朱玉君 左紫薇 張振華 樊葉楊
一種水稻微效QTL精細(xì)定位和克隆新途徑
朱玉君*左紫薇 張振華 樊葉楊
(中國水稻研究所 水稻生物學(xué)國家重點實驗室/國家水稻改良中心, 杭州 310006;*通信聯(lián)系人,E-mail:zhuyujun@caas.cn)
水稻重要農(nóng)藝性狀一般由少數(shù)主效QTL和大量微效QTL共同控制。水稻主效QTL克隆已取得顯著進(jìn)展,而微效QTL由于遺傳作用弱,表型鑒定易受測量誤差影響,克隆進(jìn)展緩慢,但微效QTL在水稻重要農(nóng)藝性狀調(diào)控中的作用不容忽視。本文介紹了一種水稻微效QTL精細(xì)定位和克隆的新途徑。該途徑包含2個階段:1)應(yīng)用剩余雜合體構(gòu)建近等基因系群體進(jìn)行目標(biāo)QTL的精細(xì)定位;2)應(yīng)用基因編輯技術(shù)創(chuàng)制候選基因突變體驗證基因功能。應(yīng)用該策略筆者所在團(tuán)隊在水稻第1染色體長臂精細(xì)定位了6個微效粒重和粒型QTL,并成功克隆首個微效粒重QTL。該技術(shù)可在方法上為水稻QTL克隆及新種質(zhì)創(chuàng)制提供更多選擇。
水稻;粒型;微效QTL;圖位克隆
水稻是我國最主要的糧食作物之一,60%以上的人口以米飯為主食。有效穗數(shù)、每穗實粒數(shù)和千粒重是構(gòu)成水稻產(chǎn)量的三個要素,它們都是典型的數(shù)量性狀,由少數(shù)主效QTL和大量微效QTL共同控制。與有效穗數(shù)和每穗實粒數(shù)相比,千粒重不易受試驗環(huán)境影響,穩(wěn)定性最高,粒數(shù)次之,穗數(shù)最低。與之相對應(yīng),在克隆的產(chǎn)量性狀QTL中,以穗數(shù)為首要目標(biāo)者0個;以粒數(shù)為首要目標(biāo)者2個,分別為和[1-2],另有多個抽穗期QTL表現(xiàn)出對粒數(shù)的多效性作用,如[3]、[4]、/[5-6]、[7]和[8]等;以粒重粒型為首要目標(biāo)者21個[9-15]。
雖然粒重粒型QTL克隆數(shù)目較多,但與初定位的QTL個數(shù)相比,占比依然很低。在Gramene數(shù)據(jù)庫中共收錄了568個粒重和粒型QTL,分布于水稻全部染色體的各個區(qū)域,但已克隆的個數(shù)僅占收錄總數(shù)的3.7%。究其原因,絕大部分QTL效應(yīng)很小,易受表型鑒定誤差影響,精細(xì)定位難度大;另外,等位基因之間的遺傳作用差異小,遺傳互補(bǔ)效果不明顯,基因功能驗證困難。但是,根據(jù)數(shù)量遺傳學(xué)理論和現(xiàn)代分子定位結(jié)果,微效QTL在水稻重要農(nóng)藝性狀調(diào)控中也扮演著重要角色[16],無論是機(jī)理剖析,還是育種應(yīng)用,這類QTL都不容忽視。
近10年來,筆者所在小組以控制水稻粒重和粒型的微效QTL為研究對象,將多個微效QTL界定于涵蓋少數(shù)注釋基因的區(qū)間內(nèi)[15, 17-20]。這些座位上雙親等位基因間的遺傳效應(yīng)差異很小,如千粒重的加性效應(yīng)最小僅為0.1 g[17],難以直接采用遺傳互補(bǔ)的方法進(jìn)行驗證。幸而CRISPR/Cas9基因敲除技術(shù)的出現(xiàn)及不斷完善[21-23],特別是在該技術(shù)成功應(yīng)用于水稻基因組研究后[24],在各實驗室迅速普及[11, 25-26]。得益于該技術(shù),我們成功克隆了首個微效粒重QTL[15],初步建立了水稻微效QTL克隆的技術(shù)途徑。本文主要介紹了筆者所在課題應(yīng)用該途徑在水稻第1染色體長臂微效粒重粒型QTL精細(xì)定位和圖位克隆中取得的進(jìn)展[15, 17-20],以期通過對該技術(shù)途徑的介紹,在方法上為QTL圖位克隆提供更多選擇。
ZS97?珍汕97;MY46?密陽46;A?加性效應(yīng),指一個密陽46等位基因取代珍汕97等位基因所產(chǎn)生的遺傳效應(yīng);R2?QTL效應(yīng)對表型方差的貢獻(xiàn)率;TGW?千粒重(g);GL?粒長(mm);GW?粒寬(mm)。ns?不顯著。
Fig.1.Six minor QTL for grain weight and size detected in the 7.1 Mb region on the long arm of chromosome 1 in rice.
