貴州 胡道成
(作者單位:貴州省畢節(jié)第三實(shí)驗(yàn)高級(jí)中學(xué))
從高中物理選修3-5改為高考必考內(nèi)容以來(lái),“動(dòng)量+能量”守恒類典型問(wèn)題逐漸成為新的必考點(diǎn)和熱點(diǎn),其所占分值越來(lái)越高。這部分內(nèi)容能充分體現(xiàn)“物理觀念”,與生活實(shí)際、自然現(xiàn)象、體育運(yùn)動(dòng)、科技前沿聯(lián)系非常緊密,便于命題專家設(shè)置關(guān)于“理解能力、推理論證能力、模型建構(gòu)能力、實(shí)驗(yàn)探究能力”的問(wèn)題情境,以考查學(xué)生靈活運(yùn)用物理知識(shí)和思想方法解決實(shí)際問(wèn)題的能力。現(xiàn)針對(duì)這類問(wèn)題的典型題進(jìn)行歸類解析,以便學(xué)生解決此類問(wèn)題時(shí)可以“抓住重點(diǎn),穿線連面”建構(gòu)良好的知識(shí)結(jié)構(gòu)體系。
兩個(gè)物體在極短的時(shí)間內(nèi)發(fā)生相互作用,這種情況稱為碰撞。其特點(diǎn)是:①碰撞前后物體的速度在同一條直線上,屬于對(duì)心碰撞(正碰);②作用時(shí)間極短,兩物體碰撞過(guò)程的位移可以忽略,內(nèi)力遠(yuǎn)大于外力,動(dòng)量總是守恒的。
遵循碰撞三原則:
【例1】質(zhì)量相等的A、B兩球在光滑水平面上均向右沿同一直線運(yùn)動(dòng),A球的動(dòng)量為pA=9 kg·m/s,B球的動(dòng)量為pB=3 kg·m/s,當(dāng)A球追上B球時(shí)發(fā)生碰撞,則碰后A、B兩球的動(dòng)量可能是
( )
對(duì)于高壓水槍、風(fēng)力發(fā)電機(jī)、自動(dòng)售米機(jī)、摩托艇沖浪這類“變質(zhì)量”和“連續(xù)作用”的流體動(dòng)量變化問(wèn)題,通常要求計(jì)算流體的平均沖擊力,需要采用微元法進(jìn)行處理??疾椤澳P徒?gòu)能力”及物理思想方法,涉及動(dòng)量定理、動(dòng)能定理、功率等來(lái)體現(xiàn)“能量觀念”,有時(shí)要借助被頂起的物體重力由力的平衡條件建立方程,考查牛頓第三定律,體現(xiàn)“運(yùn)動(dòng)與相互作用觀念”的考查要求。
【例2】“水上飛人表演”是近年來(lái)觀賞性較高的水上表演項(xiàng)目之一,其原理是利用腳上噴水裝置產(chǎn)生的反沖動(dòng)力,使表演者在水面上騰空而起,同時(shí)能在空中完成各種特技動(dòng)作,如圖1所示為表演者在空中靜止時(shí)的情形。為簡(jiǎn)化問(wèn)題,將表演者及裝備與豎直軟水管看成分立的兩部分。已知表演者及裝備的總質(zhì)量為M,豎直軟水管的橫截面積為S,水的密度為ρ,重力加速度為g。若水流豎直向上噴出,與裝備接觸后能與原速度反向彈回,要保持表演者能夠在空中靜止,軟水管的出水速度大小為
圖1
( )
【解析】設(shè)水從軟水管管口噴出時(shí)的速度為v,在極短時(shí)間Δt內(nèi)噴出水柱的質(zhì)量為Δm,則Δm=ρSv·Δt,表演者能靜止在空中,根據(jù)力的平衡條件可知,水對(duì)表演者及其裝備的作用力大小為Mg,根據(jù)牛頓第三定律,表演者及其裝備對(duì)水柱的作用力大小等于Mg,選豎直向下為正方向,以水柱為研究對(duì)象,根據(jù)動(dòng)量定理:
圖2
【例3】如圖3所示,質(zhì)量為m3=2 kg的滑道靜止在光滑的水平面上,滑道的AB部分是半徑為R=0.3 m的四分之一圓弧,圓弧底部與滑道水平部分相切,滑道水平部分右端固定一個(gè)輕彈簧,滑道除CD部分粗糙外其他部分均光滑。質(zhì)量為m2=3 kg的物體2(可視為質(zhì)點(diǎn))放在滑道的B點(diǎn),現(xiàn)讓質(zhì)量為m1=1 kg的物體1(可視為質(zhì)點(diǎn))自A點(diǎn)由靜止釋放。兩物體在滑道上的C點(diǎn)相碰后黏為一體(g=10 m/s2)。求:
圖3
