范澤華, 郜思齊, 杜會(huì)博, 張立民, 張紅, 趙振奧, 趙自剛△, 牛春雨
·短篇論著·
大鼠腸淋巴液外泌體提取及星狀神經(jīng)節(jié)阻滯對(duì)失血性休克后腸淋巴液外泌體數(shù)量的影響*
范澤華1, 郜思齊1, 杜會(huì)博1, 張立民1, 張紅1, 趙振奧1, 趙自剛1△, 牛春雨2△
(1河北北方學(xué)院微循環(huán)研究所/基礎(chǔ)醫(yī)學(xué)院,湖南 張家口 075000;2河北醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,河北 石家莊 050017)
建立腸淋巴液外泌體分離技術(shù),驗(yàn)證外泌體來(lái)源,觀察星狀神經(jīng)節(jié)阻滯(SGB)對(duì)失血性休克后腸淋巴液(PHSML)中外泌體數(shù)量的影響。雄性大鼠隨機(jī)均分為假手術(shù)(sham)組、sham+SGB組、休克(shock)組和shock+SGB組,常規(guī)方法實(shí)施SGB并建立失血性休克模型,引流PHSML,提取外泌體。應(yīng)用納米粒徑分析、CD63蛋白表達(dá)檢測(cè)鑒定提取物是否為外泌體;檢測(cè)外泌體腸上皮細(xì)胞黏附分子(EpCAM)的蛋白表達(dá),明確外泌體是否源于腸上皮細(xì)胞。應(yīng)用流式細(xì)胞術(shù)分析外泌體數(shù)量。腸淋巴液提取的顆粒樣物質(zhì)直徑大小在100 nm左右,同時(shí)表達(dá)外泌體的特異性蛋白CD63和腸道上皮細(xì)胞的特異性蛋白EpCAM; shock組腸淋巴液外泌體數(shù)量顯著高于sham組(<0.05), shock+SGB組腸淋巴液外泌體數(shù)量顯著低于shock組(<0.05)。我們建立了腸淋巴液外泌體的提取技術(shù),證實(shí)腸淋巴液外泌體來(lái)自腸道上皮細(xì)胞, SGB可以降低大鼠失血性休克后腸淋巴液中外泌體的數(shù)量。
腸淋巴液;外泌體;失血性休克;星狀神經(jīng)節(jié)阻滯
失血性休克是臨床常見(jiàn)的危重癥之一,重癥失血性休克是非正常死亡的原因之一[1]。失血性休克對(duì)人體的危害不僅在于有效循環(huán)血量急劇減少帶來(lái)的循環(huán)衰竭,更與隨后導(dǎo)致的多器官損傷有關(guān)。腸是休克后引發(fā)多器官損傷乃至多器官功能障礙綜合征(multiple organ dysfunction syndrome, MODS)的主要器官、啟動(dòng)器官[2],失血性休克后腸系膜淋巴液(post-hemorrhagic shock mesenteric lymph, PHSML)回流參與了失血性休克引起器官損傷的關(guān)鍵環(huán)節(jié),腸淋巴途徑是腸源性感染、細(xì)菌內(nèi)毒素移位的基本路徑[3- 4]。外泌體作為一類多種細(xì)胞分泌的多功能囊泡,可由細(xì)胞在自然狀態(tài)下分泌,也可在受刺激后分泌,所以同一細(xì)胞分泌的外泌體在不同情況下包含不同的物質(zhì),且會(huì)攜帶原細(xì)胞的某些生化組分[5]。外泌體在PHSML介導(dǎo)器官損傷的發(fā)病過(guò)程中扮演什么角色,值得關(guān)注。星狀神經(jīng)節(jié)阻滯(stellate ganglion block, SGB)對(duì)失血性休克后的腸屏障功能具有良好的保護(hù)作用,可顯著延長(zhǎng)失血性休克動(dòng)物的存活時(shí)間[6],但其是否會(huì)通過(guò)影響腸淋巴液的外泌體發(fā)揮作用,尚不清楚。為此,本研究首先建立腸淋巴液外泌體的提取技術(shù),進(jìn)而觀察SGB對(duì)PHSML中外泌體數(shù)量的影響。