微效QTL由于精細(xì)定位和基因功能驗證困難的原因,相比主效QTL,研究進(jìn)展緩慢。在已克隆的21個粒重粒型QTL中,除外[15],其余20個均表現(xiàn)為主效作用。筆者所在課題通過多年探索在水稻第1染色體長臂7.1 Mb區(qū)間精細(xì)定位到6個控制粒重和粒型的微效QTL,并成功克?。▓D1),建立了一種克隆微效QTL的技術(shù)途徑。該途徑主要包含2個階段:1)應(yīng)用剩余雜合體構(gòu)建近等基因系群體進(jìn)行目標(biāo)QTL的精細(xì)定位;2)應(yīng)用基因編輯技術(shù)創(chuàng)制候選基因突變體驗證基因功能。在精細(xì)定位階段中,近等基因系(near isogenic line,NIL)的構(gòu)建應(yīng)用了遺傳資源“剩余雜合體”(residual heterozygote,RH),即僅在包含QTL區(qū)間雜合,其余背景區(qū)間均為親本純合型的遺傳材料。在基因功能驗證階段,突變體的創(chuàng)制采用CRISPR/Cas9基因敲除技術(shù)。
RH?剩余雜合體;SeqRHs?雜合區(qū)間連續(xù)排列的剩余雜合體;NIL?近等基因系。
<
Fig.2.Technical route for QTL fine-mapping.
整個精細(xì)定位技術(shù)路線如圖2所示,具體流程如下所述:根據(jù)初定位結(jié)果,挑選1個雜合區(qū)間包含目標(biāo)QTL的RH單株,自交構(gòu)建F2群體(約300個單株),根據(jù)基因型挑選不同親本純合型單株各約30個,構(gòu)建F2:3或NIL群體進(jìn)行QTL分析,完成第一輪定位;結(jié)合定位結(jié)果在F2群體中挑選雜合區(qū)間更小且呈連續(xù)排列的剩余雜合體單株(sequential residual heterozygotes,SeqRHs),自交構(gòu)建SeqRHs-F2群體,根據(jù)基因型挑選不同親本純合型單株構(gòu)建SeqRHs-F2:3或SeqRHs-NIL群體,比較各分離群體的QTL分析結(jié)果縮小目標(biāo)區(qū)間,完成第二輪定位;通過多輪定位將目標(biāo)QTL作用區(qū)間精細(xì)定位至僅包含幾個注釋基因的區(qū)間。在此基礎(chǔ)上,結(jié)合親本間注釋基因的序列差異、表達(dá)量差異以及基因編碼產(chǎn)物等方面的信息,預(yù)測候選基因,再借助CRISPR/Cas9基因敲除技術(shù)創(chuàng)制突變體完成功能驗證。下文主要介紹應(yīng)用該方法在微效粒重和粒型QTL精細(xì)定位及圖位克隆中取得的進(jìn)展。
前期應(yīng)用珍汕97(ZS97)和密陽46(MY46)衍生的重組自交系群體對產(chǎn)量及構(gòu)成因子進(jìn)行QTL分析,第1染色體長臂RZ730–RG381區(qū)間與多個粒重區(qū)間存在互作[27]。針對該區(qū)間,從ZS97/MY46的F9群體中篩選到1個目標(biāo)區(qū)間為MY46純合型的單株與ZS97回交2次,挑選1個在RM11448–RM11974區(qū)間(11.5 Mb)呈雜合的BC2F2單株開展精細(xì)定位。從該單株衍生的BC2F3群體挑選到3個SeqRHs,經(jīng)自交和基因型檢測構(gòu)建3個SeqRHs-NIL群體。通過各分離區(qū)間的遺傳作用比較,在該區(qū)間分解出2個控制千粒重的QTL,命名為和,前者位于區(qū)間RM11437–RM11615(3.6 Mb),ZS97等位基因增加粒重0.27 g;后者位于RM11615–RM11800(4.6 Mb),MY46等位基因增加粒重0.42 g[28](圖1)。
針對所在3.6 Mb區(qū)間,在Guo等[28]構(gòu)建的群體中篩選到1個BC2F8RH單株,從其衍生群體中篩選到4個BC2F10SeqRHs,經(jīng)自交及基因型檢測,構(gòu)建4個BC2F11:12SeqRHs-NIL群體。經(jīng)分析,從區(qū)間分解出2個控制千粒重的微效QTL,命名為和,前者位于Wn28447–RM11543(120.4 kb),控制粒重為主,ZS97等位基因增加粒重0.10 g;后者位于RM11554–RM11569(521.8 kb),通過增加粒長提高粒重,MY46等位基因增加粒長0.017 mm,增加粒重0.06 g[17](圖1)。
