周麗 孔彥龍 陶欣榮
摘 要:創(chuàng)傷性脊髓損傷能夠引起嚴(yán)重的神經(jīng)功能障礙,是一種嚴(yán)重影響生活質(zhì)量的疾病,但是尚無(wú)有效的治療方法?,F(xiàn)有研究中發(fā)現(xiàn)間充質(zhì)干細(xì)胞來(lái)源的外泌體具有和母細(xì)胞相似的生理作用,將外泌體應(yīng)用于脊髓損傷的治療中表現(xiàn)出令人滿意的療效,而且移植外泌體后尚未發(fā)現(xiàn)在移植干細(xì)胞中出現(xiàn)的致瘤等副作用,因此外泌體將會(huì)是脊髓損傷治療中一個(gè)很有前景的策略?,F(xiàn)將間充質(zhì)干細(xì)胞來(lái)源外泌體在治療創(chuàng)傷性脊髓損傷中的研究進(jìn)展進(jìn)行綜述,分析目前存在的問(wèn)題和未來(lái)的研究方向。
關(guān)鍵詞:間充質(zhì)干細(xì)胞;外泌體;創(chuàng)傷性脊髓損傷;再生修復(fù)
中圖分類號(hào): 392.4? 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-1098(2021)01-0075-06
收稿日期:2020-09-20
基金項(xiàng)目:淮南市指導(dǎo)性科技計(jì)劃資助項(xiàng)目(2020B026);安徽理工大學(xué)研究生創(chuàng)新基金資助項(xiàng)目(2019CX2070,2019CX2069)
作者簡(jiǎn)介:周麗(1995-),女,江西九江人,在讀碩士,研究方向:神經(jīng)免疫。
Exosomes Derived from Mesenchymal Stem Cells Repairing Traumatic Spinal Cord Injury
ZHOU Li, KONG Yanlong, TAO Xinrong
(Medical College of Anhui University of Science and Technology, Huainan Anhui 232001,China)
Abstract:Traumatic spinal cord injury, which will cause serious neurological dysfunction, is a disease that seriously affects the quality of life, but there are no effective treatments. In present studies, it has been found that the exosomes derived from mesenchymal stem cells have similar physiological effects to mother cells, and the application of such exosomes in the treatment of spinal cord injury shows satisfactory curative effect. Moreover, side effects such as tumorigenesis happened in transplanting stem cells have not been found in transplanting the exosomes until now, therefore this method of transplanting exosomes will be a promising strategy in therapy of spinal cord injury. Here is a review to analyze existing problems and future direction in research of exosomes derived from mesenchymal stem cells in the treatment of traumatic spinal cord injury.
