• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      煤體應(yīng)力對(duì)鉆進(jìn)切削力的影響

      2020-11-13 01:28:18趙志剛邱東衛(wèi)楊坤鄭雅華
      關(guān)鍵詞:切削力煤體鉆頭

      趙志剛,邱東衛(wèi),楊坤,鄭雅華

      (1.山東科技大學(xué)能源與礦業(yè)工程學(xué)院,山東青島,266590;2.山東科技大學(xué)礦山災(zāi)害預(yù)防控制省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,山東青島,266590)

      在礦井煤層開采過程中,為保證開采的安全性,需要采取大量的安全措施,而這些措施大部分需在煤層中鉆孔。煤層鉆孔作為一種基本方法在眾多礦井安全技術(shù)中得以應(yīng)用,就沖擊地壓防治的卸壓方式而言,就有大直徑鉆孔卸壓、煤層注水卸壓、煤體爆破卸壓等。已有研究表明,煤層鉆孔過程會(huì)受到井下工程地質(zhì)條件和煤體應(yīng)力的影響,而鉆孔過程中的主要破煤方式為切削煤體,因此,研究鉆孔過程中的切削力與煤體應(yīng)力的關(guān)系顯得尤為重要。針對(duì)切削力和巖體應(yīng)力的關(guān)系,學(xué)者們采用理論分析、實(shí)驗(yàn)研究和數(shù)值模擬的方法進(jìn)行了大量研究。馬清明等[1]采用摩擦接觸有限元的分析方法,研究了金剛石復(fù)合片鉆頭(PDC)切削齒的負(fù)前角、切削深度等對(duì)切削齒和巖石受力的影響規(guī)律;KAITKAY 等[2]通過實(shí)驗(yàn)測(cè)試了圍壓對(duì)大理巖切削力的影響,發(fā)現(xiàn)在圍壓條件下大理巖的切削力明顯增加,但并沒有深入分析切削力增加的原因;張魁等[3-4]采用離散單元方法,研究了不同圍壓條件下隧道掘進(jìn)機(jī)(TBM)刀具對(duì)巖石的侵入破壞,模擬了巖石裂紋生成、擴(kuò)展和巖石破碎過程,發(fā)現(xiàn)隨著圍壓的增加,刀具的破巖效率與裂紋擴(kuò)展能力降低,但未對(duì)刀具受力進(jìn)行研究;李田軍[5]采用理論分析、實(shí)驗(yàn)研究和仿真分析相結(jié)合的方法,研究了PDC 切削齒在雙向荷載作用下鉆進(jìn)巖石時(shí),巖石破碎前的裂紋萌生與破裂面位置,建立了巖石切削破壞條件的理論模型;祝效華等[6]基于D-P準(zhǔn)則,建立了PDC切削齒破巖的三維有限元模型,分析了圍壓對(duì)破巖能效的影響,給出了不同圍壓下砂巖的切向力與切削齒后傾角的關(guān)系曲線和切向力隨時(shí)間變化的波動(dòng)曲線;李艷等[7-9]采用理論分析和數(shù)值模擬相結(jié)合的方法研究了在高海水圍壓條件下截齒切削多金屬硫化物的動(dòng)力學(xué)特性,構(gòu)建了鎬形單截齒的切削力數(shù)學(xué)模型,利用有限元法模擬了多金屬硫化物的切削破碎過程,給出了不同圍壓條件下截割阻力、進(jìn)給阻力、側(cè)向阻力隨時(shí)間的周期波動(dòng)曲線。目前,盡管關(guān)于切削力和煤巖體應(yīng)力關(guān)系的研究較多,但一方面,在大部分的理論分析中,人們對(duì)巖體應(yīng)力對(duì)切削力影響規(guī)律的研究尚少,且將應(yīng)力作為獨(dú)立參量,給出應(yīng)力與切削力關(guān)系的直觀關(guān)系式的研究相對(duì)較少;另一方面,直接針對(duì)切削力與煤體應(yīng)力關(guān)系的研究相對(duì)欠缺。因此,本文作者基于摩爾-庫(kù)侖強(qiáng)度準(zhǔn)則,采用理論分析和數(shù)值模擬相結(jié)合的方法,分別建立鉆刃切削煤體的靜力學(xué)和離散元模型,研究煤體應(yīng)力對(duì)切削力的影響規(guī)律。