成年雄性Wistar大鼠24只,購(gòu)買于斯貝福(北京)生物技術(shù)有限公司,實(shí)驗(yàn)動(dòng)物許可證號(hào)為 SCXK(京)2016-0002,體重在280~320 g之間。飼養(yǎng)環(huán)境:溫度(24±2)℃、濕度40%~60%、光照節(jié)律晝夜交替。大鼠禁食8 h(自由飲水)后,依據(jù)實(shí)驗(yàn)動(dòng)物倫理學(xué)標(biāo)準(zhǔn)進(jìn)行實(shí)驗(yàn)研究。大鼠隨機(jī)分為假手術(shù)(sham)組、sham+SGB組、休克(shock)組和shock+SGB組。
2.1實(shí)施SGB術(shù)按我室常規(guī)方法實(shí)施大鼠SGB術(shù)。誘導(dǎo)麻醉:動(dòng)物稱重記錄后,置入小動(dòng)物麻醉機(jī)(VMR型, MIDMARK)麻醉誘導(dǎo)盒,吸入3%異氟烷(河北一品制藥有限公司)1~3 min,氧流量(1~1.5) L/min。實(shí)施SGB:俯臥位將大鼠固定在小動(dòng)物手術(shù)臺(tái),繼續(xù)吸入麻醉,采用后路徑盲法穿刺(右側(cè)),回抽無(wú)血后,注射0.5%鹽酸羅哌卡因溶液(AstraZeneca)0.2 mL。觀察效果:停止吸入麻醉,待大鼠自然蘇醒后,若大鼠出現(xiàn)右眼瞼下垂,視為SGB成功(圖1);若觀察不到明顯的右眼瞼下垂,則視為SGB術(shù)失敗,大鼠被棄用。假手術(shù)組麻醉后于右側(cè)星狀神經(jīng)節(jié)處注射等量生理鹽水。本方法在我室技術(shù)成熟,復(fù)制SGB成功率>90%。
2.2腸淋巴液標(biāo)本制備大鼠在實(shí)施SGB或假手術(shù)后,再次進(jìn)行誘導(dǎo)麻醉,然后肌肉注射戊巴比妥鈉(50 mg/kg)全身麻醉。隨后,進(jìn)行雙側(cè)股部手術(shù),分離股動(dòng)脈、股靜脈并分別插管,連接相應(yīng)管道,應(yīng)用PowerLab四道生理信號(hào)采集分析系統(tǒng)(AD Instruments)實(shí)時(shí)監(jiān)測(cè)平均動(dòng)脈壓(mean artery pressure, MAP)。穩(wěn)定30 min待大鼠MAP平穩(wěn)后,常規(guī)方法應(yīng)用程控微量注射泵(NE-1000型)執(zhí)行放血程序,維持低血壓(40±2) mmHg 1 h后,進(jìn)行液體復(fù)蘇,輸入放出的全血和等量林格液的混合液,30 min完成。復(fù)蘇結(jié)束后,進(jìn)行腸淋巴管插管,引流腸淋巴液3 h。Sham組及Sham+SGB組在與Shock組液體復(fù)蘇后相對(duì)應(yīng)的時(shí)間點(diǎn),實(shí)施相同的手術(shù),引流腸淋巴液0.5 h。將腸淋巴液以3 000 r/min速度離心,取上清液,用于提取外泌體和后續(xù)實(shí)驗(yàn)。
2.3外泌體的提取按照外泌體提取試劑盒(SBI)說(shuō)明書,將獲取的腸淋巴液加入外泌體提取試劑,顛倒混勻, 4℃過(guò)夜;次日使用離心機(jī)以1 500×低溫離心30 min,棄上清液;再以1 500 ×離心5 min,棄上清液;取100 mL磷酸鹽緩沖液(phosphate-buffered saline, PBS)重懸沉淀即可。重懸后,即刻放入-80℃低溫冰箱凍存,以備后續(xù)實(shí)驗(yàn)使用。
2.4外泌體的鑒定
2.4.1納米粒徑分析法采用ZetaView PMX110 (Particle Metrix)進(jìn)行實(shí)時(shí)高分辨率顆粒檢測(cè)、計(jì)數(shù)和分級(jí)。測(cè)量前將樣本用PBS稀釋到3 mL,而后上機(jī)檢測(cè),重復(fù)測(cè)量3次。
