李浩然 遲曉琦 吳雪 張文秀 韓曉華
[摘要]目的 探討7,8-二羥基黃酮(7,8-DHF)對大鼠心肌缺血-再灌注(I/R)損傷的影響及機(jī)制。方法 選取雄性健康Wistar大鼠18只,隨機(jī)分為3組,每組6只。假手術(shù)組(Sham組)大鼠開胸,左冠狀動脈前降支(LAD)只穿線不結(jié)扎;I/R組先結(jié)扎LAD缺血30 min,再恢復(fù)血供3 h;I/R+7,8-DHF組先缺血30 min,恢復(fù)血供前10 min腹腔注射7,8-DHF(10 mg/kg)。心臟恢復(fù)血供3 h后處死大鼠,對血清中乳酸脫氫酶(LDH)和肌酸激酶同工酶(CK-MB)的活力進(jìn)行檢測,取結(jié)扎線下方的心肌組織采用Western blot方法檢測與凋亡有關(guān)的蛋白。結(jié)果與Sham組相比較,I/R組大鼠血清中LDH和CK-MB的活力分別升高35%和71%,7,8-DHF預(yù)處理則部分抑制了上述變化(F=18.770、5.422,q=3.788~7.800,P<0.05)。Western blot檢測顯示,與Sham組相比,I/R組大鼠心肌組織中Bcl-2蛋白表達(dá)顯著降低,而Bax和cleaved caspase-3蛋白表達(dá)顯著增加;與I/R組相比,I/R+7,8-DHF組Bcl-2蛋白表達(dá)顯著升高,Bax和cleaved caspase-3蛋白表達(dá)顯著減少(F=6.217~14.720,q=3.797~7.546,P<0.05)。結(jié)論 7,8-DHF預(yù)處理對大鼠的心肌I/R損傷具有保護(hù)作用,該作用可能與其抑制心肌細(xì)胞凋亡有關(guān)。
[關(guān)鍵詞]黃酮類;心肌再灌注損傷;細(xì)胞凋亡;大鼠
[中圖分類號]R337.1;R542.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號]2096-5532(2021)02-0210-04
[ABSTRACT]Objective To investigate the effect of 7,8-dihydroxyflavone (7,8-DHF) on myocardial ischemia-reperfusion (I/R) injury in rats and its mechanism. ?Methods A total of 18 healthy male Wistar rats were selected and randomly divided into sham-operation group (sham group), I/R group, and I/R+7,8-DHF group, with 6 rats in each group. The rats in the sham-operation group were given thoracotomy without ligation of the left anterior descending coronary artery (LAD), those in the I/R group were given ligation of the LAD for 30 min of ischemia, followed by the restoration of blood supply for 3 h, and those in the I/R+7,8-DHF group were given ischemia for 30 min, followed by intraperitoneal injection of 7,8-DHF (10 mg/kg) at 10 min before the restoration of blood supply. The rats were sacrificed at 3 h after the restoration of blood supply, and the serum levels of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) were measured. The myocardial tissue below the ligature was collected to measure apoptosis-related proteins by Western blot.?Results Compared with the sham group, the I/R group had significant increases in the serum levels of LDH and CK-MB (increased by 35% and 71%, respectively), and these changes were partially inhibited by 7,8-DHF pretreatment (F=18.770 and 5.422,q=3.788-7.800,P<0.05). Western blot showed that compared with the sham group, the I/R group had a significant reduction in the protein expression of Bcl-2 and significant increases in the protein expression of Bax and cleaved caspase-3 in myocardial tissue; compared with the I/R group, the I/R+7,8-DHF group had a significant increase in the protein expression of Bcl-2 and significant reductions in the protein expression of Bax and cleaved caspase-3 (F=6.217-14.720,q=3.797-7.546,P<0.05).Conclusion Pretreatment with 7,8-DHF has a protective effect against myocardial I/R injury in rats, possibly by inhibiting cardiomyocyte apoptosis.