      1 鉆頭轉(zhuǎn)動(dòng)切削煤體的靜力學(xué)分析

      1.1 鉆刃切削煤體機(jī)理

      在鉆孔過程中,鉆頭在軸向推力作用下侵入煤體后,在鉆桿扭矩帶動(dòng)下側(cè)向轉(zhuǎn)動(dòng)擠壓煤體。鉆頭兩翼的轉(zhuǎn)動(dòng)切削力形成1對(duì)力偶,與軸向推力合成力螺旋,煤體在力螺旋作用下發(fā)生軸向壓縮破壞和環(huán)向剪切破壞,產(chǎn)生的煤粉由麻花鉆桿轉(zhuǎn)動(dòng)帶出鉆孔。鉆頭在力螺旋驅(qū)動(dòng)下,其運(yùn)動(dòng)軌跡為螺旋線,軸向推力和轉(zhuǎn)動(dòng)切削力是獨(dú)立參數(shù),鉆頭螺旋運(yùn)動(dòng)可分解為沿孔軸線的直線運(yùn)動(dòng)和沿垂直孔軸線的圓周運(yùn)動(dòng)[10]。

      基于室內(nèi)鉆孔試驗(yàn)研究和現(xiàn)場(chǎng)施工響應(yīng)可知:深部巷道煤層鉆孔時(shí),隨著煤體應(yīng)力的增大,鉆機(jī)鉆孔所需能耗增加,當(dāng)鉆孔孔底接近煤壁支承壓力峰值位置時(shí),常常出現(xiàn)卡鉆、頂鉆甚至扭斷鉆桿現(xiàn)象。煤體應(yīng)力會(huì)對(duì)鉆頭鉆進(jìn)產(chǎn)生影響,進(jìn)而影響切削力[11-12]。

      經(jīng)煤體切削實(shí)驗(yàn)發(fā)現(xiàn),切削力隨切削長(zhǎng)度呈現(xiàn)明顯周期變化。1 次完整的切削過程可以表述為:鉆刃轉(zhuǎn)動(dòng)擠壓煤體,切削力隨著煤體壓縮變形呈線性增加,達(dá)到一定數(shù)值后,小塊煤體被破碎拋出,鉆刃局部與煤體脫離接觸,切削力快速下降;隨鉆刃繼續(xù)轉(zhuǎn)動(dòng),切削力重新上升;切削力小幅下降再上升,該過程重復(fù)多次后,切削力達(dá)到峰值,大塊煤體被破壞拋出,切削力突然下降到零附近,之后又開始新一輪轉(zhuǎn)動(dòng)切削。鉆刃轉(zhuǎn)動(dòng)切削煤體時(shí),要克服煤體抗力、鉆刃與煤體的摩擦力以及煤體應(yīng)力產(chǎn)生的抵抗力。

      1.2 鉆刃切削煤體靜力學(xué)模型

      在鉆頭鉆進(jìn)破煤的過程中,軸向推進(jìn)力將鉆頭壓入煤體,電機(jī)驅(qū)動(dòng)鉆桿轉(zhuǎn)動(dòng)產(chǎn)生轉(zhuǎn)動(dòng)切削力,鉆刃受到的力包括軸向推力FN、轉(zhuǎn)動(dòng)切削力Fq、煤體水平方向抗力Fk、煤體軸向反力Fh、煤體應(yīng)力附加力Fσ0,如圖1所示。

      圖1 鉆刃受力模型圖Fig.1 Drill blade force model

      為分析鉆刃破壞煤體過程,采用如下假設(shè):

      1)煤體均質(zhì)、各向同性。順煤層鉆孔發(fā)生在同一層煤中,假設(shè)沿鉆孔深度方向煤體力學(xué)性質(zhì)不變,不考慮鉆頭本身的重力。

      2)考慮到孔徑遠(yuǎn)大于壓入深度,假設(shè)煤體受力為平面應(yīng)力狀態(tài)。

      3)由文獻(xiàn)[10]可知,切削煤體時(shí)前刃面上的最大壓力位于鉆刃前方距離很小的位置處,并隨鉆刃距離增加而迅速減小,因此假設(shè)煤體抗力為集中力,代替鉆刃上實(shí)際作用的分布力。