2.4.2Western blot檢測(cè)CD63的表達(dá)外泌體樣品及SDS‐PAGE上樣緩沖液(5×)按4∶1配比后,沸水浴中變性10 min,冰上冷卻5 min,按測(cè)定好的蛋白濃度,算出上樣量,以每孔15 μg蛋白樣品進(jìn)行電泳(100 V,120 min左右),濕轉(zhuǎn)至PVDF膜上(300 mA,1.5 h),加5%脫脂牛奶于搖床上封閉1 h,TBST緩沖液洗膜后(10 min×3次),加入鼠源性Ⅰ抗(CD63抗體, 1∶1 000, Abcam), 4℃孵育過(guò)夜。第2天洗膜后(10 min×3次),加入山羊抗鼠Ⅱ抗稀釋液(1∶4 000,武漢博士德生物工程有限公司),室溫孵育1 h,洗膜后(10 min×3次),顯色,掃描。
2.5外泌體的細(xì)胞來(lái)源
2.5.1流式細(xì)胞術(shù)檢測(cè)外泌體來(lái)源分別取不同組的30 μL外泌體重懸液與10 μL乳膠珠(Thermo Fisher Scientific)室溫孵育15 min,加入1 mL PBS稀釋,搖床上輕搖2 h。離心去PBS,加入100 mmol/L甘氨酸溶液孵育30 min(阻斷乳膠珠的游離結(jié)合位點(diǎn));PBS洗滌,加入腸上皮細(xì)胞黏附分子(epithelial cell adhesion molecule, EpCAM)抗體(Abcam) 10 μL,孵育1 h; PBS洗兩遍,加異硫氰酸熒光素(fluorescein isothiocyanate, FITC)標(biāo)記的Ⅱ抗,室溫孵育1 h,應(yīng)用流式細(xì)胞儀(C6型, BD)進(jìn)行檢測(cè)。
2.5.2Western blot檢測(cè)EpCAM的表達(dá)外泌體樣品及Western blot檢測(cè)實(shí)驗(yàn)方法同上,其中EpCAM Ⅰ抗稀釋濃度為1∶500。
2.6外泌體的數(shù)量變化外泌體制樣及流式檢測(cè)方法同2.5.1,其中Ⅰ抗使用CD63,孵育1 h后,PBS洗2遍,加FITC標(biāo)記的Ⅱ抗,室溫孵育1 h,上機(jī)檢測(cè)外泌體數(shù)量。由于不同樣品與乳膠珠在同一環(huán)境下用同樣方式處理,故認(rèn)為樣品中外泌體與乳膠珠結(jié)合的比例是相同的,因此,處理后樣品乳膠珠表達(dá)熒光的比例越大,說(shuō)明該樣本中外泌體數(shù)量越多,即熒光強(qiáng)度與外泌體數(shù)量呈正相關(guān)。
所有數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。應(yīng)用SPSS 17.0統(tǒng)計(jì)軟件進(jìn)行方差齊性檢驗(yàn),方差齊的多組數(shù)據(jù)比較用單因素方差分析。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
納米粒徑分析法顯示所提取樣本中的顆粒樣物質(zhì)的直徑大小在100 nm左右,屬外泌體大小范圍,且該范圍內(nèi)粒子量占總粒子量的98%以上(圖2A)。采用Western blot技術(shù)對(duì)腸淋巴液提取物進(jìn)行檢測(cè),發(fā)現(xiàn)提取物表達(dá)外泌體的特異性抗體CD63(圖2B)。這些結(jié)果證明本實(shí)驗(yàn)?zāi)c淋巴液提取的物質(zhì)為外泌體,說(shuō)明本實(shí)驗(yàn)提取腸淋巴液外泌體的技術(shù)是成功的,可用于后續(xù)的實(shí)驗(yàn)分析。
Figure 2. The extracted substances in mesenteric lymph were examined from different angles and proved to be exosomes. A: the ZetaView device was used to analyze the size distribution of isolated exosomes in mesenteric lymph; B: exosomal specific protein CD63 expression was detected by western blot in extracted substances in mesenteric lymph.
