕩剪切系數(shù)代表的是整個心動周期內(nèi)壁面切應(yīng)力方向變化快慢的量,OSI不同是反應(yīng)震蕩水平,即流動的強(qiáng)度和方向的改變,越大表示震蕩越強(qiáng),流體在周期內(nèi)流動的方向不穩(wěn)定,導(dǎo)致動脈瘤內(nèi)的血流運(yùn)動趨于紊亂。
2.5 ?動脈瘤AFI云圖分析
圖7為動脈瘤AFI云圖,瘤體側(cè)壁上存在部分AFI低區(qū)域,即偏藍(lán)色區(qū)域。流增多形成渦流并不斷的沖擊著動脈瘤管壁,壁面切應(yīng)力的方向變化明顯,血液流動不穩(wěn)定。
2.6 ?動脈瘤GON云圖分析
動脈瘤GON云圖(圖8)表明在動脈瘤表面存在強(qiáng)烈的震蕩力和壓縮力,原因是血液在進(jìn)入瘤腔后形成渦流,導(dǎo)致動脈瘤壁震蕩,這種沖擊對瘤壁造成膨脹或者擴(kuò)張。
3 ?討論與結(jié)論
通過血流動力學(xué)計算分析,發(fā)現(xiàn)完全栓塞手術(shù)可以阻斷進(jìn)入動脈瘤內(nèi)的血液[21-24],提高TAWSS及降低OSI等,降低了破裂出血的風(fēng)險。通過本實驗對最動脈瘤血流動力學(xué)的參數(shù)的變化分析可得出以下結(jié)論:
(1)動脈瘤TAWSS及TAWSSG的不穩(wěn)定,栓塞手術(shù)能夠降低動脈瘤破裂的風(fēng)險性[25-30],而在栓塞術(shù)后的血管交叉處,血管壁則較易受損;
(2)OSI值較高,改變瘤體內(nèi)震蕩水平導(dǎo)致血流紊亂,OSI值減低,血流趨于穩(wěn)定;
(3)隨著動脈瘤AFI值逐漸升高,血液流動可逐漸平穩(wěn),可降低動脈瘤破裂危險性。
參考文獻(xiàn)
[1] Wang Hua-Wei,Sun Zheng-Hui,Wu Chen et al. Surgical management of recurrent aneurysms after coiling treatment[J]. Br J Neurosurg, 2017, 31: 96-100.
[2] Phan Kevin,Huo Ya R,Jia Fangzhi et al. Meta-analysis of stent-assisted coiling versus coiling-only for the treatment of intracranial aneurysms[J].J Clin Neurosci, 2016, 31: 15-22.
[3] Gawlitza Matthias,Soize Sebastien,Januel Anne-Christine et al. Treatment of recurrent aneurysms using the Woven EndoBridge (WEB): anatomical and clinical results[J]. J Neurointerv Surg, 2018, 10: 629-633.
[4] Huang De-Zhang,Jiang Bin,He Wei et al. Risk factors for the recurrence of an intracranial saccular aneurysm following endovascular treatment[J]. Oncotarget, 2017, 8: 33676-33682.
[5] Yu Le-Bao, Fang Zhi-Jun, Yang Xin-Jian, et al. Management of Residual and Recurrent Aneurysms After Clipping or Coiling: Clinical Characteristics, Treatments, and Follow-Up Outcomes[J].World Neurosurg, 2019, 122: e838-e846.
[6] Zhang Donghuan, Wang Honglei, Liu Tianyi et al. Re-Recurrence of Intracranial Aneurysm with Proximal Vascular Stenosis After Primary Clipping and Secondary Endovascular Embolization: A Case Report and Literature Review[J]. World Neurosurg, 2019, 121: 28-32.
[7] Kim S-T, Baek J W, Jin S-C et al. Coil Embolization in Patients with Recurrent Cerebral Aneurysms Who Previously Underwent Surgical Clipping[J]. AJNR Am J Neuroradiol, 2019, 40: 116-121.
[8] Brzegowy Pawe?, Kucyba?a Iwona, Krupa Kamil, et al. Angiographic and clinical results of anterior communicating artery aneurysm endovascular treatment[J]. Wideochir Inne Tech Maloinwazyjne, 2019, 14: 451-460.