針對所在4.6 Mb區(qū)間,在Guo等[28]構(gòu)建的BC2F2群體中篩選到1個在RM11448–RM11974(11.5 Mb)區(qū)間呈雜合的單株,通過多代自交及標(biāo)記檢測,構(gòu)建6個BC2F10:11SeqRHs-NIL群體。經(jīng)各區(qū)間遺傳效應(yīng)比較,從區(qū)間分解出3個微效粒重QTL,命名為、和。其中,位于區(qū)間RM11730–RM11762(933.6 kb),主要控制千粒重,MY46等位基因提高粒重0.18 g;位于區(qū)間RM11781–RM11800(418.8 kb),通過增加粒長提高粒重,MY46等位基因增加粒長0.02 mm,增加粒重0.08 g;位于區(qū)間RM11800-RM11885(2.1 Mb),通過增加粒寬提高粒重,MY46等位基因增加粒寬0.02 mm,增加粒重0.12 g[18](圖1)。之后,我們又分別對這3個微效粒重QTL進(jìn)行精細(xì)定位和克隆。
2.3.1的精細(xì)定位
從ZS973/MY46的BC2F9群體中挑選1個RH單株,應(yīng)用由其衍生的3個BC2F12SeqRHs-NIL群體將所在區(qū)間縮小至Wn32886–Wn33252(366.1 kb)。采用相同策略,進(jìn)一步構(gòu)建3套世代分別為BC2F14,BC2F16和BC2F17的SeqRHs-NIL群體,將精細(xì)定位至Wn33011–Wn33089(77.5 kb),MY46等位基因增加千粒重0.26 g,該區(qū)間內(nèi)包含13個注釋基因[20]。
2.3.2的圖位克隆
從ZS973/MY46的BC2F9群體中挑選1個雜合區(qū)間為RM212–RM11800的RH單株。應(yīng)用由其衍生的4個BC2F11:12和3個BC2F13:14SeqRHs-NIL群體,將精細(xì)定位至區(qū)間Wn34323–Wn34367(44.0 kb)。該微效QTL通過增加粒長提高粒重,MY46等位基因增加粒長0.021 mm,提高粒重0.13 g。應(yīng)用CRISPR/Cas9敲除技術(shù)進(jìn)行候選基因功能驗證,確認(rèn)編碼VQ-motif蛋白的為的目標(biāo)基因。在NIL中,兩種純合基因型的千粒重相差0.9%~2.0%,而敲除株系與野生型對照之間的千粒重差異達(dá)2.8%~9.8%,效應(yīng)平均提高約6.1倍[15]。
2.3.3 qTGW1.2c分解成qGS1-35.2和qGW1-35.5
從ZS973/MY46的BC2F9群體中挑選1個雜合區(qū)間為RM11807–RM11842的RH單株,應(yīng)用由其衍生的1個BC2F11:12和5個BC2F13:14SeqRHs-NIL群體,在區(qū)間又分解出2個微效粒型QTL,其中一個位于Wn35183–RM11828(132.4 kb),ZS97等位基因增加粒長0.027 mm,長寬比增加0.017,第1個分離標(biāo)記位于基因組35.2 Mb位置,且主要控制粒形,將其命名為;另一個位于Wn35518–Wn35643(125.5 kb),MY46等位基因增加粒寬0.015 mm,增加粒重0.14 g,控制粒寬為主,將其命名為。針對,進(jìn)一步構(gòu)建3個BC2F14:15和2個BC2F15:16SeqRHs-NIL群體,將其精細(xì)定位至Wn35183–RM11824區(qū)間,大小約57.7 kb(圖2),該區(qū)間內(nèi)共包含6個注釋基因[19]。目前已初步完成候選基因的功能驗證。
上述研究有力地證明了應(yīng)用剩余雜合體策略構(gòu)建SeqRHs-NIL群體能有效分解和精細(xì)定位微效QTL;同時,應(yīng)用基因敲除技術(shù)可驗證微效QTL的候選基因功能,并在目標(biāo)基因座位創(chuàng)制新的等位變異;另外,該結(jié)果也為控制同一性狀的QTL往往是成簇分布的理論提供新的證據(jù)。