流式細(xì)胞術(shù)檢測(cè)到各組腸淋巴液提取的外泌體均高度表達(dá)EpCAM蛋白(圖3A), Western blot結(jié)果亦顯示各組樣本均表達(dá)EpCAM蛋白(圖3B)。這些結(jié)果表明腸淋巴液中外泌體來(lái)源為腸上皮細(xì)胞。
Figure 3. Identification of exosomes in mesenteric lymph with the expression of EpCAM. A: representative images of EpCAM expression in exosomes obtained from mesenteric lymph by flow cytometry; B: representative images of EpCAM expression in exosomes obtained from mesenteric lymph by Western blot.
流式細(xì)胞術(shù)結(jié)果顯示, sham組和sham+SGB組大鼠腸淋巴液外泌體的數(shù)量沒(méi)有明顯差異, shock組大鼠腸淋巴液外泌體數(shù)量有明顯升高(<0.05), shock+SGB組大鼠腸淋巴液外泌體較Shock組明顯減少(<0.05),見(jiàn)圖4。這一結(jié)果表明SGB減少了PHSML中外泌體的含量。
Figure 4. SGB decreased the number of exosomes in mesenteric lymph obtained from hemorrhagic shocked rats. A: representative images of number of exosomes obtained from mesenteric lymph by flow cytometry; B: the changes of exosomes number in mesenteric lymph. Mean ±SD. n=4. *P<0.05 vs sham group; #P<0.05 vs shock group.
目前,外泌體經(jīng)常用的提取方法有超速離心法、密度梯度離心法、超濾離心法、磁珠免疫法和PEG-base沉淀法和試劑盒提取法等。其中,超速離心法雜質(zhì)比較多,純度不高,且重復(fù)離心操作可能對(duì)外泌體造成損傷[7-8];密度梯度離心法步驟繁瑣耗時(shí),易有人為干擾因素;磁珠免疫法效率較低,易影響外泌體活性,不利于后續(xù)實(shí)驗(yàn);PEG-base沉淀法純度和回收率較低,雜質(zhì)較多,顆粒大小不均;超濾離心法可成功分離人體臍血干細(xì)胞分泌的外泌體[9],但同樣存在雜質(zhì)較多的缺點(diǎn),導(dǎo)致外泌體純度受影響[10]。相比之下,試劑盒提取法較超濾離心法而言更方便、快速、操作性強(qiáng),針對(duì)性強(qiáng),對(duì)外泌體內(nèi)容物影響?。?1],所以本實(shí)驗(yàn)選用試劑盒提取法。外泌體常用鑒定方法為電子顯微鏡法[12],流式細(xì)胞儀法[13],動(dòng)態(tài)光散射法[14]和納米顆粒跟蹤分析技術(shù)[15]。但其中動(dòng)態(tài)光散射法不適合粒徑分布較寬的外泌體樣本的測(cè)量,只適合尺寸均一的外泌體測(cè)量,并且無(wú)法測(cè)量樣品中外泌體的濃度。所以本實(shí)驗(yàn)選擇納米顆粒跟蹤分析技術(shù)聯(lián)合流式細(xì)胞術(shù)對(duì)腸淋巴液提取的外泌體進(jìn)行鑒定。納米顆粒跟蹤分析技術(shù)檢測(cè)結(jié)果顯示,從腸淋巴液中提取物的直徑大小符合外泌體特征,Western blot檢測(cè)到提取物中CD63蛋白的表達(dá),證明本研究提取的顆粒物為外泌體,為下一步的實(shí)驗(yàn)研究奠定了方法學(xué)基礎(chǔ)。
