張艷
一、教學目標
1、引導學生借助測量、拼接、折疊的方法對三角形內(nèi)角和進行探索,使學生認識到三角形內(nèi)角和等于180度。
2、引導學生在探索的過程中強化對三角形的內(nèi)角和的認識,掌握已知兩個角的角度求第三個角度數(shù)的方法。
3、借助教學活動的開展,充分激發(fā)學生對數(shù)學學科的興趣,使教學活動能夠取得理想效果。
二、教學重難點
1、教學重點:全面理解和認識三角形三個內(nèi)角和等于180度,并能用多種方法來驗證。
2、教學難點:靈活運用三角形內(nèi)角和等于180度,解決現(xiàn)實生活中遇到的已知任意兩角度數(shù),求第三角度數(shù)的問題。
三、教學過程
1、課前導入
在課前導入階段,教師積極向?qū)W生展示自己制作的多媒體教學課件,向?qū)W生展示三種常見的三角形直角三角形,銳角三角形,鈍角三角形,并借助漫畫的形式向?qū)W生展示三個圖形的對話。
直角三角形說:“我的形狀最大,所以我的內(nèi)角和也是最大?!?/p>
鈍角三角形說:“我有一個特大的鈍角,所以我的內(nèi)角和最大?!?/p>
銳角三角形說:“可能我的內(nèi)角是最小的?!?/p>
當展示完這個漫畫之后,教師就要充分引導學生展開課前討論,學生會提出意見,三個三角形所說的都不對,由此引入本節(jié)課的教學。
2、認識三角形內(nèi)角
小學時,你們就已經(jīng)知道三角形的內(nèi)角和是180°,當時你們是通過量角器量一量、剪刀剪一剪拼一拼的操作去解釋的.然而,量一量、拼一拼都只能對具體的三角形進行操作,不具有一般性,并且量、拼都會產(chǎn)生誤差,所以通過操作來說明就不可靠了.因此,我們要用嚴謹?shù)恼f理去證實.
開始聯(lián)想構(gòu)造,說理證實
如何說理驗證?
為了便于說明,我們結(jié)合圖形△ABC,用符號形式表示出來
首先,需要將命題轉(zhuǎn)化為帶有數(shù)學符號的語言,可以是圖像語言,也可以是符號語言:
符號語言:如果∠A、∠B、∠C為△ABC的三個內(nèi)角,
那么:∠A+∠B+∠C=180°。
其次,進行聯(lián)想、啟發(fā)
要說明∠A+∠B+∠C=180°,想一想之前學過的幾何意義、定理知識內(nèi)容中,出現(xiàn)了180°的哪些結(jié)論?
3、匯報成果
學生提出:如∠A、∠B、∠C是△ABC的三個內(nèi)角,
那么∠A+∠B+∠C=180°
解題過程如下:
解:過△ABC的頂點A作直線DE//BC
∴∠B=∠DAB(兩直線是平行,內(nèi)錯角是相等)
∠C=∠EAC(兩直線是平行,內(nèi)錯角是相等)
因D、A、E在直線DE上
∴∠DAB+∠BAC+∠EAC=180°(平角的意義)
∴∠B+∠BAC+∠C=180°(等量代換)
在學生充分展示自己學習成果的基礎(chǔ)上,教師要積極做好教學總結(jié),是學生認識到每一個三角形的內(nèi)角和都是180度。借助學生對三角形的拼接,學生能夠充分認識到將三角形三個內(nèi)角拼接到一塊就能形成一個平角。借助這種方法能夠強化學生的理解和認知,使學生以更加積極的態(tài)度參與到數(shù)學學習之中,并對數(shù)學學習產(chǎn)生濃厚的興趣。這一點教師必須要注意。在此期間,教師要積極鼓勵同學用其它方法展開證明,例如延長三角形的一邊構(gòu)造平角或過三角形一頂點作其對邊的平行線構(gòu)造同旁內(nèi)角。
4、教學測驗
在本節(jié)課的教學活動中,引導學生充分認識和運用三角形內(nèi)角和等于180度是教學的重點和難點。所以在教學活動開展過程中,當學生系統(tǒng)學習了本節(jié)課的知識點之后,教師在課堂教學過程中要積極借助教學測驗來了解學生,對本節(jié)課的理解與掌握情況。
教師可以向?qū)W生提出判斷題,例如“三角形的內(nèi)角和一定等于180度、直角三角形的內(nèi)角和大于銳角三角形的內(nèi)角和”等問題,學生在判斷的過程中能夠強化自己的認識。鑰匙也可以給出學生一個直角三角形,其中一個銳角是30度,問另一個銳角的度數(shù)是多少?對于這樣一個問題,學生可以按照標準的方法利用三角形三個內(nèi)角和等于180度使用減法一步步展開運算,也有部分學生借助自己的觀察,直接用90度減30度計算出問題的答案。對于這種計算方法,有部分學生可能無法理解,教師就要充分引導學生對特殊的三角形直角形展開探索是學生對直角三角形有更加全面的理解和認知,才能幫助學生快速融入到學習活動中,強化自己的理解和認識。
四、板書設(shè)計
三角形內(nèi)角和
銳角:180(左右)
鈍角:180(左右)? 三角形的內(nèi)角和是180 °
直角:180(左右)
五、作業(yè)布置
1、三角形內(nèi)角和是( )
2、當三角形中兩個內(nèi)角和( )第三個角時,這是一個() 直角三角形。
3、在一個三角形中,有兩個內(nèi)角都是65°,那么另一個 角是( )°,這個三角形叫( )三角形。
4、在一個三角形中,一個內(nèi)角是68°,另一個內(nèi)角是92° 那么第三個角是( )°
5、等腰三角形的頂角是90°,他的一個底角是( )°
六、教學反思
對學生開展教學的過程中,要充分給學生探究的時間,讓學生學習的積極性得以發(fā)揮,這樣才能幫助學生更好地適應數(shù)學學習,動手動腦是教學活動中取得理想效果的有效途徑,單純依靠死記硬背三角形內(nèi)角和等于180度,很難發(fā)揮出理想的教學效果。