      4)破裂面為直線,破裂面上的正應(yīng)力、切應(yīng)力均勻分布。

      5)忽略鉆頭底部與孔底煤體摩擦力以及鉆頭側(cè)面與孔壁煤體摩擦力。

      6)煤體破壞符合摩爾-庫(kù)侖強(qiáng)度準(zhǔn)則。

      根據(jù)以上假設(shè),可知切削力等于煤體抗力與煤體應(yīng)力產(chǎn)生的附加力的合力,建立鉆刃轉(zhuǎn)動(dòng)切削煤體靜力學(xué)模型,如圖2所示,其中,h為切削深度,θ為鉆刃半角,L為破裂面長(zhǎng)度,α為破裂面傾角。

      圖2 鉆刃切削力、煤體抗力、煤體應(yīng)力關(guān)系Fig.2 Relationship between cutting force of drill edge,coal body resistance and coal body stress

      鉆頭側(cè)面受到切削力Fq、刀具切削時(shí)煤體的抗力Fk、煤體應(yīng)力附加力Fσ0這3個(gè)力的作用,有

      煤體應(yīng)力附加力為

      式中:b為鉆刃的寬度;σ0為煤體應(yīng)力。

      將煤體抗力Fk分解為鉆刃面的法向力N和切向力W,則有

      鉆刃與煤體緊密接觸,煤體受到鉆刃反作用的法向力N1和切向力W1,將N1分解為破裂面法向力NR和切向力NS:

      將W1分解為破裂面法向力WR和切向力WS,如圖3所示。

      圖3 鉆刃及煤體剪切破裂面受力分解示意圖Fig.3 Mechanical decomposition diagram of drill edge and coal shear fracture surface

      煤體破裂面上作用的正應(yīng)力σ和剪應(yīng)力τ分別為:

      煤體沿破裂面剪切破壞,假設(shè)破壞條件符合摩爾-庫(kù)侖強(qiáng)度理論,則有

      式中:C為煤的黏聚力;φ為內(nèi)摩擦角。

      由式(8)可見:τ-σtanφ是破裂面傾角α的函數(shù),對(duì)式(8)中α求導(dǎo)并令其為零可以獲得τ-σtanφ的極值。

      將式(3)代入式(9)并整理可得

      因當(dāng)0<α< π/2 時(shí),(τ-σtanφ)″< 0,則τ-σtanφ存在極大值。令式(10)為0 可得:2θ+φ+2α=π/2,則破裂面傾角α為

      將式(11)代入式(8)可得

      整理后可得到煤體抗力的峰值Fk,p為

      結(jié)合式(1)和式(2)可得切削力峰值Fq,p為

      由表1 的極差分析結(jié)果可知,各因素對(duì)結(jié)果的影響主次順序?yàn)椋河袡C(jī)酸添加量>三聚磷酸鈉添加量>焦亞硫酸鈉添加量。大豆制品護(hù)色技術(shù)的最優(yōu)方案為滅菌工藝105 ℃、8 min,檸檬酸與乳酸的添加比例為3∶1,焦亞硫酸鈉的添加量為0.03%,三聚磷酸鈉的添加量為0.10%。

      2 切削力影響因素分析

      2.1 煤體應(yīng)力對(duì)切削力的影響

      為分析煤體應(yīng)力對(duì)切削力的影響規(guī)律,對(duì)切削力計(jì)算公式(14)中的切削深度h分別取1,2 和3 mm,鉆刃側(cè)面寬度b取6 cm,內(nèi)摩擦角φ取40°,鉆刃半角θ取7.5°,繪制煤體應(yīng)力與切削力關(guān)系曲線,如圖4所示。

      圖4 煤體應(yīng)力與切削力關(guān)系曲線Fig.4 Relationship curves of coal body stress and cutting force