粒重和粒型基因的克隆對水稻高產(chǎn)和外觀品質(zhì)的改良具有重要作用。研究表明這些已克隆的粒重粒型QTL涉及植物激素、泛素-蛋白酶體通路、G-蛋白信號以及轉(zhuǎn)錄調(diào)控因子等多條途徑,并通過控制細(xì)胞增殖和(或)擴(kuò)張影響粒長、粒寬和千粒重[29-32](表1)。但是,整個調(diào)控網(wǎng)絡(luò)還不完整,特別是各調(diào)控途徑之間的相互聯(lián)系,需要進(jìn)一步深入研究,挖掘關(guān)鍵因子,不斷完善。
目前,水稻基因組功能研究技術(shù)成熟。QTL精細(xì)定位后,候選基因的功能驗證及分子機(jī)理研究水到渠成。因此,水稻重要農(nóng)藝性狀的QTL克隆很大程度取決于精細(xì)定位的準(zhǔn)確性。QTL定位方法除傳統(tǒng)的圖位克隆外,也涌現(xiàn)出新的方法,如全基因組關(guān)聯(lián)分析[54]和Ho-LAMap方法[37]。在已克隆的粒重和粒型QTL中,仍以圖位克隆為主,在精細(xì)定位階段大多采用回交方式構(gòu)建NIL群體,回交次數(shù)最高的達(dá)到6次,群體大小至少在2000個樣本以上,最多的達(dá)到20 160個樣本(表1)。本文采用剩余雜合體構(gòu)建SeqRHs-NIL群體策略,通過多輪定位逐步鎖定目標(biāo)基因(圖2),它的優(yōu)勢在于:1)工作量降低。對于重組子,1個重組區(qū)域僅需篩選1個即可;對于分離群體,F(xiàn)2型群體約300個單株,NIL群體中雙親純合型株系各不超過40個。2)容錯率高。在分離群體中,相同基因型個體均包含大量樣本,個別基因型和表型錯誤不影響QTL定位結(jié)果,有利于微效QTL的鑒定。3)連鎖QTL鑒定效率高。在構(gòu)建分離區(qū)間呈梯系排列的NIL群體時,易篩選到分離區(qū)間不交疊的重組單株,適宜連鎖QTL的鑒定和分解。4)遺傳背景一致性和QTL定位精度“自動”提高。在剩余雜合體篩選過程中,隨世代推進(jìn),背景殘存變異將“自動”逐步消除;剩余雜合體在加代過程中,目標(biāo)分離區(qū)間自然重組,QTL作用區(qū)間精度“自動”提高。
表1 已克隆的水稻主效粒重和粒型QTL
遺傳變異是水稻品種改良的基礎(chǔ),借助基因組編輯技術(shù)可針對目標(biāo)基因進(jìn)行定向改造,創(chuàng)建新的遺傳變異,該技術(shù)在水稻品種定向改良方面顯示出巨大潛力[55-58]。但從水稻產(chǎn)量性狀QTL研究進(jìn)展看,已克隆的基本為主效基因,在基因組中占比很低,嚴(yán)重限制了基因組編輯的育種應(yīng)用。本小組建立的技術(shù)體系能準(zhǔn)確精細(xì)定位微效QTL,并可借助CRISPR/Cas9敲除技術(shù)確定目標(biāo)基因。同時,該技術(shù)途徑還可在目標(biāo)基因座位上創(chuàng)制新的等位變異,獲得新的水稻種質(zhì)資源[15]。希望通過對該技術(shù)途徑的介紹,在方法上為水稻QTL圖位克隆及新種質(zhì)創(chuàng)制提供更多選擇。
謝辭:感謝中國水稻研究所莊杰云研究員在微效粒重粒型QTL精細(xì)定位和圖位克隆研究中做出的貢獻(xiàn)以及對本文的指導(dǎo)。
[1] Ashikari M, Sakakibara H, Lin S, Yanamoto T, Takashi T, Nishimura A, Angeles R E, Qian Q, Kitano H, Matsuoka M.Cytokinin oxidase regulates rice grain production [J]., 2005, 309: 741-745.
[2] Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C.increases grain production in rice [J]., 2017, 8: 1497.