Key words:mesenchymal stem cells; exosomes; traumatic spinal cord injury; regenerative repair
創(chuàng)傷性脊髓損傷(Traumatic Spinal Cord Injury, TSCI)在交通事故以及高空墜落傷中常見(jiàn),極易引起癱瘓等并發(fā)癥,且難以治愈,給患者、家屬及社會(huì)帶來(lái)巨大的經(jīng)濟(jì)和心理負(fù)擔(dān)[1]。1992年,大劑量甲基強(qiáng)的松龍沖擊療法首次被用于治療急性TSCI,并被推廣應(yīng)用[2],但由于嚴(yán)重的副作用限制了其作用的發(fā)揮。后來(lái)研究發(fā)現(xiàn)移植骨髓間充質(zhì)干細(xì)胞(Bone Mesenchymal Stem Cells, BMSCs)[3]、臍帶間充質(zhì)干細(xì)胞(Umbilical Cord Mesenchymal Stem Cells, UCMSCs)[4]、胚胎干細(xì)胞[5]等能夠減少神經(jīng)細(xì)胞死亡,促進(jìn)髓鞘再生,有利于感覺(jué)運(yùn)動(dòng)功能的恢復(fù),但也因?yàn)閭惱淼葐?wèn)題影響了其進(jìn)一步研究。有學(xué)者將間充質(zhì)干細(xì)胞產(chǎn)生的外泌體(exosomes, Exo)通過(guò)尾靜脈移植到TSCI小鼠體內(nèi),觀察到明顯的損傷修復(fù)作用,這和移植間充質(zhì)干細(xì)胞的修復(fù)效果相似[6]1 552,而且沒(méi)有出現(xiàn)細(xì)胞移植的各種弊端,顯示出間充質(zhì)干細(xì)胞來(lái)源的外泌體(MSCs-Exo)治療TSCI的巨大潛力,但是MSCs-Exo促進(jìn)損傷修復(fù)的機(jī)制仍未完全闡明。此外,雖然在不同的實(shí)驗(yàn)中都顯示出一定的損傷修復(fù)作用,但是移植MSCs-Exo的途徑、移植劑量和移植時(shí)間與損傷修復(fù)作用之間的關(guān)系尚缺乏足夠的關(guān)注。因此本文通過(guò)近些年國(guó)內(nèi)外發(fā)表的相關(guān)文獻(xiàn)對(duì)上述問(wèn)題以及MSCs-Exo促進(jìn)TSCI修復(fù)的可能機(jī)制進(jìn)行闡述。
1 MSCs-Exo移植
1.1 移植途徑
目前TSCI的試驗(yàn)中移植MSCs-Exo的方法主要有三種,即靜脈注射、鼻腔給藥和損傷局部應(yīng)用。靜脈移植的實(shí)驗(yàn)中主要采用尾靜脈注射,文獻(xiàn)[7]3 389將MSCs-Exo通過(guò)尾靜脈注射到模型鼠體內(nèi)后,觀察到促凋亡蛋白(Bax)和促炎細(xì)胞因子(TNF-α、IL-1β)的表達(dá)水平降低,但抗凋亡蛋白(Bcl-2)和抗炎細(xì)胞因子(IL-10)的表達(dá)量明顯升高,且在注射后第7d后肢運(yùn)動(dòng)功能評(píng)分(BBB評(píng)分)與對(duì)照組出現(xiàn)顯著性差異。文獻(xiàn)[8]10 024將標(biāo)記的MSCs-Exo分別經(jīng)鼻腔和損傷局部給藥,24h后通過(guò)Micro-CT觀察損傷部位的熒光強(qiáng)度,發(fā)現(xiàn)損傷局部給藥組熒光更強(qiáng),在第14d BBB評(píng)分與對(duì)照組出現(xiàn)差異,而且在28d的試驗(yàn)周期中,雖然兩種移植途徑都能夠產(chǎn)生修復(fù)效果,但是最后還是以損傷局部應(yīng)用引起的運(yùn)動(dòng)能力改善更加明顯。所以,通過(guò)以上3種途徑移植MSCs-Exo均能夠?qū)SCI產(chǎn)生修復(fù)效果。尾靜脈移植實(shí)驗(yàn)操作相對(duì)簡(jiǎn)便,是目前最常用的移植途徑,不過(guò)注射到體內(nèi)的MSCs-Exo要經(jīng)歷體循環(huán)過(guò)程和血脊髓屏障(Blood-Spinal Cord Barrier,BSCB),會(huì)降低到達(dá)損傷部位的MSCs-Exo的量,但是目前尚沒(méi)有這方面的研究。