• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      陜南石煤及煤灰中磷元素的遷移規(guī)律

      2021-04-18 23:48張衛(wèi)國侯恩科李軍劉曉玉左鑫馮馨月
      關(guān)鍵詞:水溶液堿性酸性

      張衛(wèi)國 侯恩科 李軍 劉曉玉 左鑫 馮馨月

      摘 要:陜南是馳名中外的石煤賦存區(qū),石煤中伴生有多種元素。通過測試石煤中磷元素的含量,發(fā)現(xiàn)陜南石煤樣品中磷元素含量普遍較高(139.1~2 946.8 μg/g),遠(yuǎn)高于中國煤中磷均值,富集磷元素特征明顯,并且石煤灰樣普遍高于對應(yīng)原石煤樣中磷元素含量。利用浸泡實(shí)驗(yàn)?zāi)M了四種條件下(超純水、酸性溶液、堿性溶液、礦井水)石煤及煤灰中磷元素的浸出(遷移)過程,實(shí)驗(yàn)周期長達(dá)12個月,計(jì)算了不同類型樣品和浸泡條件下的磷元素浸出率。結(jié)果顯示:酸性溶液對于石煤樣品中磷元素有較高的浸出率,普遍高于其他三種類型溶液,礦井水溶液的磷浸出率次之,超純水和堿性溶液的磷浸出率微弱,指示堿性條件有抑制石煤樣中磷元素浸出的趨勢。石煤灰樣品在不同類型溶液條件下磷元素的浸出率特征也是在酸性溶液中比較高,礦井水溶液次之。與不同溶液石煤樣磷元素浸出率相比,石煤灰樣在堿性溶液和礦井水溶液中略有增高。關(guān)鍵詞:石煤;磷;遷移規(guī)律;浸泡實(shí)驗(yàn);浸出率中圖分類號:P 595

      文獻(xiàn)標(biāo)志碼:A

      文章編號:1672-9315(2021)02-0316-07

      DOI:10.13800/j.cnki.xakjdxxb.2021.0216開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):

      Migration law of Phosphorus in stone coal and

      coal ash in southern Shaanxi province

      ZHANG Weiguo1,2,3,HOU Enke1,2, LI Jun4, LIU Xiaoyu1,ZUO Xin1,F(xiàn)ENG Xinyue1

      (1.College of Geology and Environment,Xian University of Science and Technology,Xian 710054,China;

      2. Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xian 710054,China;

      3.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xian 710021,China;

      4.Shenmu Zhangjiamao Mining Co.,Ltd.,Shaanxi Coal Industry Group,Shenmu 719316,China)

      Abstract:Southern Shaanxi Province is a wellknown stone coal storage area in China. There are many elements associated with stone coal.By testing the content of phosphorus in stone coal, it is found that the content of phosphorus in the stone samples in southern Shaanxi is generally higher (139.1~2 946.8 μg/g), much higher than the average value of phosphorus in Chinese coal. And the stone coal ash sample is generally higher than the phosphorus content in the corresponding original stone coal sample. The leaching experiment was used to simulate the leaching(migration) process of phosphorus in stone coal and coal ash under four conditions (ultrapure water, acidic solution, alkaline solution, mine water). The experiment lasted as long as 12 months, and the calculation was carried out for phosphorus leaching rate for type samples and soaking conditions. The results show that the acidic solution has a higher leaching rate for phosphorus in stone samples, which is generally higher than the other three types of solutions. The phosphorus leaching rate of the mine aqueous solution is the second, and the phosphorus leaching rate of ultrapure water and alkaline solution is weaker. It indicated that the alkaline condition has a tendency to inhibit the leaching of phosphorus in the stone coal sample. The leaching rate characteristics of phosphorus in the sample of different types of solution are also higher in the acidic solution, followed by the aqueous solution of the mine. Compared with the phosphorus leaching rate of different solution stone coal samples, the stone coal ash sample slightly increased in the alkaline solution and the mine aqueous solution.Key words:stone coal;phosphorus;migration law;soaking experiment;leaching rate