[3] Zhang Z, Wang K, Guo L, Zhu Y, Fan Y, Cheng S, Zhuang J.Pleiotropism of the photoperiod-insensitive allele ofon heading date, plant height and yield traits in rice [J]., 2012, 7: e52538.
[4] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q.Natural variation inis an important regulator of heading date and yield potential in rice [J]., 2008, 40: 761-767.
[5] Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J.suppresses flowering in rice, influencing plant height and yield potential simultaneously [J]., 2010, 153: 1747-1758.
[6] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F.A major QTL,, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice [J]., 2011, 4: 319-330.
[7] Zhang Z H, Cao L Y, Chen J Y, Zhang Y X, Zhuang J Y, Cheng S H.Effects of Hd2 in the presence of the photoperiod-insensitive functional allele ofin rice [J]., 2016, 5: 1719-1726.
[8] Zhu Y, Fan Y, Wang K, Huang D, Liu W, Ying J, Zhuang J.Rice flowering locus T 1 plays an important role in heading date influencing yield traits in rice [J]., 2017, 7: 4918.
[9] Li N, Xu R, Li Y.Molecular networks of seed size control in plants [J]., 2019, 70: 11.
[10] Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B.The PLATZ transcription factor GL6 affect grain length and number in rice [J]., 2019, 180: 2077–2090.
[11] Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L, Ren D, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z.Natural variation in the promoter ofdetermines grain width and weight in rice [J]., 2020, 227(2): 3.
[12] Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X.A quantitative trait locuscontrols rice grain size and yield through the gibberellin pathway [J]., 2020, doi: 10.1111/tpj.14793.
[13] Li Q, Lu L, Liu H, Bai X, Zhou X, Wu B, Yuan M, Yang L, Xing Y.A minor QTL,, encoding an R2R3-MYB protein, negatively controls grain length in rice [J]., 2020, 133: 2387-2399. doi.org/10.1007/s00122-020-03606-z.