      由圖4可見:煤體應(yīng)力與切削力呈線性關(guān)系,煤體應(yīng)力越大,切削力越大;隨著切削深度增加,煤體應(yīng)力-切削力斜直線的斜率隨之增大。

      2.2 鉆刃半角對(duì)切削力的影響

      為分析鉆刃角度對(duì)切削力的影響,對(duì)式(14)中的切削深度h取1 mm,鉆刃側(cè)面寬度b取6 cm,黏聚力C取5 MPa,內(nèi)摩擦角φ取40°,繪制煤體應(yīng)力分別為10,15和20 MPa時(shí)鉆刃半角與切削力的關(guān)系曲線,如圖5所示。由圖5可見:當(dāng)θ<25°時(shí),切削力隨著鉆刃半角的增大而增大;當(dāng)θ等于25°時(shí),2θ+φ趨近于90°,破裂面角α趨近于0,破裂面無限長(zhǎng),切削力無限大,煤體破壞不再是剪切破壞而將轉(zhuǎn)變?yōu)閴嚎s破壞;當(dāng)θ<20°時(shí),切削力幾乎不隨刃角變化,采用尖銳鉆頭并不能降低切削力,反而容易造成鉆刃磨損。在實(shí)踐中,可以采用鉆刃半角為20°的鉆頭,既能以較小的切削力破煤,又能延長(zhǎng)鉆頭使用壽命。

      圖5 鉆刃半角與切削力關(guān)系曲線Fig.5 Relationship curves of half angle of drill edge and cutting force

      2.3 切削深度對(duì)切削力的影響

      式(14)中鉆刃側(cè)面寬度b取6 cm,內(nèi)摩擦角φ取40°,鉆刃半角θ取7.5°,繪制煤體應(yīng)力分別為10,15和20 MPa時(shí)不同切削深度與切削力關(guān)系曲線,如圖6所示。

      圖6 切削深度與切削力關(guān)系曲線Fig.6 Relationship curves of cutting depth and cutting force

      由圖6可見,切削深度與切削力呈線性關(guān)系,在其他參數(shù)不變的情況下,切削深度越大切削力越大;在相同切削深度條件下,煤體應(yīng)力越大,切削力越大,且應(yīng)力較大的斜直線斜率大于應(yīng)力較小的斜直線斜率。這表明應(yīng)力較大時(shí),切削力增加幅度更大,這與圖4所示規(guī)律一致。

      3 切削離散元模型

      3.1 模型建立

      顆粒流程序(particle flow code, PFC)是在離散元理論和顯式差分法的基礎(chǔ)上開發(fā)的離散元程序[13-15],可以從細(xì)觀層面模擬煤體顆粒的黏結(jié)和破壞,對(duì)研究煤體裂紋發(fā)展機(jī)理和破壞全過程具有一定作用。本文使用PFC-2D模擬軟件對(duì)鉆刃切削煤體的過程進(jìn)行模擬[16-17]。

      采用平面黏結(jié)模型來對(duì)煤體試件進(jìn)行模擬及細(xì)觀參數(shù)的標(biāo)定,煤的細(xì)觀物理力學(xué)參數(shù)[18-20]取值如表1所示。利用表1中參數(shù)可計(jì)算得到試樣顆粒流模型的宏觀力學(xué)參數(shù)。表2所示為顆粒流模擬的煤體力學(xué)參數(shù)與室內(nèi)試驗(yàn)的力學(xué)參數(shù)對(duì)比,圖7所示為模擬的破裂模式與試驗(yàn)破裂模式對(duì)比。從模擬結(jié)果和試驗(yàn)結(jié)果可以看出:煤樣力學(xué)特性基本一致,表明參數(shù)選取較合理并可用于后續(xù)建立切削離散元模型對(duì)切削過程計(jì)算分析。

      表1 煤標(biāo)準(zhǔn)試件的細(xì)觀物理力學(xué)參數(shù)Table 1 Meso-physical and mechanical parameters of coal standard specimens

      表2 煤樣標(biāo)準(zhǔn)試件力學(xué)參數(shù)對(duì)比Table 2 Comparison of mechanical parameters of standard coal samples

