• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      隆林山羊CIDEc基因的克隆及組織表達(dá)分析

      2021-08-03 09:50:32鄒菊紅江雨航張叁保高小童申玉建韋英明黃大安黃艷娜蔣欽楊
      關(guān)鍵詞:生物信息學(xué)分析克隆

      鄒菊紅 江雨航 張叁保 高小童 申玉建 韋英明 黃大安 黃艷娜 蔣欽楊

      摘要:【目的】明確隆林山羊誘導(dǎo)細(xì)胞凋亡DFF45樣效應(yīng)因子c基因(CIDEc)的生物學(xué)特性及其表達(dá)規(guī)律,為揭示CIDEc基因?qū)ι窖蛑敬x的調(diào)控機(jī)制提供理論依據(jù)?!痉椒ā刻崛÷×稚窖虮匙铋L(zhǎng)肌、心臟、肝臟、脾臟、腎臟、腹脂和皮下脂肪及努比亞山羊腹脂和皮下脂肪的總RNA,PCR擴(kuò)增隆林山羊CIDEc基因編碼區(qū)(CDS)序列,使用ExPASy、TMHMM Server v.2.0、ProtScale、NPS@SOPMA和SWISS-MODEL等在線軟件進(jìn)行生物信息學(xué)分析,并利用實(shí)時(shí)熒光定量PCR檢測(cè)CIDEc基因在隆林山羊和努比亞山羊不同組織器官中的表達(dá)情況?!窘Y(jié)果】隆林山羊CIDEc基因CDS序列全長(zhǎng)為741 bp,共編碼244個(gè)氨基酸殘基,其編碼蛋白分子量26.09 kD,不穩(wěn)定系數(shù)48.44,脂肪指數(shù)100.7,理論等電點(diǎn)(pI)5.28,屬于酸性蛋白,不存在跨膜結(jié)構(gòu),親水性較強(qiáng)。隆林山羊CIDEc基因CDS序列與NCBI已公布的山羊CIDEc基因(XM_018038446.1)CDS序列相對(duì)比僅有1處堿基發(fā)生突變,即第560位點(diǎn)G突變?yōu)門,屬于同義突變。隆林山羊與綿羊的CIDEc基因CDS序列相似性最高(99.0%),與小鼠的相似性較低(79.6%);基于CIDEc基因CDS序列相似性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹也顯示隆林山羊與綿羊的親緣關(guān)系最近,與小鼠的親緣關(guān)系較遠(yuǎn)。在隆林山羊CIDEc蛋白的二級(jí)結(jié)構(gòu)中:α-螺旋占32.38%,β-轉(zhuǎn)角占12.70%,延伸鏈占13.11%,無規(guī)則卷曲占41.80%。CIDEc基因在隆林山羊7個(gè)組織器官中均有表達(dá),且在腹脂和皮下脂肪中高表達(dá),極顯著高于在其他器官組織的相對(duì)表達(dá)量(P<0.01);CIDEc基因在努比亞山羊脂肪組織(皮下脂肪和腹脂)中的相對(duì)表達(dá)量顯著高于在隆林山羊脂肪組織中的相對(duì)表達(dá)量(P<0.05)?!窘Y(jié)論】CIDEc基因在隆林山羊各器官組織中均有表達(dá),以在脂肪組織中的表達(dá)水平較高,且其在努比亞山羊脂肪組織(皮下脂肪和腹脂)中的表達(dá)水平顯著高于在隆林山羊中的表達(dá)水平。可見,CIDEc蛋白是脂肪代謝的重要調(diào)節(jié)劑,與動(dòng)物體內(nèi)脂質(zhì)存儲(chǔ)密切相關(guān)。

      關(guān)鍵詞: 隆林山羊;CIDEc基因;克隆;生物信息學(xué)分析;脂肪代謝;調(diào)控機(jī)制

      中圖分類號(hào): S826.89? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)04-1082-08