(1)物體1從釋放到與物體2相碰的過(guò)程中,滑道向左運(yùn)動(dòng)的距離;
(2)若CD=0.2 m,兩物體與滑道的CD部分的動(dòng)摩擦因數(shù)都為μ=0.15,求在整個(gè)運(yùn)動(dòng)過(guò)程中,彈簧具有的最大彈性勢(shì)能;
(3)物體1、2最終停在何處。
聯(lián)立以上方程,代入數(shù)據(jù)可以求得Epm=0.3 J。
代入數(shù)據(jù)得s=0.25 m,所以m1、m2最終停在D點(diǎn)左端離D點(diǎn)距離為0.05 m處。
【點(diǎn)評(píng)】人船模型是以人和船組成的系統(tǒng)為研究對(duì)象,基本的解題思路是通過(guò)畫(huà)草圖來(lái)找出二者對(duì)地位移的幾何關(guān)系,然后利用動(dòng)量守恒定律進(jìn)行求解。這種模型不僅適用于人在船上行走的情境,還可以進(jìn)一步拓展到其他的類似情境,比如人沿著懸浮在空中熱氣球的繩梯滑下或爬上的問(wèn)題(豎直方向動(dòng)量守恒);小物體沿著放在光滑水平面上的斜面或弧形槽下滑的情境等,要善于抓住某個(gè)方向上動(dòng)量守恒這個(gè)本質(zhì)因素,識(shí)別出其他真實(shí)情境中變異了的“人船模型”,然后對(duì)知識(shí)與方法進(jìn)行遷移運(yùn)用。
圖4
( )
【點(diǎn)評(píng)】子彈射入木塊的過(guò)程,子彈和木塊的動(dòng)量守恒;若子彈射入木塊后與木塊一起推動(dòng)木板,需要根據(jù)牛頓第二定律和運(yùn)動(dòng)學(xué)公式列方程求解。對(duì)于子彈進(jìn)入木塊后成為一個(gè)整體做勻變速直線運(yùn)動(dòng)的情況,往往需要用機(jī)械能守恒定律、動(dòng)能定理或能量守恒定律參與列式求解,這時(shí)需要對(duì)運(yùn)動(dòng)過(guò)程進(jìn)行分解,根據(jù)受力情況求出研究對(duì)象的加速度,尋找速度關(guān)系和位移關(guān)系成為解題的關(guān)鍵步驟。
爆炸發(fā)生在極短的時(shí)間內(nèi),炸藥產(chǎn)生的作用力(內(nèi)力)遠(yuǎn)大于物體系統(tǒng)所受的外力,因此在爆炸過(guò)程中系統(tǒng)的動(dòng)量守恒;在爆炸過(guò)程中有其他形式的能(通常是化學(xué)能)轉(zhuǎn)化為相互作用物體的動(dòng)能,因此會(huì)導(dǎo)致系統(tǒng)動(dòng)能增加,所以要根據(jù)能量守恒定律列方程。
【例5】如圖5所示,水平地面上固定著豎直面內(nèi)半徑R=2.75 m的光滑圓弧槽,圓弧對(duì)應(yīng)的圓心角為37°,槽的右端與質(zhì)量m=1 kg、長(zhǎng)度L=2 m且上表面水平的木板相切,槽與木板的交接處?kù)o止著質(zhì)量m1=2 kg和m2=1 kg的兩個(gè)小物塊(可視為質(zhì)點(diǎn))?,F(xiàn)點(diǎn)燃物塊間的炸藥,炸藥爆炸釋放的化學(xué)能有60%轉(zhuǎn)化為動(dòng)能,使兩物塊都獲得水平速度,此后m2沿圓弧槽運(yùn)動(dòng),離開(kāi)槽后在空中能達(dá)到的最大高度為h=0.45 m。已知m1與木板間的動(dòng)摩擦因數(shù)μ1=0.2,木板與地面間的動(dòng)摩擦因數(shù)μ2=0.1,最大靜摩擦力等于滑動(dòng)摩擦力,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。求:
圖5
(1)物塊到達(dá)圓弧槽左端時(shí)的速率v;
(2)炸藥爆炸釋放的化學(xué)能E;
(3)木板從開(kāi)始運(yùn)動(dòng)到停下的過(guò)程中與地面間因摩擦而產(chǎn)生的熱量Q。
聯(lián)立解得E=45 J