      0 引 言隨著新能源、可再生能源、水電、核電的多元發(fā)展與推廣應(yīng)用,有可能使煤炭在中國一次能源中的消費(fèi)比重出現(xiàn)下降,但卻不足以改變我國以煤炭為主體的能源結(jié)構(gòu)。煤炭作為一種工業(yè)燃料,被廣泛地應(yīng)用于生產(chǎn),推動了人類社會和工業(yè)的向前發(fā)展[1]。在煤炭的開采、洗選、運(yùn)輸、堆放及利用過程中,煤中部分元素會向外界環(huán)境發(fā)生不同程度和形式的遷移,其中有害元素會對環(huán)境和人體健康造成嚴(yán)重危害,從而引發(fā)一系列的科學(xué)問題[2-5]。因此,評價(jià)煤及其燃燒產(chǎn)物(煤灰)的環(huán)境效應(yīng)是非常有意義和必要的[6-7]。評價(jià)的核心就是討論元素在自然淋濾狀態(tài)下向外界環(huán)境(尤其是水環(huán)境)釋放的量及難易程度。關(guān)于煤中有害元素的遷移及環(huán)境影響評價(jià),眾多學(xué)者做了大量工作,研究主要集中在腐植煤、飛灰、底灰、矸石等在不同條件下(酸性、堿性)的遷移特性及影響因素,關(guān)注的元素主要有As,Se,Hg,Cr,Cd,Ni,Zn等[8-14]。石煤是一種生成于古老地層的劣質(zhì)腐泥煤,在我國南方廣泛分布,以南秦嶺最為豐富[15]。石煤具有高灰、高硫、低熱值、伴生元素多等特點(diǎn)[16-17],因其伴生多種有害元素而備受關(guān)注[18-19]。陜西省南部地區(qū)是馳名中外的石煤資源賦存區(qū),主要的含石煤地層為下寒武統(tǒng)的魯家坪組。陜南石煤中主要伴生有釩、鉬、鎵、磷、鉻、鉛、鎳等元素[20-23]。石煤雖然存在發(fā)熱量低、有害元素高等缺點(diǎn),但是在資源匱乏的地區(qū)具有久遠(yuǎn)的開采和使用記錄。雖然石煤的開采量和使用量不足為懼,但是由于其有害元素含量高、種類多,潛在的危害仍然不容小覷。目前有關(guān)石煤中磷元素的遷移轉(zhuǎn)化規(guī)律研究相對薄弱,以往研究主要集中在釩的賦存狀態(tài)和提取工藝方面[24-25]。磷是自然界中含量較為豐富的非金屬元素,也是人體必需元素。我國煤中磷含量變化較大,分布不平衡,絕大部分煤中磷含量低于500 μg/g,為低磷煤或特低磷煤[26]。有關(guān)煤中磷的深加工利用,不少學(xué)者作了探索性研究,前景一般[27-28]。煤中磷屬于中等水平敏感度的環(huán)境影響元素[29]。我國煤炭的開采量和利用量十分巨大,隨之產(chǎn)生的磷污染可想而知。石煤中普遍含有高含量的磷元素,尤其是石煤提釩廢液中磷含量超標(biāo),對自然界水體污染問題突出[30]。因此,查明石煤中磷元素的遷移轉(zhuǎn)化規(guī)律,有助于石煤的清潔開發(fā)和環(huán)境保護(hù)。

      1 樣品采集與實(shí)驗(yàn)