[KEY WORDS]flavones; myocardial reperfusion injury; apoptosis; rats
心肌缺血通常由冠狀動脈的狹窄或阻塞所引發(fā)。心肌組織中血流的減少或者阻斷會引起冠狀動脈所支配區(qū)域的營養(yǎng)物質(zhì)供給和氧氣供應(yīng)減少,最終使心肌細(xì)胞發(fā)生凋亡或壞死[1-2]。但是缺血部位心肌組織的血供恢復(fù)后,由于細(xì)胞內(nèi)活性氧增多、鈣離子失衡、細(xì)胞能量代謝異常、炎癥反應(yīng)等原因[3],會使得心肌細(xì)胞遭受更為嚴(yán)重的損傷[4],即缺血-再灌注(I/R)損傷。I/R損傷通常會引發(fā)心肌頓抑、室內(nèi)壓下降等心肌功能的抑制,其預(yù)防與治療長期以來都是心血管研究領(lǐng)域的重要課題。7,8-二羥基黃酮(7,8-DHF)是黃酮化合物之一。最近有研究表明,7,8-DHF是酪氨酸激酶B(TrkB)受體的特異性激動劑[5],具有強(qiáng)大的神經(jīng)營養(yǎng)和保護(hù)作用[6]。在心血管疾病的相關(guān)研究中發(fā)現(xiàn),苯腎上腺素誘導(dǎo)的大鼠胸主動脈收縮可被7,8-DHF顯著抑制, 而且該作用與降低細(xì)胞內(nèi)鈣水平和激活一氧化氮/環(huán)鳥苷酸信號通路有關(guān)[7]。此外,7,8-DHF還能拮抗過氧化氫(H2O2)誘導(dǎo)的細(xì)胞凋亡[8]。但是7,8-DHF對I/R損傷是否具有保護(hù)作用尚未見報道。本研究通過對大鼠左冠狀動脈前降支(LAD)進(jìn)行結(jié)扎處理,建立心肌I/R損傷的動物模型,探討恢復(fù)血供前7,8-DHF預(yù)處理對再灌注心肌是否具有保護(hù)作用,并初步探討可能的作用機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)藥品和儀器
7,8-DHF(D1916)購自東京化成工業(yè)株式會社??笲cl-2抗體(AB112)、抗Bax抗體(AF0057)和BCA蛋白檢測試劑盒均購自上海碧云天生物技術(shù)公司,抗cleaved caspase-3(CST-9661)抗體購自美國CST公司,抗β-actin抗體購于北京博奧森生物技術(shù)公司,實(shí)驗(yàn)所用其他試劑均為國產(chǎn)分析純。所用實(shí)驗(yàn)儀器包括小動物呼吸機(jī)(型號ALC-V8,上海奧爾科特生物科技有限公司)、Eppendorf高速離心機(jī)、SpectraMax M5多功能酶標(biāo)儀、微量分析天平和Western 顯影儀等。
1.2 動物分組及處理
實(shí)驗(yàn)選用8~10周齡的雄性Wistar大鼠18只,體質(zhì)量(250±10)g,購于濟(jì)南朋悅實(shí)驗(yàn)動物繁育有限公司(許可證號:SCXK(魯)20190003)。實(shí)驗(yàn)開始前,大鼠先在23~25 ℃、12 h/12 h明暗周期環(huán)境下飼養(yǎng)7 d,自由飲水和進(jìn)食。造模前,大鼠先禁食12 h,期間自由飲水。將大鼠隨機(jī)分為3組,每組6只。①假手術(shù)組(Sham組,A組):大鼠麻醉并且固定后,通過口腔接入呼吸機(jī)輔助其呼吸;打開胸腔,將縫合線穿過LAD下方但不結(jié)扎,20 min后腹腔注射含體積分?jǐn)?shù)0.05二甲基亞砜(DMSO)的磷酸鹽緩沖液(PBS),10 min后縫合傷口。②I/R組(B組):開胸,結(jié)扎LAD 20 min后腹腔注射含體積分?jǐn)?shù)0.05 DMSO的PBS,10 min后取出結(jié)扎線,即缺血30 min后恢復(fù)血供。③I/R+7,8-DHF組(C組):在結(jié)扎LAD 20 min后腹腔注射7,8-DHF(10 mg/kg),其他處理與I/R組相同。所有大鼠均在恢復(fù)血供3 h后處死。本實(shí)驗(yàn)過程遵循國際實(shí)驗(yàn)動物使用標(biāo)準(zhǔn)和倫理學(xué)要求。