      Cloning and tissue expression analysis of CIDEc gene

      in Longlin goat

      ZOU Ju-hong1, JIANG Yu-hang1, ZHANG San-bao1, GAO Xiao-tong1, SHEN Yu-jian1,

      WEI Ying-ming2, HUANG Da-an3, HUANG Yan-nan1, JIANG Qin-yang1*

      (1College of Animal Science and Technology, Guangxi University, Nanning? 530004, China; 2Agriculture and Animal Husbandry Development Institute, Guangxi University, Nanning? 530004, China; 3Campus Cooperation

      Office, Guangxi University, Nanning? 530004,? China)

      Abstract:【Objective】To investigate the biological characteristics and expression pattern of DFF45-like effector C gene(CIDEc) in Longlin goat, and to provide theoretical basis for revealing the regulation mechanism of CIDEc gene on goat fat. 【Method】Total RNA was extracted from longissimus dorsi muscle, heart, liver, spleen, kidney, abdominal fat and subcutaneous fat of Longlin goat, and abdominal fat and subcutaneous fat of Nubia goat. The sequence of CIDEc gene coding region(CDS) of Longlin goats was amplified by PCR. Online softwares such as ExPASy, TMHMM Server v.2.0, ProtScale, NPS@SOPMA and SSWISS-Model were used for bioinformatics analysis, and real-time fluorescence quantitative PCR was used to detect the expression of CIDEc gene in different tissues and organs of Longlin goat and Nubia goat. 【Result】The CDS sequence of Longlin goat CIDEc gene was 741 bp, encoding 244 amino acid residues. The molecular weight of the encoded protein was 26.09 kD, the instability coefficient was 48.44, the fat index was 100.7, and the theoretical isoelectric point(pI) was 5.28. It was an acidic protein with no transmembrane structure and strong hydrophilicity. The CDS sequence of Longlin goat CIDEc gene had only one mutation compared with the CDS sequence of common goat CIDEc gene(XM_018038444.6) published by NCBI, that was, the mutation at site 560 G was changed to T, which belonged to the synonym mutation. The CDS sequence of CIDEc gene of Longlin goat was the highest in similarity with that of sheep(99.0%), and the lowest in similarity with that of mice(79.6%). The phylogenetic tree constructed based on the similarity of CIDEc gene CDS sequence also showed that Longlin goat was the most closely related to sheep, and closely related to mice. In the secondary structure of Longlin goat CIDEc protein, there were 32.38% of? equenxes, 12.70% of quturns, 13.11% of extended chains and 41.80% of irregular coils. The CIDEc gene was expressed in all 7 tissues and organs of Longlin goats, and the CIDEc gene was highly expressed in abdominal fat and subcutaneous fat, which was extremely significantly higher than that in other organs and tissues(P<0.01). The relative expression level of CIDEc gene in adipose tissue(subcutaneous adipose tissue and abdominal adipose tissue) of Nubia goat was significantly higher than that of Longlin goat(P<0.05). 【Conclusion】CIDEc gene is expressed in all organs and tissues of Longlin goat, especially in adipose tissue, and its expression level in adipose tissue(subcutaneous fat and abdominal fat) of Nubian goat is significantly higher than that in Longlin goat. CIDEc protein is an important regulator of fat metabolism and is closely related to lipid storage in animals.

      Key words: Longlin goat; CIDEc gene; cloning; bioinformatics analysis; fat metabolism; regulatory mechanism

      Foundation item: Guangxi Innovation-driven Development Special Project(Guike AA17204052); Guangxi Key Research and Development Project(Guike AB18221067); Central Leading Local Science and Technology Development Special Project(Guike ZY18076011); Science and Technology Project of Chongzuo City(Chongke FC2018006)