[14] Dong N Q, Sun Y, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X.UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice [J]., 2020, doi.org/ 10.1038/s41467-020-16403-5.
[15] Chan A N, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y, Zhang Z H.Identification through fine mapping and verification using CRISRP/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice[J].,2021,134: 327-337.https://doi.org/10.1007/s00122-020-03699-6.
[16] Noriko K, Masayuki K, Kei K, Takuya K, Tsutomu N, Yuji H, Itsuro T, Takashi S, Kiyoaki K.Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely relatedL.subsp.cultivars grown near the northernmost limit for rice paddy cultivation[J]., 2017, 67: 191-206.
[17] Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y.Dissection of theregion into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]., 2016, 17: 98-107.
[18] Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.Dissection ofto three QTLs for grain weight and grain size in rice (L.)[J]., 2015, 202: 119-127.
[19] Dong Q, Zhang Z H, Wang LL, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice[J]., 2018, 11: 44.
[20] Wang W, Wang L, Zhu Y, Fan Y, Zhuang J.Fine-mapping of, a quantitative trait locus for 1000-grain weight in rice[J]., 2019, 26(4): 220-228.
[21] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]., 2012, 337: 816.
[22] Hu X, Meng X, Liu Q, Wang K.Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice [J]., 2018, 16: 292-297.
[23] Meng X, Hu X, Liu Q, Song X, Gao C, Li J, Wang K.Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice [J]., 2018, 61: 122-125.
[24] Shan Q, Wang Y, Li J, Gao C.Genome editing in rice and wheat using the CRISPR/Cas system [J]., 2014, 9: 2395-2410.
[25] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality [J]., 2018, 9: 1240.
[26] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J., a major QTL that negatively modulates grain length and weight in rice [J]., 2018, 11: 750-753.
[27] Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L.Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice [J]., 2002, 105: 1137-1145.
[28] Guo L, Wang K, Chen J, Huang D, Fan Y, Zhuang J Y.Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (L.) [J]., 2013, 1: 70-76.
[29] Li N, Xu R, Duan P, Li Y H.Control of grain size in rice., 2018, 31: 237-251.DOI: 10.1007/ s00497-018-0333-6.
[30] 劉喜, 牟昌鈴, 周春雷, 程治軍, 江玲, 萬建民.水稻粒型基因克隆和調(diào)控機(jī)制研究進(jìn)展[J].中國水稻科學(xué), 2018, 32(1): 1-11.
Liu X, Mou C, Zhou C, Cheng Z, Jiang L, Wang J.Research progress on cloning and regulation mechanism of rice grain shapes genes [J]., 2018, 32(1): 1-11.(in Chinese with English abstract).
[31] Fan Y, Li Y.Molecular, cellular and Yin-Yang regulation of grain size and number in rice [J]., 2019, 39: 163.
[32] 康藝維, 陳玉宇, 張迎信.水稻粒型基因克隆研究進(jìn)展及育種應(yīng)用展望[J].中國水稻科學(xué), 2020, 34(6): 479-490.
Kang Y W, Chen Y Y, Zhang Y X.Research progress and breeding prospects of grain size associated genes in rice [J]., 2020, 34(6): 479-490.(in Chinese with English abstract).
[33] Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J]., 2007, 39: 623-630.
[34] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q.A rare allele ofenhances grain size and grain yield in rice[J]., 2015, 8: 1455-1465.
[35] Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y.Regulation ofby OsmiR396 controls grain size and yield in rice [J]., 2016, 2: 15203.
[36] Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses [J]., 2016, 2.
[37] Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid MAR, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z.contributing to rice grain length and yield was mined by Ho-LAMap [J]., 2017, 15: 28-45.
[38] Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Rashid MAR, Li J, Zhang H, Li Z.Alternative splicing ofcontrols grain length and yield in japonica rice [J]., 2018, doi:10.1111/pbi.12903.