      1.1 樣品采集用于研究的石煤樣品主要取自開采歷史悠久的陜西省安康市和漢中市轄區(qū),采樣點(diǎn)分布于安康市紫陽縣、平利縣、鎮(zhèn)坪縣和漢中市鎮(zhèn)巴縣境內(nèi)(圖1)。共采集12個石煤樣,其中HYG采集了2個石煤樣品,其中HYGNC為新鮮樣品,HYGOC為在室外狀態(tài)下暴露一年后的樣品,同時在WJW,HYG,BSX分別采集3個礦井水樣。采回的石煤樣根據(jù)堆錐四分法進(jìn)行縮分,破碎并研磨,使樣品粒度達(dá)到200目以下,一部分石煤樣灰化成煤灰樣。“-C”表示樣品類型為煤樣,“-A”表示樣品類型為煤灰樣。樣品經(jīng)微波消解后用Thermo Fisher公司X系列Ⅱ型電感耦合等離子體質(zhì)譜儀(ICPMS)進(jìn)行分析,測得樣品中P元素含量,結(jié)果見表1。

      2 實(shí)驗(yàn)

      2.1 溶液制備超純水(CS)使用德國Millipore DirectQ5超純水系統(tǒng)制備,水質(zhì)輸出標(biāo)準(zhǔn)18.21 MΩ;酸性溶液(PH5)利用濃硫酸與硝酸制備,二者比例為4∶1,調(diào)節(jié)溶液pH值到5;堿性溶液(PH8)利用氫氧化鈉制備,調(diào)節(jié)溶液pH值到8;礦井水溶液(KJS)是將收集的3個采樣點(diǎn)的礦井排出水按1∶1體積比混合而得。

      2.2 浸泡實(shí)驗(yàn)浸泡實(shí)驗(yàn)是模擬自然狀態(tài)下固液間元素遷移

      擴(kuò)散的常用手段[31-32],本次研究實(shí)驗(yàn)方法具體如下。

      準(zhǔn)確稱量1 g樣品,將樣品全部轉(zhuǎn)移至50 mL離心管中,每個樣品稱4份,分別轉(zhuǎn)移至4個離心管中。同一樣品的4個離心管中分別倒入50 mL的超純水(CS)、酸性溶液(PH5)、堿性溶液(PH8)和礦井水溶液(KJS),擰好離心管蓋并搖勻。第一個月,每天進(jìn)行一次搖勻,之后每月?lián)u勻一次,持續(xù)12個月。浸泡實(shí)驗(yàn)結(jié)束后,將離心管放入離心機(jī)進(jìn)行離心(5 000 r/min),離心后取上清液待測,利用ICP等離子體發(fā)射光譜儀測定P元素含量。

      2.3 浸出率計(jì)算浸出率指在浸泡實(shí)驗(yàn)中被浸泡樣品流失的元素含量占比,單位%。用溶液中元素絕對含量與浸泡前原樣品中元素絕對含量的百分比值表示,元素浸出率計(jì)算結(jié)果見表2。

      3 結(jié)果分析以往資料顯示,大部分石煤中含有高含量的磷元素,本次研究采集的陜南石煤樣品中磷元素含量普遍較高,含量在139.1到2 946.8 μg/g之間,遠(yuǎn)高于DAI等2012年統(tǒng)計(jì)的中國煤中磷均值(250 μg/g)[33]。計(jì)算陜南石煤中磷含量與中國煤均值的比值,結(jié)果顯示絕大部分石煤樣品中磷含量超過了中國煤中磷均值(MTSC,YJC,BSXC除外),一半以上達(dá)到了中國煤中磷均值5倍以上,4個樣品達(dá)到了中國煤中磷均值10倍以上,最高為11.8倍(BXC),陜南石煤中含有高含量的磷元素特征顯而易見(圖2)。石煤灰中磷元素含量在780.0到4 718.2 μg/g之間,普遍高于對應(yīng)原石煤樣中磷元素含量。綜合以上,陜南石煤中磷元素含量超高,總體上具有燃燒后向石煤灰中富集(遷移)的趨勢。