      0 引言

      【研究意義】隆林山羊是廣西地方優(yōu)良的肉用山羊品種,具有生長(zhǎng)發(fā)育快、耐粗飼、適應(yīng)能力強(qiáng)及繁殖率高等特點(diǎn)(吳海,2011),其肉質(zhì)高蛋白、低膽固醇,具有很好的營(yíng)養(yǎng)保健功能,而深受人們喜愛。肌間脂肪含量是評(píng)價(jià)羊肉品質(zhì)的重要指標(biāo),而誘導(dǎo)細(xì)胞凋亡DFF45樣效應(yīng)因子c基因(CIDEc)是調(diào)節(jié)肌間脂肪的候選基因。CIDEc基因高表達(dá)于白色脂肪組織,其次是褐色脂肪組織(Inohara et al.,1998)。在脂肪細(xì)胞中敲低CIDEc基因?qū)?dǎo)致脂解明顯增加,大脂滴分解成小脂滴(Puri and Czech,2008),即CIDEc基因在脂質(zhì)代謝平衡中發(fā)揮重要作用(Goodman,2008)。因此,加強(qiáng)隆林山羊CIDEc基因功能研究對(duì)改善其羊肉品質(zhì)具有重要意義。【前人研究進(jìn)展】在誘導(dǎo)細(xì)胞凋亡的DFF45(Cell death-inducing DNA fragmentationfactor 45-like effectors,CIDE)蛋白家族中已發(fā)現(xiàn)3個(gè)成員(CIDEa、CIDEb和CIDEc),且均屬于脂滴蛋白(李艷華,2008;Li et al.,2009)。CIDEc在小鼠上又稱為鼠脂肪特異蛋白(Fat-specificprotein of 27 kD,F(xiàn)SP27)。CIDEc基因不僅具有誘導(dǎo)細(xì)胞調(diào)亡的功能,還與動(dòng)物體內(nèi)脂肪的分解和形成有關(guān)。CIDEc基因在嚙齒動(dòng)物中可定位于脂肪細(xì)胞的脂滴表面,且特異富集在脂滴—脂滴接觸部位(LDCSs),在脂肪細(xì)胞中促進(jìn)甘油三酯聚集、增大脂滴體積,進(jìn)而調(diào)節(jié)脂肪代謝和機(jī)體能量平衡(Barneda et al.,2015;Langhi and Baldán,2015;Zhou et al.,2015)。此外,CIDEc在脂肪肝的脂解、胰島素敏感性和中性脂質(zhì)(TAG)積累過程中發(fā)揮重要作用(Liangpunsakul and Gao,2016;Xu et al.,2016)。如在高脂喂養(yǎng)的小鼠和OB小鼠中使CIDEc基因沉默,均會(huì)導(dǎo)致內(nèi)臟脂肪減少,全身血糖得到有效控制(Langhi et al.,2017),且CIDEc基因敲除小鼠對(duì)高脂飲食誘導(dǎo)的體重增加有一定抵抗力(Tanaka et al.,2015)。在脂肪組織中,CIDEc能刺激TAG液滴形成,而抑制非酯化脂肪酸的β-氧化反應(yīng)(Liang-punsakul and Gao,2016)。Danesch等(1992)研究發(fā)現(xiàn)CIDEc基因僅在成熟的脂肪組織中表達(dá),但不在生長(zhǎng)或匯合的前脂肪細(xì)胞和非脂防細(xì)胞中表達(dá),且其表達(dá)受轉(zhuǎn)錄因子C/EBP的調(diào)控(Wu et al.,2002)。Qian等(2017)研究發(fā)現(xiàn),組蛋白脫乙?;?(HDAC6)能促使CIDEc發(fā)生脫乙酰基作用,導(dǎo)致其乙?;浇档图翱焖俳到猓种浦稳诤仙L(zhǎng)和脂質(zhì)儲(chǔ)存。CIDEc蛋白主要表達(dá)于脂肪組織中,與機(jī)體的能量代謝密切相關(guān),在動(dòng)物機(jī)體中敲除CIDEc基因最明顯的變化就是脂肪組織中脂質(zhì)明顯減少或動(dòng)物發(fā)展成脂肪營(yíng)養(yǎng)不良表型(Zhou et al.,2015)。缺失CIDEc基因的哺乳動(dòng)物通常表現(xiàn)為瘦表型、高耗能和胰島素拮抗等特點(diǎn)(高磊等,2015)。如CIDEc基因敲除小鼠并未呈現(xiàn)出與細(xì)胞凋亡相關(guān)的表型,而是表現(xiàn)為脂代謝過程的改變(Zhou et al.,2003;Li et al.,2007;Nishino et al.,2008;Toh et al.,2008),即CIDEc基因敲除小鼠體型偏瘦,整體代謝率明顯提高,線粒體和小脂滴數(shù)量明顯增加,葡萄糖吸收及胰島素敏感性顯著增強(qiáng)(Danesch et al.,1992;Wu et al.,2002),以抵抗由食物誘導(dǎo)的肥胖和糖尿?。╖hou et al.,2003)。【本研究切入點(diǎn)】CIDEc基因作為一種與脂肪代謝有關(guān)的基因,在脂質(zhì)貯積、脂滴形成及脂肪分解方面發(fā)揮關(guān)鍵作用,目前在人類、小鼠和豬體內(nèi)已有較多報(bào)道(李艷華,2008;Barneda et al.,2015;Langhi and Baldán,2015;Zhou et al.,2015),但鮮見針對(duì)隆林山羊CIDEc基因的相關(guān)研究?!緮M解決的關(guān)鍵問題】以隆林山羊?yàn)檠芯繉?duì)象,克隆CIDEc基因并對(duì)其編碼區(qū)(CDS)進(jìn)行序列分析及蛋白理化性質(zhì)分析等,采用實(shí)時(shí)熒光定量PCR檢測(cè)CIDEc基因在不同品種山羊不同組織器官中的表達(dá)差異,為揭示CIDEc基因?qū)ι窖蛑敬x的調(diào)控機(jī)制提供理論依據(jù)。