【點(diǎn)評(píng)】解答爆炸問(wèn)題,通常都會(huì)用動(dòng)量守恒定律和能量守恒定律列方程,但爆炸問(wèn)題通常會(huì)與板塊彈簧等問(wèn)題整合在一起,一旦出現(xiàn)物塊帶動(dòng)木板運(yùn)動(dòng)的情形,就需要根據(jù)牛頓第二定律求出各物體的加速度,再通過(guò)尋找各個(gè)物體的速度關(guān)系和位移關(guān)系來(lái)進(jìn)行列式求解。幾個(gè)物體達(dá)到共同速度是一個(gè)臨界條件,共速后如果地面不光滑,還會(huì)發(fā)生相對(duì)滑動(dòng)。解決這類涉及多個(gè)物體、多個(gè)過(guò)程的問(wèn)題關(guān)鍵在于準(zhǔn)確分解各個(gè)運(yùn)動(dòng)過(guò)程,通過(guò)尋找中間橋梁來(lái)正確列式。值得注意的是兩個(gè)對(duì)地運(yùn)動(dòng)的物體之間因摩擦而產(chǎn)生的熱量Q=Ff·s中的s指的是物體之間的相對(duì)位移,而計(jì)算物體與地面摩擦產(chǎn)生的熱量時(shí)又必須使用對(duì)地位移。
由于彈簧彈力是變力且不能突變,所以有彈簧參與的碰撞過(guò)程,要注意區(qū)別哪個(gè)過(guò)程彈簧真正參與了相互作用,在彈簧的彈性勢(shì)能增加或減少的過(guò)程中通常都要用能量守恒定律進(jìn)行列式,當(dāng)彈簧具有最大彈性勢(shì)能時(shí),一定是彈簧被壓縮到最短或被拉伸到最長(zhǎng)的時(shí)候,此時(shí)彈簧兩端的物體具有相同大小的速度,這是一個(gè)隱含條件;但彈簧恢復(fù)原長(zhǎng)時(shí),彈簧兩端物體的速度通常并不相等,而且速度不一定反向(要根據(jù)系統(tǒng)的初動(dòng)量來(lái)判定)。
【例6】如圖6甲所示,物塊A、B的質(zhì)量分別是mA=4.0 kg和mB=3.0 kg。用輕彈簧拴接,放在光滑的水平地面上,物塊B右側(cè)與豎直墻壁相接觸。另有一物塊C從t=0時(shí)以一定速度向右運(yùn)動(dòng),在t=4 s時(shí)與物塊A相碰,并立即與物塊A粘在一起不再分開(kāi),物塊C的v-t圖像如圖6乙所示。求:
甲
(1)物塊C的質(zhì)量mC;
(2)t=8 s時(shí)彈簧具有的彈性勢(shì)能Ep1,4~12 s內(nèi)墻壁對(duì)物塊B的沖量大小I;
(3)B離開(kāi)墻后的運(yùn)動(dòng)過(guò)程中彈簧具有的最大彈性勢(shì)能Ep2。
【解析】(1)由題圖乙知,C與A碰前速度為v1=9 m/s,碰后速度大小為v2=3 m/s,C與A碰撞過(guò)程動(dòng)量守恒mCv1=(mA+mC)v2,解得mC=2 kg。
(3)由題圖可知,12 s時(shí)刻B離開(kāi)墻壁,此時(shí)A、C的速度大小v3=3 m/s,之后A、B、C及彈簧組成的系統(tǒng)由動(dòng)量守恒定律得(mA+mC)v3=(mA+mB+mC)v4
【點(diǎn)評(píng)】彈簧可以把物塊、擋板、小車等聯(lián)系起來(lái)構(gòu)建出比較復(fù)雜的相互作用系統(tǒng),體現(xiàn)對(duì)物理觀念中“運(yùn)動(dòng)與相互作用觀念”和“能量觀念”這一核心素養(yǎng)的考查。解決這類問(wèn)題要在挖掘隱含條件的基礎(chǔ)上,熟練運(yùn)用動(dòng)量定理、動(dòng)量守恒定律、動(dòng)能定律、能量守恒定律等主干知識(shí)進(jìn)行列式求解,尤其要注意彈簧恢復(fù)原長(zhǎng)時(shí),其兩端物體的速度不相等的情況,要根據(jù)系統(tǒng)的初動(dòng)量對(duì)求出的速度進(jìn)行取舍。對(duì)于題目用圖像給出解題所需信息的問(wèn)題,要從圖像中準(zhǔn)確獲取與情境對(duì)應(yīng)的物理量。
電磁感應(yīng)中的雙棒問(wèn)題一般用力與運(yùn)動(dòng)、動(dòng)量與能量觀點(diǎn)來(lái)分析解決,通常以牛頓運(yùn)動(dòng)定律處理導(dǎo)體棒的瞬間力與運(yùn)動(dòng)的關(guān)系,以力與運(yùn)動(dòng)和動(dòng)量及能量處理過(guò)程量與狀態(tài)量的關(guān)系。但要注意利用動(dòng)量守恒定律分析時(shí),雙棒組成的系統(tǒng)所受合外力必須為零;若系統(tǒng)所受合外力不為零,則需要對(duì)單導(dǎo)體棒進(jìn)行受力分析,建立安培力的沖量與動(dòng)量改變量之間的關(guān)系,之后用動(dòng)能定律來(lái)處理。