      根據(jù)測定在浸泡實(shí)驗(yàn)后不同溶液中磷元素的含量,計(jì)算了磷元素浸出率(表2)。結(jié)果顯示,在石煤樣品中,酸性溶液(PH5)對于磷元素有較高的浸出率(1.20%~39.10%),普遍高于其他3種類型溶液,礦井水溶液(KJS)的磷浸出率次之,其他2種類型溶液磷浸出率微弱,顯示堿性條件有抑制石煤樣中磷元素浸出的趨勢。在石煤灰樣品中,酸性溶液(PH5)、堿性溶液(PH8)和礦井水溶液(KJS)對磷元素呈現(xiàn)不同程度的浸出特征。酸性溶液對磷元素的浸出率為2.11%到45.74%,堿性溶液對磷元素的浸出率為未檢出到3.58%,礦井水溶液對磷元素的浸出率為未檢出到7.61%。石煤灰樣品在不同類型溶液條件下磷元素的浸出率總體特征為在酸性溶液中比較高,礦井水溶液次之。與不同溶液石煤樣磷元素浸出率相比,石煤灰樣在堿性溶液和礦井水溶液中略有增高。浸出率是相對概念,前文已經(jīng)進(jìn)行了分析討論,表3列出了石煤及煤灰樣在不同溶液條件下的磷元素浸出量,WJWC,HYGNA,HYGOA,HYLA,BXA在酸性溶液下浸出量超過1 000 μg/g。進(jìn)一步對比分析石煤及對應(yīng)石煤灰樣品在不同類型溶液中磷元素的浸出特征差異性。其中MTS和MH這2組樣品,無論石煤樣還是石煤灰樣在超純水和堿性溶液中均無浸出,在酸性溶液中浸出率較高,且石煤樣高于石煤灰樣,在礦井水溶液中二者浸出率相當(dāng)(圖3(a))。WJW和BX這2組樣品,石煤樣品僅在酸性溶液中有浸出,而對應(yīng)石煤灰樣在4種類型溶液中普遍浸出了磷元素,石煤灰樣的磷浸出率明顯高于石煤樣品,并且磷元素浸出率遵循酸性溶液>堿性溶液>礦井水溶液>超純水;RCX組樣品表現(xiàn)為從石煤向煤灰轉(zhuǎn)化過程中,在酸性溶液和礦井水溶液中磷元素的浸出率有升高的趨勢,而在礦井水溶液中呈下降趨勢(圖3(b))。HYL,HYGN,HYGO,YDH這4組樣品,石煤及石煤灰樣的共同特征是在酸性溶液中的磷浸出率較高且相近,從石煤向煤灰轉(zhuǎn)化過程中,在堿性溶液和礦井水溶液中磷元素的浸出率有升高的趨勢(圖3(c))。其余幾組樣品的磷元素浸出特征規(guī)律不明顯,YJ石煤樣品在4種類型溶液中均未檢出,對應(yīng)煤灰樣在酸性溶液和堿性溶液略有浸出,XA石煤及煤灰樣在酸性溶液中均有較高的浸出率,其他溶液浸出微弱,BSX煤灰樣在堿性溶液中浸出率較高。

      4 結(jié) 論

      1)陜南石煤樣品中磷元素含量普遍較高(139.1~2 496.8 μg/g),遠(yuǎn)高于中國煤中磷均值,一半以上的樣品達(dá)到了中國煤中磷均值5倍以上,4個樣品達(dá)到了中國煤中磷均值10倍以上,最高為11.8倍(BXC),陜南石煤中含有高含量的磷元素特征明顯。2)石煤灰樣普遍高于對應(yīng)原石煤樣中磷元素含量,總體上具有燃燒后向石煤灰中富集(遷移)的趨勢。3)酸性溶液對于石煤樣品中磷元素有較高的浸出率,普遍高于其他3種類型溶液,礦井水溶液的磷浸出率次之,其他2種類型溶液磷浸出率微弱,指示堿性條件有抑制石煤樣中磷元素浸出的趨勢。石煤灰樣品在不同類型溶液條件下磷元素的浸出率特征也是在酸性溶液中比較高,礦井水溶液次之。與不同溶液石煤樣磷元素浸出率相比,石煤灰樣在堿性溶液和礦井水溶液中略有增高。

      參考文獻(xiàn)(References):

      [1] 謝和平,吳立新,鄭德志.2025年中國能源消費(fèi)及煤炭需求預(yù)測[J].煤炭學(xué)報(bào),2019,44(7):1949-1960.