      1 材料與方法

      1. 1 試驗(yàn)材料

      試驗(yàn)動(dòng)物為相同飼養(yǎng)條件下健康、生長(zhǎng)良好的6月齡隆林山羊和努比亞山羊各3頭,均由廣西大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院教學(xué)實(shí)習(xí)基地提供。放血宰殺后迅速采集山羊的背最長(zhǎng)肌、心臟、肝臟、脾臟、腎臟、腹脂和皮下脂肪等7種組織樣品,迅速置于液氮中,稍后轉(zhuǎn)移至-80 ℃冰箱保存?zhèn)溆谩remix Taq DNA聚合酶、pMD18-T載體、反轉(zhuǎn)錄試劑盒、定量試劑盒及大腸桿菌Trans5α感受態(tài)細(xì)胞購(gòu)自TaKaRa公司;DS5000 DNA Marker、乙醇、氯仿、異丙醇、Solution 1、RNA提取劑TRIzol及膠回收試劑盒購(gòu)自生工生物工程(上海)股份有限公司;瓊脂糖購(gòu)自法國(guó)Biowest公司。

      1. 2 試驗(yàn)方法

      1. 2. 1 引物設(shè)計(jì)與合成 根據(jù)NCBI已公布的山羊CIDEc基因序列(XM_018038446.1),利用Oligo 7設(shè)計(jì)特異性引物(表1),即PCR引物和實(shí)時(shí)熒光定量PCR引物。委托生工生物工程(上海)股份有限公司合成。

      1. 2. 2 CIDEc基因克隆 采用TRIzol法提取隆林山羊背最長(zhǎng)肌、心臟、肝臟、脾臟、腎臟、腹脂和皮下脂肪及努比亞山羊腹脂和皮下脂肪的總RNA,經(jīng)紫外分光光度計(jì)測(cè)定其濃度和質(zhì)量合格后,反轉(zhuǎn)錄合成cDNA。以反轉(zhuǎn)錄合成的cDNA為模板,利用引物CIDEc-F和CIDEc-R擴(kuò)增隆林山羊CIDEc基因序列。PCR反應(yīng)體系10.0 μL:2×Taq Master Mix 5.0 μL,上、下游引物各0.3 μL,cDNA模板0.5 μL,RNase-free H2O 3.9 μL。擴(kuò)增程序:95 ℃預(yù)變性3 min;95 ℃ 15 s,56 ℃ 30 s,72 ℃ 30 s,進(jìn)行32個(gè)循環(huán);72 ℃延伸10 min。以1.0%瓊脂糖凝膠電泳檢測(cè)PCR擴(kuò)增產(chǎn)物,膠回收試劑盒回收目的條帶,然后將純化后的PCR擴(kuò)增產(chǎn)物連接到pMD18-T載體上,連接體系10.0 μL(Solution 1 5.0 μL,PCR擴(kuò)增產(chǎn)物4.0 μL,pMD18-T載體1.0 μL)。4 ℃連接過夜后轉(zhuǎn)化Trans5α感受態(tài)細(xì)胞,挑取單克隆菌落培養(yǎng),篩選出陽性菌液送至生工生物工程(上海)股份有限公司進(jìn)行測(cè)序分析。