而鼻腔移植的優(yōu)勢(shì)在于能夠使EX更快通過(guò)BSCB,且避免了體循環(huán)過(guò)程,似乎是比較理想的移植途徑,但在移植過(guò)程中真正進(jìn)入體內(nèi)的MSCs-Exo的量無(wú)法確定,存在很多不確定性,限制了其被廣泛采用。在上述尾靜脈注射和鼻腔給藥的實(shí)驗(yàn)中可看到,理論上能夠更快通過(guò)BSCB的鼻腔給藥組卻比尾靜脈注射組的運(yùn)動(dòng)功能改善效果差,原因可能就是鼻腔給藥過(guò)程中損失掉了一部分MSCs-Exo,導(dǎo)致透過(guò)BSCB到達(dá)損傷部位的MSCs-Exo總量減少,因此影響了修復(fù)效果。損傷局部應(yīng)用在上述實(shí)驗(yàn)中表現(xiàn)出良好的修復(fù)作用,但是由于存在二次損傷等風(fēng)險(xiǎn)限制了其使用。從上述實(shí)驗(yàn)中能夠看出移植途徑對(duì)運(yùn)動(dòng)功能改善的影響,但是仍缺乏有力的證據(jù),后續(xù)研究中應(yīng)該關(guān)注此部分的探索。
1.2 移植劑量
當(dāng)前有關(guān)移植MSCs-Exo的劑量沒(méi)有明確的規(guī)定。文獻(xiàn)[9]3 694通過(guò)尾靜脈注射的劑量為100μg MSCs-Exo蛋白,在第7d觀察到運(yùn)動(dòng)功能改善。但在相同的劑量下,文獻(xiàn)[10]4在第14d觀察到運(yùn)動(dòng)功能改善。而文獻(xiàn)[11]472、文獻(xiàn)[12]注射的劑量為200μg BMSCs-Exo蛋白,前者在第7d觀察到運(yùn)動(dòng)功能改善,后者在第14d觀察到運(yùn)動(dòng)功能改善。文獻(xiàn)[13]172注射的劑量則為100mg BMSCs-Exo蛋白,在第7d觀察到運(yùn)動(dòng)功能改善。文獻(xiàn)[8]10 024在鼻腔給藥和局部給藥的過(guò)程中應(yīng)用的劑量均為40μg BMSCs-Exo蛋白,前者在第14d首先觀察到短暫的運(yùn)動(dòng)功能改善,后者運(yùn)動(dòng)功能改善出現(xiàn)較晚但是功能恢復(fù)更加明顯。由上述實(shí)驗(yàn)可知即使移植劑量相同,實(shí)驗(yàn)結(jié)果也不完全相同,這可能與移植途徑以及移植次數(shù)和時(shí)間等有關(guān)。此外,不同的移植途徑中,靜脈移植相對(duì)于鼻腔給藥和局部應(yīng)用需要的劑量更大。但是這不能掩蓋現(xiàn)階段對(duì)于移植MSCs-Exo的劑量尚沒(méi)有統(tǒng)一量化標(biāo)準(zhǔn)的事實(shí)。目前的實(shí)驗(yàn)主要通過(guò)測(cè)定MSCs-Exo中的蛋白含量來(lái)量化外泌體的移植劑量,但通過(guò)前期研究可知MSCs-Exo中有很多不同的成分,文獻(xiàn)[14]通過(guò)高通量測(cè)序和液相色譜-質(zhì)譜/質(zhì)譜蛋白質(zhì)組學(xué)在豬脂肪間充質(zhì)干細(xì)胞來(lái)源的外泌體中檢測(cè)出4種 miRNA、255種 mRNA和277 種蛋白質(zhì),在蛋白質(zhì)中就含有能夠促進(jìn)軸突生長(zhǎng)的肝細(xì)胞生長(zhǎng)因子和轉(zhuǎn)化生長(zhǎng)因子β等。文獻(xiàn)[15]在BMSCs-Exo中檢測(cè)出各種粒細(xì)胞集落刺激因子、IL-6等能夠抑制炎癥反應(yīng)的成分,可見(jiàn)外泌體的成分非常之復(fù)雜。MSCs-Exo中含有的RNA對(duì)脊髓損傷也有一定的修復(fù)作用,文獻(xiàn)[16]將富含miR-25的BMSCs-Exo移植到脊髓損傷小鼠后觀察到小鼠運(yùn)動(dòng)功能的改善。所以,單純通過(guò)蛋白含量定量MSCs-Exo的方法就有失科學(xué)性,而且MSCs產(chǎn)生Exo的量和MSCs的狀態(tài)也有一定關(guān)系,因此在定量MSCs-Exo的問(wèn)題上還需要深入研究。