1.3 血清及心肌標(biāo)本制備
大鼠心臟恢復(fù)血供3 h后,通過尾靜脈取血約1.0 mL,先存放于4 ℃冰箱中靜置1 h,隨后再以3 000 r/min離心15 min,分離血清于新EP管中,凍存于-80 ℃冰箱備用。將心臟快速取出,放入預(yù)冷的PBS中清洗,保留結(jié)扎線以下的部分,剪去右心室,其余部分(左心室為主)用液氮速凍,-80 ℃保存?zhèn)溆谩?/p>
1.4 血清乳酸脫氫酶(LDH)和肌酸激酶同工酶(CK-MB)活力檢測
血清標(biāo)本送至海軍青島第一療養(yǎng)院檢驗(yàn)科測定。血清中LDH的活力采用速率法測定,CK-MB的活力采用免疫抑制法測定。
1.5 心肌細(xì)胞凋亡有關(guān)蛋白的Western blot檢測
取20~30 mg心肌組織,將其充分剪碎后放入預(yù)冷的玻璃勻漿器中,加入200~300 μL蛋白裂解液充分研磨,以12 000 r/min離心20 min,留取上清液,用BCA試劑盒測定蛋白質(zhì)濃度。每個樣本的蛋白上樣量均為20 μg,蛋白經(jīng)SDS-PAGE電泳后轉(zhuǎn)移至PVDF膜上,用100 g/L脫脂奶粉室溫慢搖封閉90 min,分別加入抗Bcl-2抗體(1∶1 000)、抗Bax抗體(1∶1 000)、抗cleaved caspase-3抗體(1∶1 000)和抗β-actin抗體(1∶10 000)。在4 ℃冰箱內(nèi)的搖床上慢速搖動孵育過夜,隨后以TBST洗膜3次,每次10 min,再加入二抗,室溫孵育1 h后,以TBST洗膜3次,最后用ECL發(fā)光液顯影。用軟件Image J對條帶的灰度值進(jìn)行分析。結(jié)果以目的蛋白灰度值與相對應(yīng)的β-actin灰度值的比值表示。
1.6 統(tǒng)計學(xué)分析
應(yīng)用GraphPad Prism 5.0軟件對數(shù)據(jù)進(jìn)行統(tǒng)計學(xué)分析。結(jié)果以x2±s的形式表示,多組數(shù)據(jù)比較采用單因素方差分析(ANOVA),組間兩兩比較采用Tukey法。P<0.05認(rèn)為差異有統(tǒng)計學(xué)意義。
2 結(jié) 果
2.1 7,8-DHF對血清LDH和CK-MB活力的影響
與Sham組相比,I/R組大鼠血清中LDH的活力升高了35%(F=18.770,q=7.167,P<0.01);與I/R組相比,I/R+7,8-DHF組LDH活力下降了28%(q=7.800,P<0.01)。血清CK-MB活力的變化與LDH類似,與Sham組相比較,I/R組大鼠血清中CK-MB的含量升高了71%(F=5.422,q=4.240,P<0.05)。與I/R組大鼠相比,I/R+7,8-DHF組CK-MB活力下降了37%(q=3.788,P<0.05)。提示7,8-DHF抑制了I/R誘導(dǎo)的心肌細(xì)胞損傷。見表1。
2.2 7,8-DHF對心肌細(xì)胞凋亡有關(guān)蛋白表達(dá)影響
與Sham組相比,I/R組大鼠心肌組織中Bcl-2蛋白的表達(dá)顯著降低(F=6.217,q=4.698,P<0.05),Bax和cleaved caspase-3蛋白表達(dá)顯著增加(F=14.720、7.653,q=7.546、4.975,P<0.01),表明I/R損傷會導(dǎo)致心肌細(xì)胞發(fā)生凋亡。與I/R組相比,I/R+7,8-DHF組Bcl-2蛋白表達(dá)升高了86%(q=3.797,P<0.05),Bax蛋白表達(dá)減少了45%(q=4.977,P<0.01),cleaved caspase-3蛋白表達(dá)減少了42%(q=4.584,P<0.05),說明7,8-DHF有效抑制了I/R損傷造成的心肌細(xì)胞凋亡。見表2和圖1。
3 討 論