      XIE Heping,WU Lixin,ZHENG Dezhi.Chinas energy consumption and coal demand forecast in 2025[J].Journal of China Coal Society,2019,44(7):1949-1960.

      [2]劉桂建.兗州礦區(qū)煤中微量元素的環(huán)境地球化學(xué)研究[D].徐州:中國礦業(yè)大學(xué),1999.

      LIU Guijian.Study on environmental geochemistry of coal micronutrient in Yanzhou Mining area[D].Xuzhou:China university of mining and technology,1999.

      [3]DAI S F,XIE P P,JIA S H,et al.Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,Chongqing,China:genetic implications from geochemical and mineralogical data[J].Ore Geology Reviews,2017,80:1-17.

      [4]DAI S F,TIAN L W,CHOU C L,et al.Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate Xuan Wei,Yunnan,China:Occurrence and origin of quartz and chamosite[J].International Journal of Coal Geology,2008,76:318-327.

      [5]張衛(wèi)國,侯恩科,楊建業(yè),等.石煤中釩-鉬-硒等伴生元素研究[J].稀有金屬,2019,43(10):1092-1102.

      ZHANG Weiguo,HOU Enke,YANG Jianye,et al.Studies on the Associated elements such as Vanadium,molybdenum and selenium in stone coal[J].Rare Metals,2019,43(10):1092-1102.

      [6]SWAINE D J,GOODARZI F.Environmental aspects of trace elements in coal[J].Kluwer Academic Publishers,1995,3(12):5-16.

      [7]任德貽,趙峰華,代世峰,等.煤的微量元素地球化學(xué)[M].北京:科學(xué)出版社,2006.

      [8]王運(yùn)泉,任德貽,謝洪波.燃煤過程中微量元素的分布及逸散規(guī)律[J].煤礦環(huán)境與保護(hù),1995,10(6):25-28.

      WANG Yunquan,REN Deyi,XIE Hongbo.The law of micronutrient distribution and emission in coal combustion process[J].Coal Mine Environment and protection,1995,10(6):25-28.

      [9]FINKELMAN R B.GROSS P M K.The types of data needed for assessing the environmental and human health impacts of coal[J].International Journal of Coal Geology,1999,40(2-3):91-101.

      [10]白向飛.中國煤中微量元素分布賦存特征及其遷移規(guī)律試驗(yàn)研究[D].北京:煤炭科學(xué)研究總院,2003.

      BAI Xiangfei.Experimental study on the distribution and migration of trace elements in coal in China[D].Beijing:General Institute of Coal Science,2003.

      [11]聶文杰,張蕾,沙響玲,等.NiO/γ-Al2O3單金屬催化劑的制備及脫硫性能研究[J].西安科技大學(xué)學(xué)報(bào),2016,36(5):675-679.

      NIE Wenjie,ZHANG Lei,SHA Xiangling,et al.Preparation and desulphurization of NiO/-Al2O3 monometallic catalyst[J].Journal of Xian University of Science and Technology,2016,36(5):675-679.

      [12]劉永娟,張蕾,張磊,等.濕法氧化脫硝并聯(lián)與串聯(lián)工藝對比研究[J].西安科技大學(xué)學(xué)報(bào),2016,36(6):857-862.

      LIU Yongjuan,ZHANG Lei,ZHANG Lei,et al.A comparative study on parallel and series processes of wet oxidation denitrification[J].Journal of Xian University of Science and Technology,2016,36(6):857-862.

      [13]PETER A L J,VIRARAGHAVAN T.Thallium:a review of public health and environmental concerns[J].Environment International,2005,31(4):493-501.