1.3 移植時(shí)間
TSCI后移植MSCs-Exo的最佳時(shí)間尚沒(méi)有專門研究過(guò),在已有實(shí)驗(yàn)中造模成功0h[11]472、0.5h[7,17]3 389,2、1h[9-10]3 695,3、3h[8]10 017、24h[13]172或7d[19]移植MSCs-Exo都有報(bào)道, 不同實(shí)驗(yàn)中模型鼠的感覺(jué)運(yùn)動(dòng)功能均出現(xiàn)不同程度的改善, 但是以3h以內(nèi)移植 MSCs-Exo的實(shí)驗(yàn)組感覺(jué)運(yùn)動(dòng)功能恢復(fù)更加明顯,在7d左右就出現(xiàn)了后肢BBB評(píng)分的升高。在TSCI的病理生理變化中有學(xué)者提到,脊髓損傷后1hTNF-α水平升高、2~3h白三烯和血栓素等其他炎性細(xì)胞因子水平升高5~9倍,因此,在SCI后3h以內(nèi)是降低損傷部位炎癥水平的最佳時(shí)期[19-20]。而在上述研究中也發(fā)現(xiàn)3h以內(nèi)移植MSCs-Exo能夠取得非常明顯的神經(jīng)功能恢復(fù),兩者的結(jié)論相互吻合。另一方面,運(yùn)動(dòng)功能恢復(fù)快慢似乎和治療的持續(xù)時(shí)間也有關(guān)系,文獻(xiàn)[8]10 020對(duì)注射1次載有張力蛋白同源物小干擾RNA的MSCs-Exo(Exo-PTEN)和注射5次Exo-PTEN的TSCI小鼠模型進(jìn)行比較,8周后發(fā)現(xiàn)注射5次的模型鼠運(yùn)動(dòng)功能明顯改善,BBB評(píng)分7.75±2.14,注射1次的模型鼠BBB評(píng)分2.50±1.21,而且感覺(jué)恢復(fù)也以注射5次的ExoPTEN組最為明顯。這些結(jié)果提示移植MSCs-Exo治療TSCI可能需要多次治療而不是目前很多研究中采用的單次治療。所以,在移植MSCs-Exo治療TSCI時(shí)最佳的治療時(shí)間是在損傷后3h內(nèi)開(kāi)始治療,并且進(jìn)行多次治療。
2 MSCs-Exo促進(jìn)TSCI修復(fù)可能機(jī)制
2.1 抑制神經(jīng)細(xì)胞凋亡
TSCI后損傷部位的水腫、出血等能夠使神經(jīng)細(xì)胞死亡,隨后引起的損傷部位細(xì)胞因子、miRNAs等的變化進(jìn)一步加重了神經(jīng)細(xì)胞凋亡。有研究顯示,脊髓損傷后損傷部位大約有30種miRNA的含量發(fā)生了變化[21]146,例如miR-133b[22]53和miR-124[23]的下調(diào),miR-20[24]和miR-103[21]149的上調(diào)。另外還有研究表明脊髓損傷后谷氨酸(GLU)大量存在于損傷的神經(jīng)元周圍,這是導(dǎo)致神經(jīng)細(xì)胞凋亡的重要原因之一[25]。文獻(xiàn)[26]在體外實(shí)驗(yàn)中觀察到MSCs-Exo能夠抑制GLU引起的人臍靜脈內(nèi)皮細(xì)胞(HUVECs)的凋亡,并且使促凋亡蛋白,如Bax、活化的caspase-3和caspase-9含量降低,而抗凋亡蛋白Bcl-2等含量增加,在體內(nèi)實(shí)驗(yàn)中,將MSCs-Exo直接注射到SCI損傷部位,在治療后第1d就觀察到神經(jīng)細(xì)胞凋亡率降低,同時(shí)也觀察到和體外實(shí)驗(yàn)中相同的蛋白水平變化,并且對(duì)TSCI區(qū)域進(jìn)行TUNEL染色后發(fā)現(xiàn)實(shí)驗(yàn)組損傷區(qū)域TUNEL陽(yáng)性細(xì)胞與對(duì)照組相比明顯減少,實(shí)驗(yàn)組SCI模型的運(yùn)動(dòng)功能得到了很大改善。