      為便于分析,將鉆刃旋轉(zhuǎn)切削簡(jiǎn)化為平面直線切削,建立二維的煤體切削模型,如圖8所示。煤體試件模型的長(zhǎng)和寬分別為0.2 m和0.1 m。綜合考慮運(yùn)算速度和運(yùn)算精度,模型分2層:上層為切削層,顆粒半徑取0.30~0.48 mm;下層為非切削層,顆粒半徑取1.80~2.88 mm。共包含18 971 個(gè)顆粒,切削墻以0.2 m/h的水平切削速度切削試件,通過在鉆刃切削方向施加不同圍壓模擬不同的煤體應(yīng)力,進(jìn)而分析切削力與煤體應(yīng)力的關(guān)系。

      圖7 試件破裂模式對(duì)比Fig.7 Comparison of fracture patterns of specimens

      圖8 切削數(shù)值模擬模型Fig.8 Cutting numerical simulation model

      3.2 煤體應(yīng)力對(duì)裂紋的影響

      選取煤體應(yīng)力為20 MPa 條件下的切削方案,分析切削過程中裂紋擴(kuò)展規(guī)律。圖9所示為切削位移從2 mm增加到12 mm時(shí)的裂紋擴(kuò)展情況。由圖9可見:當(dāng)切削開始時(shí),鉆刃向右移動(dòng)對(duì)煤體試件產(chǎn)生擠壓,煤體試件出現(xiàn)細(xì)微裂紋;隨著鉆刃不斷地向右移動(dòng),細(xì)微裂紋開始擴(kuò)展成主裂紋時(shí),切削力達(dá)到第1個(gè)峰值,接著,煤體試件開始順著主裂紋破壞脫落,切削力下降。整個(gè)切削過程即為上述過程的循環(huán),因此,在不同煤體應(yīng)力下,裂紋擴(kuò)展情況和數(shù)量變化可用來反映煤體應(yīng)力對(duì)煤體破壞的影響。

      圖9 不同切削位移下裂紋擴(kuò)展規(guī)律Fig.9 Crack propagation law under different cutting displacements

      鉆刃在切削煤體的過程中,因鉆刃推進(jìn)速度不變、煤體本身性質(zhì)不變以及煤體的破壞形式不變,因此,在不同煤體應(yīng)力下,整個(gè)切削過程中產(chǎn)生的裂紋總數(shù)量差異不大。為了分析煤體應(yīng)力對(duì)裂紋發(fā)展的影響規(guī)律,取切削過程的1個(gè)完整周期,分析不同煤體應(yīng)力下裂紋數(shù)量與切削時(shí)步的關(guān)系,如圖10所示。由圖10可見:不同煤體應(yīng)力下裂紋數(shù)量變化呈現(xiàn)相似的規(guī)律,即隨著鉆刃的推進(jìn),裂紋數(shù)快速增大,當(dāng)產(chǎn)生主裂紋后,裂紋數(shù)量增加明顯變緩;出現(xiàn)主裂紋時(shí),裂紋總數(shù)與煤體應(yīng)力關(guān)系不大,但在裂紋數(shù)量緩慢增加,煤體應(yīng)力小的情況下,裂紋數(shù)量較多。

      圖10 裂紋數(shù)與時(shí)步變換的關(guān)系Fig.10 Relationship between the number of cracks and time-step transformation

      3.3 煤體應(yīng)力對(duì)切削力的影響規(guī)律

      井下的應(yīng)力范圍一般為15~30 MPa,為分析煤體應(yīng)力對(duì)鉆頭轉(zhuǎn)動(dòng)切削力的影響規(guī)律,對(duì)試件施加不同煤體應(yīng)力,根據(jù)PFC 模擬結(jié)果得到不同煤體應(yīng)力下切削力與切削位移的關(guān)系,如圖11所示。