      [14]ETSCHMANN B,LIU W,LI K,et al.Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits[J].Chemical Geology,2017,46 (3):29-49.

      [15]李有禹.湖南下寒武統(tǒng)石煤中的鎳鉬鉑族元素的地球化學(xué)特征[J].煤炭學(xué)報(bào),1996,21(3):38-41.

      LI Youyu,Geochemical characteristics of Ni Mo Pt group elements in the Lower Cambrian bone coal in Hunan province[J].Journal of China Coal Society,1996,21(3):38-41.

      [16]張愛云,潘治貴,翁成敏,等.楊家堡含釩石煤的物質(zhì)成分和釩的賦存狀態(tài)及配分的研究[J].地球科學(xué),1982,16(1):193-206,244.

      ZHANG Aiyun,PAN Zhigui,WENG Chengmin,et al.Study on the material composition of vanadium bearing stone coal in Yangjiapu and its occurrence state and distribution[J].Earth Science,1982,16(1):193-206,244.

      [17]梁子豪.浙西北下寒武統(tǒng)石煤及石煤分布區(qū)植物中釩的分布特征[J].地球化學(xué),1990,3(1):54-58.

      LIANG Zihao.Distribution characteristics of vanadium in plants from the Lower Cambrian stone coal and stone coal distribution area in northwestern Zhejiang[J].Geochemistry,1990,3(1):54-58.

      [18]雒昆利,陳德嶺,葛嶺梅.陜西古生界黑色巖系及煤系共伴生礦產(chǎn)[M].西安:西北大學(xué)出版社,1994.

      [19]胡運(yùn)森,曹文發(fā),劉軍,等.陜西南部燃煤型砷中毒及環(huán)境砷水平流行病學(xué)研究[J].中國地方病學(xué)雜志,2003,22(4):47-49.

      HU Yunsen,CAO Wenfa,LIU Jun,et al.Epidemiological research of coalburning pollution arseniasis and the level of arsenical in environment in south of Shaanxi province[J].Chinese Journal of Endemic Diseases,2003,22(4):47-49.

      [20]王國興.安康將成為陜西的“攀枝花”——陜南石煤資源綜合利用開發(fā)調(diào)查[J].現(xiàn)代企業(yè),2012(8):26-27.

      WANG Guoxing.Ankang will become the “Panzhihua” of Shaanxiinvestigation on comprehensive utilization and exploitation of stone coal resources in southern Shaanxi[J].Modern Enterprise,2012(8):26-27.

      [21]儲少軍,章俊.石煤資源利用技術(shù)的現(xiàn)狀及展望[J].鐵合金,2014,45(3):60-64.

      CHU Shaojun,ZHANG Jun.Latest development and prospect of process for utilizing stone coal[J].FerroAlloys,2014,45(3):60-64.

      [22]楊學(xué)存,馬合川.安康石煤特征及其綜合利用[J].陜西煤炭,2013,32(1):11-13.

      YANG Xuecun,MA Hechuan.Thought on the characteristics and comprehensive utilization of stone coal[J].Shaanxi Coal,2013,32(1):11-13.

      [23]劉佳鵬,孫偉,王麗,等.陜西某石煤釩礦的新型選礦工藝研究[J].有色金屬(選礦部分),2015,10(2):58-63.

      LIU Jiapeng,SUN Wei,WANG Li,et al.Study on a new beneficiation technology of a vanadiumbearing stone coal ore in Shaanxi[J].Nonferrous Metals Mineral Processing Section,2015,10(2):58-63.

      [24]王麗,張慶鵬,孫偉.陜西商洛石煤中釩的賦存狀態(tài)與工藝礦物學(xué)研究[J].礦物學(xué)報(bào),2017,37(Z1):29-35.

      WANG Li,ZHANG Qingpeng,SUN Wei.Research on occurrence of vanadium in stone coal deposit at Shangluo city,Shanxi province,China[J].Journal of Mineralogy,2017,37(Z1):29-35.