急性心肌梗死(AMI)通常由冠狀動脈內(nèi)血流急劇減少或中斷造成,會導(dǎo)致心肌組織中血液供應(yīng)的減少,從而引發(fā)嚴(yán)重后果。近年來AMI的防治已取得較大進(jìn)展[9],但是缺血后的心肌組織在血流恢復(fù)之后,依然會出現(xiàn)生理功能的進(jìn)一步損傷,稱為心肌I/R損傷。I/R損傷會導(dǎo)致心肌頓抑、心律失常和心肌壞死等惡性后果,其預(yù)防與治療一直是AMI治療中的重要環(huán)節(jié),但是目前還無特別有效的防治方法。
心肌I/R損傷存在明顯的心肌細(xì)胞凋亡,這可能與氧化應(yīng)激損傷、細(xì)胞內(nèi)鈣超載、炎癥反應(yīng)等密切相關(guān)[10-11]。細(xì)胞凋亡受到多種信號通路和蛋白的調(diào)控。Bcl-2和Bax均屬于Bcl-2家族蛋白成員,Bax蛋白形成二聚體后可增加線粒體膜通透性,促進(jìn)線粒體內(nèi)細(xì)胞色素C釋放,誘導(dǎo)細(xì)胞凋亡,而Bcl-2蛋白則通過抑制Bax二聚體形成抑制細(xì)胞凋亡。細(xì)胞凋亡中最重要的效應(yīng)酶是caspase-3,它激活后可以裂解形成分子量為17 000~19 000的片段,稱為cleaved caspase-3。所以通過檢測Bcl-2、Bax以及cleaved caspase-3蛋白水平,可以評估心肌細(xì)胞凋亡的發(fā)生[12]。
7,8-DHF是黃酮家族中的一員,具有神經(jīng)保護(hù)[13]、抗氧化[14]、抗炎癥[15]、抗腫瘤[16]、抗增殖[17]等多種生物學(xué)作用。黃酮類化合物的心血管保護(hù)作用已有較多研究[18]。例如,黃芩苷可通過激活磷脂酰肌醇-3-激酶(PI3K)/蛋白激酶B(Akt)信號途徑以及抑制核轉(zhuǎn)錄因子-κB(NF-κB)信號傳導(dǎo)來抑制心肌細(xì)胞凋亡和炎癥[19],從而抑制心肌I/R損傷。但是,7,8-DHF對I/R造成的心肌組織損傷是否具有保護(hù)作用尚無相關(guān)研究。
心肌細(xì)胞受到損傷時,細(xì)胞膜通透性增強(qiáng),細(xì)胞內(nèi)的某些酶釋放入血,血清中這些酶活力的升高程度則反映出了心肌壞死的程度[20]。本研究首先通過測定血清中LDH和CK-MB的變化,觀察7,8-DHF預(yù)處理對缺血心肌損傷的保護(hù)作用。結(jié)果顯示,I/R組大鼠血清中LDH和CK-MB的活力均明顯升高,7,8-DHF預(yù)處理則部分抑制了上述變化,提示7,8-DHF預(yù)處理對再灌注的心肌組織具有一定的保護(hù)作用。為了進(jìn)一步探討7,8-DHF保護(hù)作用的機(jī)制,本研究通過檢測Bcl-2、Bax和cleaved caspase-3蛋白表達(dá)來評估心肌細(xì)胞凋亡的發(fā)生[21]。結(jié)果顯示,I/R組大鼠心肌組織中Bcl-2蛋白表達(dá)降低,Bax和cleaved caspase-3蛋白表達(dá)升高,提示I/R大鼠心肌存在明顯的細(xì)胞凋亡,7,8-DHF預(yù)處理可顯著逆轉(zhuǎn)上述變化,進(jìn)一步驗(yàn)證了7,8-DHF的心肌保護(hù)作用,并且表明該作用與其抑制心肌細(xì)胞凋亡有關(guān)。本研究結(jié)果為7,8-DHF應(yīng)用于心肌I/R損傷的防治提供了一定的實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]PAGLIARO B R, CANNATA F, STEFANINI G G, et al. Myocardial ischemia and coronary disease in heart failure[J]. Heart Failure Reviews, 2020,25(1):53-65.
[2]AMBROSE J A. Myocardial ischemia and infarction[J]. Journal of the American College of Cardiology, 2006,47(11 Suppl):D13-D17.