[9] Chueh Ju-Yu, Vedantham Srinivasan, Wakhloo Ajay K, et al. Aneurysm permeability following coil embolization: packing density and coil distribution[J]. J Neurointerv Surg, 2015, 7: 676-81.
[10] Zhao Qingping, Chen Guangzhong, Li Tielin, Zhao Wei, Yuan Yuan, Feng Yanqiu. Hemodynamic analysis of embolization density and recurrence of intracranial aneurysm [J]. Chinese Journal of neuropsychiatric diseases, 2013,39 (06): 339-343
[11] Liang Li,Steinman David A,Brina Olivier et al. Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture - a systematic review and novel parameter- ranking tool[J]. J Neurointerv Surg, 2019, 11: 153-158.
[12] Valen-Sendstad Kristian,Bergersen Aslak W,Shimogonya Yuji et al. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge[J]. Cardiovasc Eng Technol, 2018, 9: 544-564.
[13] Roloff Christoph, Stucht Daniel, Beuing Oliver et al. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs to-mographic PIV vs phase-contrast MRI vs CFD[J]. J Neurointerv Surg, 2019, 11: 275-282.
[14] Frolov S V,Sindeev S V,Liepsch D et al. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids[J]. Technol Health Care, 2016, 24: 317-33.
[15] Botti Lorenzo, Paliwal Nikhil, Conti Pierangelo et al. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes[J]. Int J Numer Method Biomed Eng, 2018, 34: e3111.
[16] Xiang J, Tutino V M, Snyder K V et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment[J]. AJNR Am J Neuroradiol, 2014, 35: 1849-57.
[17] Resnick Nitzan, Yahav Hava, Shay-Salit Ayelet et al. Fluid shear stress and the vascular endothelium: for better and for worse[J]. Prog. Biophys. Mol. Biol., 2003, 81: 177-99.
[18] Davies Peter F, Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology[J]. Nat Clin Pract Cardiovasc Med, 2009, 6: 16-26.
[19] Shojima Masaaki, Oshima Marie, Takagi Kiyoshi et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms[J]. Stroke, 2004, 35: 2500-5.
[20] Boussel L, Rayz V, Mcculloch C, et al. Aneurysm Growth Occurs at Region of Low Wall Shear Stress: Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study[J]. Stroke, 2008, 39(11): 2997-3002.
[21] Reneman Robert S, Arts Theo, Hoeks Arnold P G, Wall shear stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo. Discrepancies with theory[J]. J. Vasc. Res., 2006, 43: 251-69.
[22] Yeow Siang Lin,Leo Hwa Liang,Is Multiple Overlapping Uncovered Stents Technique Suitable for Aortic Aneurysm Repair?[J].Artif Organs, 2018, 42: 174-183.
[23] Suzuki Tomoaki, Stapleton Christopher J, Koch Matthew J et al. Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms[J].J. Neurosurg., 2019, undefined: 1-7.
[24] Omodaka Shunsuke, Sugiyama Shin-Ichirou, Inoue Takashi et al. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis[J]. Cerebrovasc. Dis., 2012, 34: 121-9.
[25] Dabagh Mahsa, Nair Priya, Gounley John et al. Hemodynamic and morphological characteristics of a growing cerebral aneurysm[J]. Neurosurg Focus, 2019, 47: E13.
[26] Zhang Yisen, Jing Linkai, Zhang Ying, et al. Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review[J]. BMC Neurol, 2016, 16: 231.
[27] Liu Xiuxian. Hemodynamic study of surgical treatment of intracranial aneurysm[D]. Southeast University, 2017.
[28] Chang Yu, Liu Chang, Zhang Qi, Shi Yue, Gao Bin. Hemodynamic study on the influence of Subarachnoid Aneurysm on the risk of cerebral aneurysm rupture[J]. Journal of Beijing University of technology, 2017, 43(07): 1079-1085. Computational fluid dynamics analysis[J]. Cerebrovasc. Dis., 2012, 34: 121-9.
[29] Murayama Yuichi, Fujimura Soichiro, Suzuki Tomoaki, et al. Computational fluid dynamics as a risk assessment tool for aneurysm rupture[J]. Neurosurg Focus, 2019, 47: E12.
[30] Sheng Bin, Wu Degang, Yuan Jinlong, et al. Hemodynamic Characteristics Associated With Paraclinoid Aneurysm Recurrence in Patients After Embolization[J]. Front Neurol, 2019, 10: 429.