      由圖11可以看出:切削力隨切削位移的增大呈明顯周期變化,變化規(guī)律與實(shí)際切削實(shí)驗(yàn)結(jié)果一致;當(dāng)煤體應(yīng)力為10 MPa 時(shí),切削力峰值為120 kN,理論值為96 kN,后者與前者的比值為0.8;當(dāng)煤體應(yīng)力為15 MPa 時(shí),切削力峰值為158 kN,理論值為117 kN,后者與前者的比值約為0.74;當(dāng)煤體應(yīng)力為20 MPa 時(shí),切削力峰值為191 kN,理論值為144 kN,后者與前者的比值約為0.75;當(dāng)煤體應(yīng)力為25 MPa 時(shí),切削力峰值為223 kN,理論值為179 kN;當(dāng)煤體應(yīng)力為30 MPa時(shí),切削力峰值為258 kN,理論值為212 kN。綜上可知,切削力的峰值、平均值與煤體應(yīng)力呈線性關(guān)系,切削力理論分析結(jié)果與數(shù)值模擬峰值的比值近似為0.76,存在一定誤差,這是因?yàn)槔碚摲治鲋泻雎粤算@刃與煤壁的摩擦力。

      圖11 切削力隨切削位移的變化Fig.11 Variation of cutting force with cutting displacement

      圖12所示為模擬切削力峰值、平均值、理論值與煤體應(yīng)力的關(guān)系曲線,可見3 條直線幾乎平行。考慮到理論模型中略去了鉆刃底部與煤體的摩擦力,因此,在相同煤體應(yīng)力下,模擬切削力峰值比理論值大。

      圖12 切削力隨煤體應(yīng)力的變化Fig.12 Variation of cutting force with coal body stress

      4 結(jié)論

      1)切削力主要受煤體應(yīng)力、切削深度、鉆刃半角等因素影響。在煤巖物理力學(xué)條件不變時(shí),切削力與煤體應(yīng)力呈線性關(guān)系,可以根據(jù)切削力的變化反演鉆孔過程中的煤體應(yīng)力分布,這為煤體應(yīng)力原位探測(cè)提供了新思路。

      2)切削力與鉆刃半角有關(guān),當(dāng)鉆刃半角較小時(shí),對(duì)切削力影響較小;當(dāng)鉆刃半角增大到20°時(shí),切削力快速上升,存在最佳鉆刃半角,為20°左右,既能保證切削力較小,又能減小鉆刃磨損。

      3)在切削過程中,隨著煤體應(yīng)力的增大,出現(xiàn)主裂紋時(shí)裂紋總數(shù)與煤體應(yīng)力關(guān)系不大,但在裂紋數(shù)量緩慢增加,煤體應(yīng)力較小的情況下,裂紋數(shù)量較多。

      4)切削力隨切削位移的增大呈明顯周期變化,與切削實(shí)驗(yàn)結(jié)果一致,切削力的峰值和平均值均與煤體應(yīng)力呈線性關(guān)系,切削力理論分析結(jié)果與數(shù)值模擬峰值的比值近似為0.76。

      猜你喜歡
      切削力煤體鉆頭
      注熱井周圍煤體蠕變過程的滲透率變化規(guī)律模擬研究
      30CrMnSiNi2A插銑加工的切削力研究
      正交試驗(yàn)下煤體滲透性影響因素評(píng)價(jià)
      煤炭工程(2019年4期)2019-05-05 02:30:16
      圓刀片切削力計(jì)算方法
      以“中央廚房”為突破口探索時(shí)政報(bào)道的融煤體之路——以浙江之聲為例
      可切換式反循環(huán)潛孔錘鉆頭設(shè)計(jì)及優(yōu)化
      PDC鉆頭側(cè)鉆現(xiàn)場(chǎng)應(yīng)用
      鉆頭磨損后怎樣更換
      瓦斯探鉆鉆頭的一種改進(jìn)
      一種深孔鉆削切削力測(cè)量裝置
      洪洞县| 青阳县| 山丹县| 安多县| 兴城市| 怀远县| 榆中县| 赣州市| 郓城县| 沁水县| 大庆市| 平江县| 福海县| 夹江县| 海安县| 新营市| 宜川县| 寿阳县| 义乌市| 桂东县| 托克托县| 桦南县| 阿克苏市| 蓬安县| 邯郸县| 南川市| 华池县| 仁寿县| 汕尾市| 紫阳县| 东莞市| 博湖县| 中超| 山阴县| 宜川县| 安阳县| 横山县| 福贡县| 荃湾区| 泾阳县| 苏尼特左旗|