【例7】如圖7所示,足夠長(zhǎng)的水平軌道c1c2左側(cè)b1b2-c1c2部分軌道間距為2L,c1c2右側(cè)窄軌道間距為L(zhǎng),曲線軌道絕緣且與水平軌道相切于b1b2,所有軌道均光滑且電阻不計(jì)。在水平軌道內(nèi)有斜向下與豎直方向成θ=37°的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小B0=0.1 T。質(zhì)量為M=0.2 kg的金屬板C垂直于導(dǎo)軌靜止在c1c2右側(cè)窄軌道上,質(zhì)量m=0.1 kg的金屬棒A自曲線軌道上高為h處由靜止釋放,經(jīng)時(shí)間t,兩棒達(dá)到穩(wěn)定狀態(tài)。兩棒在運(yùn)動(dòng)過(guò)程中始終相互平行且與導(dǎo)軌保持良好接觸,金屬棒A總在c1c2左側(cè)寬軌道上運(yùn)動(dòng),金屬棒C總在c1c2右側(cè)窄軌道上運(yùn)動(dòng)。已知兩棒接入電路的有效電阻均為R=0.2 Ω,h=0.2 m,L=0.2 m,sin37°=0.6,cos37°=0.8,取g=10 m/s2。求:
圖7
(1)金屬棒A滑到b1b2處時(shí)的速度大?。?/p>
(2)金屬棒C勻速運(yùn)動(dòng)的速度大?。?/p>
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中兩棒在水平導(dǎo)軌間掃過(guò)的面積之差。
在由板塊組成的系統(tǒng)內(nèi),除了動(dòng)量守恒之外,大多數(shù)情況下會(huì)有機(jī)械能的損失。對(duì)于多過(guò)程問(wèn)題,在應(yīng)用動(dòng)量守恒定律解題時(shí),需要靈活選擇研究的系統(tǒng),若木板在光滑水平面上滑動(dòng),則系統(tǒng)損失的機(jī)械能應(yīng)等于兩相互作用物體之間的滑動(dòng)摩擦力與兩者相對(duì)位移的乘積;對(duì)于地面不光滑的問(wèn)題,則需要用牛頓第二定律和運(yùn)動(dòng)學(xué)公式參與列式才能解決。
【例8】如圖8所示,在光滑水平面上有一平板小車,質(zhì)量為m1,其左端放有質(zhì)量為m2的鐵塊(可視為質(zhì)點(diǎn)),若鐵塊隨小車以v0=3 m/s的速度向右做勻速運(yùn)動(dòng),小車將與豎直墻壁發(fā)生正碰,碰撞時(shí)間忽略不計(jì)。碰撞時(shí)無(wú)動(dòng)能損失,已知鐵塊與平板之間的動(dòng)摩擦因數(shù)μ=0.2,重力加速度g=10 m/s2。鐵塊始終不會(huì)從小車上掉下來(lái)。
圖8
(1)若m1=2 kg,m2=1 kg。①求小車的最小長(zhǎng)度;②求小車與墻壁碰后,站在地面上的人看來(lái),鐵塊向右運(yùn)動(dòng)的最大位移;
(2)若m1=1 kg,m2=2 kg,從小車與墻壁第一次碰撞開(kāi)始算起,到小車與墻壁第三次碰撞瞬間為止的這段時(shí)間內(nèi),小車所走的總路程。
【點(diǎn)評(píng)】板塊模型以勻變速直線運(yùn)動(dòng)為基本情境,研究對(duì)象具有多體性,已知條件具有隱蔽性,運(yùn)動(dòng)過(guò)程具有多段性或往返性,物理過(guò)程復(fù)雜,分段處理是基本思路,要將物體的受力分析與過(guò)程分析結(jié)合起來(lái),在草稿紙上畫(huà)出過(guò)程示意圖,做好受力分析,理清運(yùn)動(dòng)過(guò)程,靈活地將動(dòng)力學(xué)、運(yùn)動(dòng)學(xué)、動(dòng)量、能量關(guān)系等多個(gè)規(guī)律有機(jī)結(jié)合起來(lái)進(jìn)行處理。