      1. 2. 3 實(shí)時(shí)熒光定量PCR檢測(cè)CIDEc基因組織表達(dá)譜 采用實(shí)時(shí)熒光定量PCR檢測(cè)CIDEc基因在隆林山羊7種組織和努比亞山羊2種組織中的表達(dá)情況,以TRIzol法提取組織RNA反轉(zhuǎn)錄合成的cDNA為模板,GAPDH為內(nèi)參基因,使用CIDEc-F1和CIDEc-R1進(jìn)行實(shí)時(shí)熒光定量PCR擴(kuò)增。每個(gè)組織樣品進(jìn)行3次重復(fù)。實(shí)時(shí)熒光定量PCR反應(yīng)體系10.0 μL:TB GreenTM Premix Ex TaqTM II 5.0 μL,上、下游引物各0.4 μL,cDNA模板2.5 μL,RNase free H2O 1.7 μL。擴(kuò)增程序:95 ℃預(yù)變性30 s;95 ℃ 5 s,60 ℃ 30 s,進(jìn)行39個(gè)循環(huán)。采用2-△△Ct法換算CIDEc基因的相對(duì)表達(dá)量,并以SPSS 18.0中的單因素方差分析(One-way ANOVA)進(jìn)行顯著性檢驗(yàn)。

      1. 2. 4 隆林山羊CIDEc基因生物信息學(xué)分析 使用DNAStar 7.1中的SeqMAN和EditSeq對(duì)隆林山羊CIDEc基因序列進(jìn)行拼接;運(yùn)用NCBI中的BLAST對(duì)隆林山羊CIDEc基因進(jìn)行同源性比對(duì);采用Meg-Align對(duì)隆林山羊CIDEc基因進(jìn)行物種同源性比對(duì)及構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,參考物種來自NCBI已公布的綿羊(Ovis aries:KM_199684.1)、人類(Homo sapiens:NM_001321043.1)、獼猴(Macaca mulatta:XM_028844410.1)、大鼠(Rattus norvegicus:NM_001170467.1)、小鼠(Mus musculus:NM_178373.4)和豬(Sus scrofa:NM_001112689)。使用ExPASy(http://web.expasy.org/protparam/)在線分析隆林山羊CIDEc基因編碼蛋白的氨基酸組成、分子質(zhì)量及理論等電點(diǎn)等;運(yùn)用TMHMM Server v.2.0(http://www.cbs.dtu.dk/services/TMHMM/)預(yù)測(cè)隆林山羊CIDEc蛋白質(zhì)跨膜區(qū);采用ProtScale(http://web.expasy.org/protscale/)預(yù)測(cè)隆林山羊CIDEc蛋白親/疏水性;并分別以NPS@SOPMA和SWISS-MODEL預(yù)測(cè)隆林山羊CIDEc蛋白的二、三級(jí)結(jié)構(gòu)。

      2 結(jié)果與分析

      2. 1 隆林山羊CIDEc基因擴(kuò)增結(jié)果

      PCR擴(kuò)增獲得的隆林山羊CIDEc基因經(jīng)1.0%瓊脂糖凝膠電泳檢測(cè),結(jié)果獲得單一、明亮清晰、大小約800 bp的特異性條帶(圖1),與預(yù)期結(jié)果相符。

      2. 2 隆林山羊CIDEc基因序列分析結(jié)果

      序列分析結(jié)果表明,隆林山羊CIDEc基因CDS序列全長(zhǎng)741 bp,共編碼244個(gè)氨基酸殘基。將該序列與NCBI已公布的山羊CIDEc基因序列(XM_018038446.1)進(jìn)行比對(duì)分析,結(jié)果顯示二者的相似性為99.9%,僅有1處堿基發(fā)生突變(圖2),即在第560位點(diǎn)G突變?yōu)門,屬于同義突變。