      [25]HE D,F(xiàn)ENG Q,ZHANG G.An environmentallyfriendly technology of vanadium extraction from stone coal[J].Minerals Engineering,2007,20(12):1184-1186.

      [26]涂華,李文華,白向飛.中國煤中磷的分布特征[J].燃料化學(xué)學(xué)報(bào),2011,39(9):641-646.

      TU Hua,LI Wenhua,BAI Xiangfei.Distribution characteristics of phosphorus in Chinese coals[J].Journal of Fuel Chemistry,2011,39(9):641-646.

      [27]周俊生,田娟.貴州煤磷化工現(xiàn)狀及發(fā)展前景簡析[J].山東化工,2012,41(8):24-25.

      ZHOU Junsheng,TIAN Juan.Brief analysis of present situation and development prospect of Guizhou coal phosphorus chemical industry[J].Shandong Chemical Industry,2012,41(8):24-25.

      [28]段付崗.煤化工和磷復(fù)肥相關(guān)系統(tǒng)的聯(lián)產(chǎn)改造[J].煤化工,2013,41(6):31-33.

      DUAN Fugang.Coproduction transformation of coal chemical industry and Phosphate Compound Fertilizer Related System[J].Coal Chemical Industry,2013,41(6):31-33.

      [29]陳鵬.中國煤炭性質(zhì)、分類和利用[M].北京:科學(xué)出版社,2007.

      [30]黃鵬,林璠,劉爽,等.我國石煤提釩廢水的處理現(xiàn)狀與展望[J].化工環(huán)保,2016,36(1):22-25.

      HUANG Peng,LIN Fan,LIU Shuang,et al.Present situation and prospect of vanadium recovery wastewater from stone coal in China[J].Environmental Protection in chemical industry,2016,36(1):22-25.

      [31]張衛(wèi)國,楊建業(yè),侯恩科.超高有機(jī)硫煤中微量元素的地球化學(xué)規(guī)律[J].西安科技大學(xué)學(xué)報(bào),2019,39(1):56-62.

      ZHANG Weiguo,YANG Jianye,HOU Enke.Geochemical regularity of trace elements in superhigh organic sulfur coal[J].Journal of Xian University of Science and Technology,2019,39(1):56-62.

      [32]張軍營,鄭楚光,劉晶,等.煤灰中微量重金屬元素的遷移性實(shí)驗(yàn)研究[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2002,30(20):83-85.

      ZHANG Junying,ZHENG Chuguang,LIU Jing,et al.Experimental study on the migration of trace heavy metals in coal ash[J].Journal of Huazhong University of Science and Technology (natural science edition),2002,30(20):83-85.

      [33]DAI S F,REN D Y,CHOU C L.Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J].International Journal of Coal Geology,2012,94:3-21.

      猜你喜歡
      水溶液堿性酸性
      酵母片不宜與堿性物同服
      大寒
      判斷電解質(zhì)水溶液酸堿性的簡單模型
      凍融循環(huán)對預(yù)應(yīng)力CFRP-混凝土加固梁界面性能的影響
      論證NO3-在酸性條件下的氧化性
      日常生活的堿性食物
      解密非牛頓流體
      試析蒸汽鍋爐堿性排污水的綜合利用
      水溶液中離子平衡的核心考點(diǎn)及復(fù)習(xí)策略
      烴的含氧衍生物知識測試題
      九台市| 徐水县| 武穴市| 库尔勒市| 正安县| 宁城县| 崇阳县| 保定市| 介休市| 梅河口市| 石楼县| 正宁县| 元朗区| 吐鲁番市| 巨鹿县| 曲松县| 浪卡子县| 丁青县| 攀枝花市| 江油市| 鲁山县| 普宁市| 任丘市| 浮山县| 家居| 瑞丽市| 桂林市| 筠连县| 垦利县| 西城区| 梓潼县| 于田县| 孝感市| 仙居县| 称多县| 怀化市| 上犹县| 沙河市| 京山县| 钟山县| 湘阴县|