文獻(xiàn)[27]將轉(zhuǎn)染了miR-21基因的BMSCs-Exo進(jìn)行體內(nèi)外實(shí)驗(yàn),發(fā)現(xiàn)富含miR-21的Exo在體外能夠抑制人神經(jīng)母細(xì)胞瘤細(xì)胞(SH-SY5Y cells)中程序性細(xì)胞死亡蛋白4(PDCD4)和張力蛋白同源物(PTEN)的表達(dá),在TSCI模型鼠中也觀察到了PDCD4和PTEN 表達(dá)量的下降,并且PTEN下游PI3K非依賴性和PI3K依賴性信號(hào)通路被激活,促進(jìn)了髓鞘的形成和軸突的再生。所以,MSCs-Exo能夠通過(guò)調(diào)整SCI損傷部位微環(huán)境中不同成分的含量抑制神經(jīng)細(xì)胞凋亡,促進(jìn)神經(jīng)功能恢復(fù)。
2.2 抑制神經(jīng)毒性星形膠質(zhì)細(xì)胞增生
TSCI后A1型神經(jīng)毒性星形膠質(zhì)細(xì)胞增生,并大量分泌硫酸軟骨素蛋白多糖、壓迫損傷部位、抑制軸突再生[28-29],同時(shí),分泌大量促炎介質(zhì),如白三烯、腫瘤壞死因子ɑ(tumor necrosis factor ɑ,TNF-ɑ)、降鈣素基因相關(guān)肽calcitonin gene related peptide, CGRP)等增強(qiáng)感覺(jué)神經(jīng)末梢傷害性神經(jīng)遞質(zhì)的釋放, 嚴(yán)重影響神經(jīng)功能恢復(fù)[30]。 文獻(xiàn)[6]1 543將BMSCs-Exo注射到模型鼠體內(nèi),觀察到A1型膠質(zhì)細(xì)胞比例、星形膠質(zhì)細(xì)胞中p65陽(yáng)性細(xì)胞核百分比和前角TUNEL陽(yáng)性細(xì)胞百分比均出現(xiàn)下降,病變面積縮小,TNF-ɑ、白細(xì)胞介素-1α (interleukin-1ɑ,IL-1ɑ)和IL-1β表達(dá)量減少,髓鞘堿性蛋白、突觸素和神經(jīng)元核表達(dá)增加,模型鼠的BBB評(píng)分提高和斜板角度增大,因此推測(cè)BMSCs-Exo通過(guò)抑制星形膠質(zhì)細(xì)胞NFκB的核轉(zhuǎn)位減少了TSCI后A1型神經(jīng)毒性星形膠質(zhì)細(xì)胞數(shù)量,促進(jìn)了TSCI修復(fù)。文獻(xiàn)[11]477通過(guò)同樣的方法將MSCs-Exo注射到模型鼠體內(nèi)后也觀察到A1神經(jīng)毒性反應(yīng)性星形膠質(zhì)細(xì)胞的激活被抑制,運(yùn)動(dòng)功能得到了明顯改善,不僅如此,還發(fā)現(xiàn)毒性星形膠質(zhì)細(xì)胞增生被抑制后TSCI部位膠質(zhì)瘢痕的形成減少,神經(jīng)再生增強(qiáng)。因此,抑制神經(jīng)毒性星形膠質(zhì)細(xì)胞增生,減少膠質(zhì)瘢痕形成是MSCs-Exo促進(jìn)TSCI修復(fù)的又一重要作用。
2.3 免疫調(diào)節(jié)
免疫系統(tǒng)是維持機(jī)體穩(wěn)態(tài)的重要部分,一直以來(lái)都是研究的重點(diǎn)。將臍帶間充質(zhì)干細(xì)胞來(lái)源的外泌體 (UMSCs-Exo) 通過(guò)尾靜脈注射到TSCI小鼠體內(nèi),發(fā)現(xiàn)損傷部位的促炎性M1型巨噬細(xì)胞的數(shù)量和促炎細(xì)胞因子如 TNF-ɑ、IL-6、Interferon-β(IFN-β)、Granulocyte colony-stimulating factor、Monocyte chemoattractant protein-1和Macrophage inflammatory protein 1ɑ明顯減少,而抗炎性M2型巨噬細(xì)胞的數(shù)量和抗炎細(xì)胞因子如IL-4和IL-10 明顯增加[31]。