[3]KATO R, FOЁX P. Myocardial protection by anesthetic agents against ischemia-reperfusion injury: an update for anesthesiologists[J]. Journal Canadien dAnesthesie, 2002,49(8):777-791.
[4]WU M Y, YIANG G T, LIAO W T, et al. Current mechanistic concepts in ischemia and reperfusion injury[J]. Cellular Physiology and Biochemistry, 2018,46(4):1650-1667.
[5]LIU C Y, CHAN C B, YE K Q. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders[J]. Translational Neurodegeneration, 2016,5:2.
[6]HE J J, XIANG Z, ZHU X Q, et al. Neuroprotective effects of 7,8-dihydroxyflavone on midbrain dopaminergic neurons in MPP+-treated monkeys[J]. Scientific Reports, 2016,6:34339.
[7]HUAI R T, HAN X H, WANG B X, et al. Vasorelaxing and antihypertensive effects of 7,8-dihydroxyflavone[J]. American Journal of Hypertension, 2014,27(5):750-760.
[8]KANG J S, CHOI I W, HAN M H, et al. The cytoprotective effects of 7,8-dihydroxyflavone against oxidative stress are mediated by the upregulation of Nrf2-dependent HO-1 expression through the activation of the PI3K/Akt and ERK pathways in C2C12 myoblasts[J]. International Journal of Molecular Medicine, 2015,36(2):501-510.
[9]LIU Z L, CHEN J M, HUANG H L, et al. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway[J]. Metabolism: Clinical and Experimental, 2016,65(3):122-130.
[10]TOLDO S, MAURO A G, CUTTER Z, et al. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury[J]. American Journal of Physiology Heart and Circulatory Physiology, 2018,315(6):H1553-H1568.
[11]ZHAO D J, YANG J, YANG L F. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017:6437467.
[12]WANG Y M, ZHANG H M, CHAI F X, et al. The effects of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 during myocardial ischemia/reperfusion in a model of rats with depression[J]. BMC Psychiatry, 2014,14:349.
[13]WURZELMANN M, ROMEIKA J, SUN D. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury[J]. Neural Regeneration Research, 2017,12(1):7-12.
[14]KUMAR D, DWIVEDI D K, LAHKAR M, et al. Hepatoprotective potential of 7,8-Dihydroxyflavone against alcohol and high-fat diet induced liver toxicity via attenuation of oxido-nitrosative stress and NF-κB activation[J]. Pharmacological Reports: PR, 2019,71(6):1235-1243.
[15]PARK H Y, KIM G Y, HYUN J W, et al. 7,8-Dihydroxyflavone exhibits anti-inflammatory properties by downregulating the NF-κB and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells[J]. International Journal of Molecular Medicine, 2012,29(6):1146-1152.
[16]LEE R H, SHIN J C, KIM K H, et al. Apoptotic effects of 7,8-dihydroxyflavone in human oral squamous cancer cells through suppression of Sp1[J]. Oncology Reports, 2015,33(2):631-638.
[17]PARK H Y, KIM G Y, HYUN J W, et al. 7,8-dihydroxyflavone induces G1 arrest of the cell cycle in U937 human monocytic leukemia cells via induction of the Cdk inhibitor p27 and downregulation of pRB phosphorylation[J]. Oncology Reports, 2012,28(1):353-357.
[18]ROSSINI R, SENNI M, MUSUMECI G, et al. Prevention of left ventricular remodelling after acute myocardial infarction: an update[J]. Recent Patents on Cardiovascular Drug Disco-very, 2010,5(3):196-207.
[19]LUAN Y, SUN C, WANG J, et al. Baicalin attenuates myocardial ischemia-reperfusion injury through Akt/NF-κB pathway[J]. Journal of Cellular Biochemistry, 2019,120(3):3212-3219.
[20]ZHU Z H, YAN Y, WANG Q B, et al. Analysis of serum cardiac biomarkers and treadmill exercise test-electrocardiogram for the diagnosis of coronary heart disease in suspected patients[J]. Acta Biochimica et Biophysica Sinica, 2010,42(1):39-44.
[21]LI J, HU H P, LI Y, et al. Influences of remifentanil on myocardial ischemia-reperfusion injury and the expressions of Bax and Bcl-2 in rats[J]. European Review for Medical and Pharmacological Sciences, 2018,22(24):8951-8960.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(醫(yī)學(xué)版)2021年2期