外泌體的誘導(dǎo)與生成過(guò)程非常復(fù)雜[16]。在缺血、缺氧、能量缺乏、細(xì)胞內(nèi)鈣濃度增高和氧化應(yīng)激等許多不良刺激因素的作用下可誘導(dǎo)細(xì)胞產(chǎn)生有害的外泌體,細(xì)胞通過(guò)釋放外泌體排出有害物質(zhì)來(lái)維持穩(wěn)態(tài)[17],而外泌體膜可對(duì)其攜帶的生物活性物質(zhì)起到保護(hù)作用,實(shí)現(xiàn)遠(yuǎn)距離輸送[18],所以推測(cè)外泌體造成機(jī)體損傷可能與外泌體攜帶了宿主細(xì)胞的有害成分相關(guān)。本文的研究顯示,腸淋巴液中外泌體的來(lái)源為腸上皮細(xì)胞,說(shuō)明失血性休克后腸損傷引起了外泌體釋放。而這些外泌體經(jīng)過(guò)腸淋巴液回流到體循環(huán),從而發(fā)揮對(duì)遠(yuǎn)隔器官的損傷作用。但相關(guān)證據(jù)還需要進(jìn)一步探尋。
針對(duì)腸淋巴途徑在創(chuàng)傷、休克和敗血癥等危重病理過(guò)程中的病理生理意義,現(xiàn)在已達(dá)成共識(shí),危重狀態(tài)下腸道產(chǎn)生的毒性成份以及腸屏障損傷引起的經(jīng)腸淋巴液回流的途徑,成為多器官損傷的基本發(fā)生機(jī)制[19]。眾多學(xué)者也應(yīng)用蛋白質(zhì)組學(xué)、代謝組學(xué)和蛋白層析等多種技術(shù)研究PHSML中的差異成份,以明確PHSML引起遠(yuǎn)隔器官損傷的病理生理基礎(chǔ)。研究表明[20- 21],PHSML中發(fā)揮損傷作用的物質(zhì)成分為外泌體,是失血性休克活化單核細(xì)胞和巨噬細(xì)胞引起炎癥反應(yīng)失控的主要成分,也是導(dǎo)致多器官功能衰竭的關(guān)鍵;分泌到PHSML中的外泌體作為創(chuàng)傷休克誘導(dǎo)急性肺損傷的關(guān)鍵介質(zhì),在巨噬細(xì)胞Toll樣受體4的激活進(jìn)而引起炎癥反應(yīng)的過(guò)程中發(fā)揮關(guān)鍵作用;腸淋巴液內(nèi)外泌體的數(shù)量在失血性休克的不同階段會(huì)發(fā)生明顯的變化。最新研究[22]發(fā)現(xiàn),PHSML中外泌體攜帶一些獨(dú)特的促炎蛋白,刺激迷走神經(jīng)可防止創(chuàng)傷失血性休克腸系膜淋巴液外泌體蛋白有效載荷變化,揭示神經(jīng)-腸軸可以通過(guò)這種機(jī)制來(lái)限制創(chuàng)傷失血后的全身炎癥反應(yīng)。
SGB作為一種常用的微創(chuàng)麻醉鎮(zhèn)痛技術(shù),可緩解持續(xù)緊張的交感神經(jīng),從而維持神經(jīng)系統(tǒng)平衡。由于急性失血通過(guò)引起交感神經(jīng)興奮進(jìn)而引起局部器官缺血、血液重新分布,在一定程度上發(fā)揮代償作用,但過(guò)強(qiáng)的失血刺激或持續(xù)過(guò)長(zhǎng)的低血壓引起的持續(xù)局部器官缺血,成為這些器官缺血性損傷的啟動(dòng)因素。前期研究顯示[6],SGB能夠延長(zhǎng)失血性休克大鼠的存活時(shí)間,改善腸黏膜屏障功能,減輕重要器官的組織損傷,但相關(guān)機(jī)制還不十分明確。在此基礎(chǔ)上,本研究應(yīng)用流式技術(shù)觀察了SGB對(duì)PHSML中外泌體數(shù)量的影響,結(jié)果發(fā)現(xiàn)PHSML外泌體的數(shù)量顯著增加,SGB發(fā)揮了顯著的抑制作用。但要注意,本研究PHSML外泌體數(shù)量的研究與文獻(xiàn)不同,主要原因是本文將休克復(fù)蘇后所有腸淋巴液中外泌體提取后,再稀釋至與其它淋巴液相同的體積所引起的。
總之,本研究初步建立了腸淋巴液外泌體的提取技術(shù),驗(yàn)證其來(lái)源與腸上皮細(xì)胞相關(guān),并發(fā)現(xiàn)SGB可以降低PHSML中外泌體的數(shù)量,這可能與SGB干預(yù)休克的作用有關(guān)。另外,SGB是否影響了PHSML中外泌體的內(nèi)容物尚不清楚,且SGB影響外泌體的機(jī)制也不清楚,還有待在今后的實(shí)驗(yàn)中進(jìn)一步觀察。
[1] Biranje SS, Madiwale PV, Patankar KC, et al. Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage[J]. Carbohydrate Polymers, 2020, 239:116106
[2] Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness[J]. Crit Care Clin, 2016, 32(2):203-212.