在另一個(gè)研究中將BMSCs-Exo通過(guò)尾靜脈注射到TSCI小鼠體內(nèi),免疫熒光檢測(cè)顯示損傷部位促炎型細(xì)胞因子如TNF-ɑ、IL-1ɑ、IL-1β和P65明顯下調(diào),減弱了對(duì)A1型毒性星形膠質(zhì)細(xì)胞的活化,從而保護(hù)神經(jīng)元、軸突和髓鞘[6]1 545。進(jìn)一步將DIR熒光標(biāo)記的BMSCs-Exo注入模型鼠體內(nèi),在注射后3h、24h分別檢測(cè)損傷部位的熒光信號(hào),發(fā)現(xiàn)損傷部位的M2型巨噬細(xì)胞胞質(zhì)中高熒光信號(hào),而AS、M1型巨噬細(xì)胞等均未檢測(cè)到熒光信號(hào),并且在小鼠的脾臟中也檢測(cè)到了熒光信號(hào),1周后稱量脾臟發(fā)現(xiàn),實(shí)驗(yàn)組小鼠脾臟的質(zhì)量比陰性對(duì)照組脾臟的質(zhì)量減輕了18%,這些結(jié)果表明免疫細(xì)胞以及免疫器官在MSCs-Exo介導(dǎo)的TSCI修復(fù)中發(fā)揮了巨大作用[22]58。
2.4 恢復(fù)BSCB完整性
創(chuàng)傷性脊髓損傷后BSCB的完整性遭受嚴(yán)重破壞,各種炎癥因子和炎癥細(xì)胞進(jìn)入損傷區(qū)域,加速神經(jīng)細(xì)胞和少突膠質(zhì)細(xì)胞的死亡,擴(kuò)大脊髓的損傷范圍[32]。文獻(xiàn)[17]5將BMSCs-Exo通過(guò)尾靜脈注射到模型鼠體內(nèi)后發(fā)現(xiàn)BMSCs-Exo能夠抑制BSCB周圍周細(xì)胞內(nèi)NF-kB信號(hào)通路的激活,抑制周細(xì)胞的脫落和遷移,導(dǎo)致BSCB的通透性降低,模型鼠BBB評(píng)分與對(duì)照組相比明顯提高,說(shuō)明BMSCs-Exo能夠保護(hù)損傷后BSCB的完整性,減輕損傷部位炎癥反應(yīng),有利于運(yùn)動(dòng)感覺(jué)功能恢復(fù)。
3 結(jié)語(yǔ)
MSCs-Exo治療TSCI展現(xiàn)出良好的療效,MSCs-Exo不僅具有極低的免疫原性、易穿過(guò)BSCB,而且能夠克服細(xì)胞移植存在的致瘤等風(fēng)險(xiǎn)。但該方法也存在很多不足,一方面,MSCs-Exo的最佳移植時(shí)間以及移植劑量等仍需探究;另一方面,MSCs產(chǎn)生Exo的效率比較低(106個(gè)MSCs每天可產(chǎn)生1~4μg Exo蛋白)[33],而且經(jīng)胰蛋白酶消化傳代15次以上的MSCs明顯出現(xiàn)功能減退,表現(xiàn)為分泌Exo的量和Exo中含有的成分都出現(xiàn)變化。并且MSCs-Exo靶向性差,Exo的有效成分利用率低[34],針對(duì)MSCs-Exo產(chǎn)量低、靶向性差,目前已有研究,如文獻(xiàn)[35]用氧化鐵納米顆粒(IONP)預(yù)處理人間充質(zhì)干細(xì)胞(Human Mesenchymal Stem Cells,HMSCs)制備了仿外泌體納米微囊(NV-IONP),不僅使治療性生長(zhǎng)因子分泌增加,而且能夠充當(dāng)磁導(dǎo)導(dǎo)航工具,實(shí)現(xiàn)NV-IONP的靶向輸送,增加治療性生長(zhǎng)因子在脊髓損傷部位的濃度,提高損傷修復(fù)能力。總之,MSCs-Exo為TSCI的治療帶來(lái)了曙光,有很好的研究前景和巨大的研究?jī)r(jià)值。
參考文獻(xiàn):
[1] THURET S, MOON L D, GAGE F H. Therapeutic Interventions after Spinal Cord Injury[J].Nature Reviews Neuroscience, 2006, 7(8): 628-643.
[2] LUKR, ZKOV I, BARSA P, et al. Current role of methylprednisolone in the treatment of acute spinal cord injury[J].Acta Chir Orthop Traumatol Cech, 2011, 78(4): 305-313.