      2. 3 隆林山羊CIDEc基因同源性比對(duì)分析及系統(tǒng)發(fā)育進(jìn)化樹的構(gòu)建

      使用DNAStar 7.1中的MegAlign對(duì)隆林山羊CIDEc基因CDS序列與綿羊、人類、獼猴、大鼠、小鼠和豬的CIDEc基因CDS序列進(jìn)行同源性比對(duì)分析,結(jié)果顯示其相似性分別為99.0%、85.2%、85.8%、80.6%、79.6%和87.2%,即隆林山羊與綿羊的CIDEc基因CDS序列相似性最高,與小鼠的相似性較低。采用MegAlign構(gòu)建基于CIDEc基因CDS序列相似性的系統(tǒng)發(fā)育進(jìn)化樹,結(jié)果(圖3)也顯示隆林山羊與綿羊的親緣關(guān)系最近,與小鼠的親緣關(guān)系較遠(yuǎn)。

      2. 4 隆林山羊CIDEc蛋白生物信息學(xué)分析結(jié)果

      2. 4. 1 隆林山羊CIDEc蛋白理化性質(zhì)預(yù)測(cè)結(jié)果

      由ExPASy在線分析結(jié)果可知,隆林山羊CIDEc蛋白分子式為C1164H1797N323O339S11,分子量為26.09 kD,不穩(wěn)定系數(shù)為48.44,即該蛋白為不穩(wěn)定蛋白。在編碼的244個(gè)氨基酸殘基中,以甘氨酸(Gly)和亮氨酸(Leu)的含量最高,分別占14.8%;天冬氨酸(Asp)含量最低,僅占0.4%;序列N端殘基為絲氨酸(Ser)。隆林山羊CIDEc蛋白的脂肪指數(shù)為100.7,理論等電點(diǎn)(pI)為5.28,屬于酸性蛋白。

      2. 4. 2 隆林山羊CIDEc蛋白跨膜區(qū)預(yù)測(cè)結(jié)果 使用TMHMM Server v.2.0對(duì)隆林山羊CIDEc蛋白進(jìn)行跨膜區(qū)預(yù)測(cè),結(jié)果(圖4)顯示隆林山羊CIDEc蛋白不存在跨膜結(jié)構(gòu),屬于膜外蛋白。

      2. 4. 3 隆林山羊CIDEc蛋白親/疏水性預(yù)測(cè)結(jié)果

      采用ProtScale預(yù)測(cè)隆林山羊CIDEc蛋白親/疏水性,圖中的正值表示疏水性,負(fù)值表示親水性。由圖5可看出,其最大值為2.258,最小值為-2.013,綜合可知隆林山羊CIDEc蛋白的親水性較強(qiáng),屬于親水蛋白。

      2. 4. 4 隆林山羊CIDEc蛋白二、三級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果 使用NPS@SOPMA對(duì)隆林山羊CIDEc蛋白二級(jí)結(jié)構(gòu)進(jìn)行預(yù)測(cè),結(jié)果(圖6)顯示,在隆林山羊CIDEc蛋白二級(jí)結(jié)構(gòu)中,α-螺旋(藍(lán)色小寫字母h)占32.38%,β-轉(zhuǎn)角(綠色小寫字母t)占12.70%,延伸鏈(紅色小寫字母e)占13.11%,無規(guī)則卷曲(黃色小寫字母c)占41.80%。利用SWISS-MODEL對(duì)隆林山羊CIDEc蛋白三級(jí)結(jié)構(gòu)進(jìn)行預(yù)測(cè),其預(yù)測(cè)結(jié)果(圖7)暗示隆林山羊CIDEc蛋白存在某些功能。