[3] Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction[J]. Ann N Y Acad Sci, 2010, 1207(Suppl 1):E103-E111.
[4] Deitch EA. Gut-origin sepsis: evolution of a concept[J]. Surgeon, 2012, 10(6):350-356.
[5]武慶娟,陳恒文,高健,等. 外泌體miRNA在心血管疾病中的研究進(jìn)展[J]. 中國(guó)病理生理雜志, 2020, 36(2):371-377.
Wu QJ, Chen HW, Gao J, et al. Exosome-derived miRNAs in cardiovascular diseases[J]. Chin J Pathophysiol, 2020, 36(2):371-377.
[6] Zhang J, Lin XR, Zhang YP, et al. Blockade of stellate ganglion remediates hemorrhagic shock-induced intestinal barrier dysfunction[J]. J Surg Res,2019, 244:69-76.
[7] Linares R, Tan S, Gounou C, et al. High-speed centrifugation induces aggregation of extracellular vesicles[J]. J Extracell Vesicles, 2015, 4:29509.
[8] Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma[J]. J Extracell Vesicles, 2015, 4:27031.
[9] Zhang B, Shen L, Shi H, et al. Exosomes from human umbilical cord mesenchymal stem cells: identification, purification, and biological characteristics[J]. Stem Cells Int, 2016,2016:1929536.
[10] Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219:396-405.
[11] 楊季,蔣雯,李軍. ExoQuick法提取人血清外泌體的臨床價(jià)值[J]. 檢驗(yàn)醫(yī)學(xué)與臨床, 2019, 16(15):2182-2184.
Yang J, Jiang W, Li J. Clinical value of ExoQuick for extracting human serum exosomes[J].Lab Med Clin, 2019, 16(15):2182-2184.
[12] 阮安民,陳譜,周俊,等. 聚乙二醇沉淀法提取關(guān)節(jié)液來(lái)源外泌體實(shí)驗(yàn)研究[J]. 中國(guó)中醫(yī)骨傷科雜志, 2020, 28(3):1-4.
Ruan AM, Chen P, Zhou J, et al. Extraction and identification ofexosomes derived fromjoint effusion based on PEGprecipitation method[J].Chin J Tradit Med Traumatol Orthop, 2020, 28(3): 1-4.
[13] Kojima M, Costantini TW, Eliceiri BP, et al. Gut epithelial cell-derived exosomes trigger posttrauma immune dysfunction[J]. J Trauma Acute Care Surg, 2018, 84(2): 257-264.
[14] 高方園,焦豐龍,張養(yǎng)軍,等. 外泌體分離技術(shù)及其臨床應(yīng)用研究進(jìn)展[J].色譜, 2019, 37(10): 1071-1083.