[3] GOU Y,LIU D,LIU J,et al.Protective Effect of Transplantation of Bone Mesenchymal Stem Cells on Demyelination in Spinal Cord Injury[J].Sheng Wu Gong Cheng Xue Bao, 2018, 34(5): 761-776.
[4] YANG C,WANG G,MA F,et al.Repeated Injections of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Significantly Promotes Functional Recovery in Rabbits with Spinal Cord Injury of Two Noncontinuous Segments[J].Stem Cell Research & Therapy,2018,9(1): 136.
[5] HARPER J M, KRISHNAN C, DARMAN J S, et al. Axonal Growth of Embryonic Stem Cell-Derived Motoneurons in Vitro and in Motoneuron-Injured Adult Rats[J].Proceedings of The National Academy of Sciences of The United States of America,2004,101(18):7 123-7 128.
[6] WANG L, PEI S, HAN L, et al. Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes Via Downregulation of Phosphorylated NFkappab P65 Subunit in Spinal Cord Injury[J].Cellular Physiology and Biochemistry, 2018, 50(4): 1 535-1 559.
[7] HUANG J H, YIN X M, XU Y, et al. Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis, Inflammation, and Promotes Angiogenesis after Spinal Cord Injury in Rats[J].Journal of Neurotrauma, 2017, 34(24): 3 388-3 396.
[8] GUO S, PERETS N, BETZER O, et al. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog Sirna Repairs Complete Spinal Cord Injury[J].ACS Nano, 2019, 13(9): 10 015-10 028.
[9] ZHAO C, ZHOU X, QIU J, et al. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Inhibit Complement Activation in Rats with Spinal Cord Injury[J].Drug Des Devel Ther, 2019, 13:3 693-3 704.
[10] YU T, ZHAO C, HOU S, et al. Exosomes Secreted from Mirna-29b-Modified Mesenchymal Stem Cells Repaired Spinal Cord Injury in Rats[J].Brazilian Journal of Medical and Biological Research, 2019, 52(12): e8735.
[11] LIU W, WANG Y, GONG F, et al. Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes[J].J Neurotrauma, 2019, 36(3): 469-484.
[12] LI C,JIAO G,WU W, et al. Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Neuronal Apoptosis and Promote Motor Function Recovery Via the Wnt/Beta-Catenin Signaling Pathway[J].Cell Transplantation, 2019, 28(11): 1 373-1 383.
[13] JI W, JIANG W, LI M, et al. Mir-21 Deficiency Contributes to the Impaired Protective Effects of Obese Rat Mesenchymal Stem Cell-Derived Exosomes against Spinal Cord Injury[J].Biochimie, 2019, 167:171-178.
[14] EIRIN A, ZHU X Y, PURANIK A S, et al. Integrated Transcriptomic and Proteomic Analysis of the Molecular Cargo of Extracellular Vesicles Derived from Porcine Adipose Tissue-Derived Mesenchymal Stem Cells[J].PLoS One, 2017, 12(3): e0174303.
[15] NEIRINCKX V, AGIRMAN G, COSTE C, et al. Adult Bone Marrow Mesenchymal and Neural Crest Stem Cells Are Chemoattractive and Accelerate Motor Recovery in a Mouse Model of Spinal Cord Injury[J].Stem Cell Research & Therapy, 2015, 6: 211.
[16] 趙林林. 過(guò)表達(dá)miR-25的骨髓間充質(zhì)干細(xì)胞外泌體對(duì)脊髓短暫缺血的保護(hù)作用[D].沈陽(yáng):中國(guó)醫(yī)科大學(xué), 2019.
[17] LU Y, ZHOU Y, ZHANG R, et al. Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Recovery Following Spinal Cord Injury Via Improvement of the Integrity of the Blood-Spinal Cord Barrier[J].Frontiers in Neuroscience, 2019, 13: 209.
[18] LANKFORD K L, ARROYO E J, NAZIMEK K, et al. Intravenously Delivered Mesenchymal Stem Cell-Derived Exosomes Target M2-Type Macrophages in the Injured Spinal Cord[J].PLoS One, 2018, 13(1): e0190358.