[39] Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice [J]., 2018, 9: 852.
[40] Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q., a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J]., 2006, 112: 1164-1171.
[41] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X.The novel quantitative trait locuscontrols rice grain size and yield by regulating Cyclin-T1;3[J]., 2012, 22: 1666-1680.
[42] Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H.Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice [J]., 2012, 26, 109: 21 534-21 539.
[43] Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X.A novel QTLencodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice [J]., 2018, 11: 736-749.
[44] Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q, He Y., a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to form extra-long grains in rice [J]., 2018, 11: 754-756.
[45] Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q.Natural variation inplays an important role in regulating grain size and yield in rice [J]., 2011, 43: 1266-1269.
[46] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication [J]., 2008, 40(8): 1023-1028.
[47] Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J.Isolation and initial characterization of, a major QTL associated with grain width and weight [J]., 2008, 18: 1199-1209.
[48] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu Bun-ichi, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield [J]., 2013, 45: 707-711.
[49] Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice [J]., 2015, 112: 76-81.
[50] Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B.controls grain size in cultivated rice [J]., 2016, 48: 447-456.
[51] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q.Copy number variation at thelocus contributes to grain size diversity in rice [J]., 2015, 47: 944-948.
[52] Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X.The-regulatory module determines grain shape and simultaneously improves rice yield and grain quality [J]., 2015, 47: 949-954.
[53] Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X.Control of grain size, shape and quality byin rice [J]., 2012, 44: 950-954.
[54] Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler S E, Qian Q, Zhang Q-F, Li J, Han B.Genome-wide association studies of 14 agronomic traits in rice landraces [J]., 2010, 42(11): 961-969.
[55] Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F.Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system [J]., 2018, 6: 475-481.
[56] Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]., 2019, doi.org/10.1038/s41587-018-0003-0.
[57] Li S, Shen L, Hu P, Liu Q, Zhu X, Qian Q, Wang K, Wang Y.Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing[J]., 2019, doi: 10.1111/jipb.12774.
[58] 黃忠明, 周延彪, 唐曉丹, 趙新輝, 周在為, 符星學(xué), 王凱, 史江偉, 李艷鋒, 符辰建, 楊遠(yuǎn)柱.基于CRISPR/Cas9技術(shù)的水稻溫敏不育基因突變體的構(gòu)建[J].作物學(xué)報, 2018, 44(6): 844-851.
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z.Construction ofmutants in rice based on CRISPR/Cas9 technology [J]., 2018, 44(6): 844-851.(in Chinese with English abstract).
A New Approach for Fine-mapping and Map-based Cloning of Minor-Effect QTL in Rice
ZHU Yujun*, ZUO Ziwei, ZHANG Zhenhua, FAN Yeyang
(State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China;*Corresponding author, E-mail: zhuyujun@caas.cn)
Important agronomic traits in rice are generally controlled by a few major-effect QTLs and a large number of minor-effect QTLs.Great progresses have been made in the cloning of major QTLs, while minor QTLs remain difficult to be cloned due to their small genetic effects and the influence of measurement error.A new approach for fine-mapping and map-based cloning of rice minor-effect QTL was introduced in this article.The approach includes two steps: 1) Use the residual heterozygote to construct near isogenic lines for fine-mapping of the target QTL; 2) Use the genome editing to create mutants of candidate genes for gene function identification.Using the strategy, we fine-mapped six minor QTLs for grain weight and grain size on the long arm of chromosome 1, and successfully cloned the first minor QTL for grain weight.We expect that this approach could provide more options for QTL cloning and new germplasm creation.
rice (L.); grain size; minor QTL; map-based cloning
10.16819/j.1001-7216.2021.201206
2020-12-09;
2021-01-24。
浙江省“萬人計劃”杰出人才基金資助項目(2020R51007);中央級公益性科研院所基本科研業(yè)務(wù)費專項(CPSIBRF-CNRRI-202112);水稻生物學(xué)國家重點實驗室課題(2020ZZKT10105)。