Gao FY, Jiao FL, Zhang YJ, et al. Advances in separation techniques for exosomes and their clinical applications[J].Chin J Chrom, 2019, 37(10): 1071-1083.
[15] Logozzi M, Mizzoni D, Bocca B, et al. Human primary macrophages scavenge AuNPs and eliminate it through exosomes. A natural shuttling for nanomaterials[J]. Eur J Pharm Biopharm, 2019, 137: 23-26.
[16] Chiaruttini N, Redondo-Morata L, Colom A, et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation[J]. Cell, 2015, 163(4): 866-879.
[17] Takahashi A, Okada R, Nagao K, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells[J]. Nat Commun, 2017, 8: 15287.
[18] Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders[J]. Cell Tissue Res, 2013, 352(1): 33-47.
[19] Zhu R, Ma XC. Role of metabolic changes of mucosal layer in the intestinal barrier dysfunction following trauma/hemorrhagic shock[J]. Pathol Res Pract, 2018, 214(11): 1879-1884.
[20] Kojima M, Gimenes-Junior JA, Langness S, et al. Exosomes, not protein or lipids, in mesenteric lymph activate inflammation: Unlocking the mystery of post-shock multiple organ failure[J]. J Trauma Acute Care Surg, 2017, 82(1):42-50.
[21] Kojima M, Gimenes-Junior JA, Chan TW, et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4[J]. FASEB J, 2018, 32(1):97-110.
[22] Williams EC, Coimbra R, Chan TW, et al. Precious cargo: modulation of the mesenteric lymph exosome payload after hemorrhagic shock[J]. J Trauma Acute Care Surg, 2019, 86(1):52-61.
Isolation of exosomes and effect of stellate ganglion block on the number of exosomes in post-hemorrhagic shock mesenteric lymph of rats
FAN Ze-hua1, GAO Si-qi1, DU Hui-bo1, ZHANG Li-min1, ZHANG Hong1, ZHAO Zhen-ao1, ZHAO Zi-gang1, NIU Chun-yu2
(1,075000,;2,050017,)
To isolate the exosomes in mesenteric lymph, verify the source of exosomes, and observe the effect of stellate ganglion block (SGB) on the number of exosomes in post-hemorrhagic shock mesenteric lymph (PHSML) of rats.Twenty-four male rats were randomly divided into sham, sham+SGB, shock, and shock+SGB groups. SGB was performed before the establishment of hemorrhagic shock model using the routine methods in our lab. The PHSML was drained for exosomes isolation. The exosomes were identified through particle size analysis and CD63 protein expression. The expression of epithelial cell adhesion molecule (EpCAM) was detected to identify whether the exosomes were derived from epithelial cell. The number of exosomes in various mesenteric lymphs was measured using the flow cytometry.The diameter of granular material extracted from mesenteric lymph was about 100 nm. The positive expression of exosomes pecific protein CD63 indicated the successful isolation of exosomes, and the EpCAM expression verified the exosomes were derived from intestinal epithelial cells. The number of exosomes in mesenteric lymph isolated from the rats of Shock group was obviously increased compared to that from the Sham group (<0.05), while the exosomes from the Shock+SGB group was markedly decreased when compared to Shock group (<0.05).The current study establishes the isolation technique of exosomes in mesenteric lymph, and proved the exosomes were derived from the intestinal epithelial cells. SGB treatment reduces the number of exosomes in PHSML.
Mesenteric lymph; Exosomes; Hemorrhagic shock; Stellate ganglion block
R364.1; R331.4
A
10.3969/j.issn.1000-4718.2020.11.022
1000-4718(2020)11-2074-07
2020-06-28
2020-07-08
國(guó)家自然科學(xué)基金資助項(xiàng)目(No.81770492)
牛春雨 Tel: 0311-86266215; E-mail: ncylxf@126.com;趙自剛 Tel: 0313-4029223; E-mail: zzghyl@126.com
(責(zé)任編輯:林白霜,余小慧)