[19] SCHWAB J M, ZHANG Y, KOPP M A, et al. The Paradox of Chronic Neuroinflammation, Systemic Immune Suppression, Autoimmunity after Traumatic Chronic Spinal Cord Injury[J].Experimental Neurology, 2014, 258: 121-129.
[20]? HAYTA E, ELDEN H. Acute Spinal Cord Injury: A Review of Pathophysiology and Potential of Non-Steroidal Anti-Inflammatory Drugs for Pharmacological Intervention[J].Journal of Chemical Neuroanatomy, 2018, 87: 25-31.
[21] STRICKLAND E R, HOOK M A, BALARAMAN S, et al. Micro? RNA?? Dysregulation Following Spinal Cord Contusion: Implications for Neural Plasticity and Repair[J].Neuroscience, 2011, 186: 146-160.
[22] REN Z W, ZHOU J G, XIONG Z K, et al. Effect of exosomes derived from MiR-133b-modified ADSCs on the recovery of neurological function after SCI[J].Eur Rev Med Pharmacol Sci, 2019 23(1):52-60.
[23] LOUW A M, KOLAR M K, NOVIKOVA L N, et al. Chitosan Polyplex Mediated Delivery of Mirna-124 Reduces Activation of Microglial Cells in Vitro and in Rat Models of Spinal Cord Injury[J].Nanomedicine, 2016, 12(3): 643-653.
[24] LIU X J, ZHENG X P, ZHANG R, et al. Combinatorial Effects of Mir-20a and Mir-29b on Neuronal Apoptosis Induced by Spinal Cord Injury[J].International Journal of Clinical and Experimental Pathology, 2015, 8(4): 3 811-3 818.
[25] HAUSMANN O N. Post-Traumatic Inflammation Following Spinal Cord Injury[J].SPINAL CORD, 2003, 41(7): 369-378.
[26] HARTMANN A, MUTH C, DABROWSKI O, et al. Exosomes and the Prion Protein: More Than One Truth[J].Frontiers in Neuroscience, 2017, 11:194.
[27] HAN C, SUN X, LIU L, et al. Exosomes and Their Therapeutic Potentials of Stem Cells[J].Stem Cells Int, 2016, 2016: 7653489.
[28] DONG J, LU M, HE X, et al. Identifying the Role of Micrornas in Spinal Cord Injury[J].Neurological Sciences, 2014, 35(11): 1 663-1 671.
[29] KARIMI-ABDOLREZAEE S, BILLAKANTI R. Reactive Astrogliosis after Spinal Cord Injury-Beneficial and Detrimental Effects[J].Molecular Neurobiology, 2012, 46(2): 251-264.
[30] LI LIMING, ZHANG YU, MU JIAFU, et al. Transplantation of Human Mesenchymal Stem-Cell-Derived Exosomes Immobilized in an Adhesive Hydrogel for Effective Treatment of Spinal Cord Injury[J].Nano Lett., 2020, 20(6): 4 298-4 305.
[31] SUN G, LI G, LI D, et al. Hucmsc Derived Exosomes Promote Functional Recovery in Spinal Cord Injury Mice Via Attenuating Inflammation[J].Mater Sci Eng C Mater Biol Appl, 2018, 89: 194-204.
[32] SOFRONIEW M V. Dissecting Spinal Cord Regeneration[J].Nature, 2018, 557(7 705): 343-350.
[33] KATSUDA T, TSUCHIYA R, KOSAKA N, et al. Human Adipose Tissue-Derived Mesenchymal Stem Cells Secrete Functional Neprilysin-Bound Exosomes[J].Scientific Reports, 2013, 3:1 197.
[34] MASTRI M, LIN H, LEE T. Enhancing the Efficacy of Mesenchymal Stem Cell Therapy[J].World J Stem Cells, 2014, 6(2): 82-93.
[35] KIM H Y, KUMAR H, JO M J, et al. Therapeutic Efficacy-Potentiated and Diseased Organ-Targeting Nanovesicles Derived from Mesenchymal Stem Cells for Spinal Cord Injury Treatment[J].Nano Letters, 2018, 18(8): 4 965-4 975.
(責(zé)任編輯:丁 寒,吳曉紅)