      2. 5 山羊CIDEc基因組織表達(dá)差異分析結(jié)果

      2. 5. 1 隆林山羊CIDEc基因組織表達(dá)差異 實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果(圖8)表明,CIDEc基因在隆林山羊背最長(zhǎng)肌、心臟、肝臟、脾臟、腎臟、腹脂和皮下脂肪等組織中均有表達(dá),且在腹脂和皮下脂肪中高表達(dá),極顯著高于在其他器官組織的表達(dá)水平(P<0.01)。CIDEc基因在隆林山羊腹脂中的相對(duì)表達(dá)量最高,在皮下脂肪中的相對(duì)表達(dá)量次之,而在心臟、肝臟和背最長(zhǎng)肌中的表達(dá)量相對(duì)較低。

      2. 5. 2 隆林山羊和努比亞山羊脂肪中的CIDEc基因表達(dá)差異 對(duì)比隆林山羊與努比亞山羊CIDEc基因在脂肪(皮下脂肪和腹脂)中的相對(duì)表達(dá)量,結(jié)果(圖9)顯示CIDEc基因在努比亞山羊脂肪(皮下脂肪和腹脂)中的相對(duì)表達(dá)量顯著高于在隆林山羊脂肪中的相對(duì)表達(dá)量(P<0.05),即CIDEc基因在努比亞山羊皮下脂肪和腹脂中的表達(dá)量均高于隆林山羊。

      3 討論

      在正常情況下,脂肪在動(dòng)物機(jī)體內(nèi)均處于能量代謝穩(wěn)定狀態(tài),一旦這個(gè)狀態(tài)被打破,即有可能引起一系列代謝紊亂疾病,如糖高血壓、肥胖和脂防肝等(黃柳梅,2016)。CIDEc基因作為細(xì)胞凋亡因子,在3T3-L1細(xì)胞中已證實(shí)其過表達(dá)可誘導(dǎo)細(xì)胞凋亡(Keller et al.,2008;李煩繁,2010)。近年來,關(guān)于CIDE蛋白的研究主要集中在脂質(zhì)代謝功能方面(Xu et al.,2012),且越來越多研究證明CIDEc脂滴特異性蛋白高表達(dá)于脂肪組織,可促進(jìn)細(xì)胞內(nèi)脂肪積累(李紅強(qiáng)等,2017),在調(diào)控動(dòng)物體脂質(zhì)代謝平衡方面發(fā)揮重要作用(向梳瑕等,2010)。因此,了解CIDEc基因?qū)β×稚窖蛑炯?xì)胞分化和脂肪沉積的調(diào)控機(jī)制,對(duì)改善其羊肉品質(zhì)具有重要意義。本研究從隆林山羊組織中克隆出CIDEc基因CDS序列并進(jìn)行生物信息學(xué)分析,通過實(shí)時(shí)熒光定量PCR檢測(cè)CIDEc基因在隆林山羊和努比亞山羊脂肪組織(皮下脂肪和腹脂)中的表達(dá)差異,以期為進(jìn)一步研究CIDEc基因的功能及其在脂質(zhì)代謝中的作用提供理論依據(jù)。

      He等(2018)研究表明,在脂多糖(LPS)誘導(dǎo)的炎癥反應(yīng)中CIDEc可通過與腺苷5'-單磷酸激活蛋白激酶(AMPK)α亞基相互作用,直接下調(diào)AMPK活性,AMPK可抑制LPS誘導(dǎo)的核因子κB(NF-κB)活化,而產(chǎn)生抗炎作用。沉默CIDEc基因還可減少LPS誘導(dǎo)的上皮細(xì)胞凋亡,即CIDEc/AMPK信號(hào)通路在LPS誘導(dǎo)的炎癥和上皮細(xì)胞凋亡中發(fā)揮重要作用。Tan等(2016)研究發(fā)現(xiàn),腫瘤壞死因子α(TNF-α)可下調(diào)CIDEc基因表達(dá)水平以增強(qiáng)機(jī)體脂解作用。CIDEc廣泛參與動(dòng)物體內(nèi)信號(hào)傳導(dǎo)、生化反應(yīng)等,尤其更偏向于參與對(duì)機(jī)體脂肪的調(diào)控。本研究結(jié)果表明,山羊CIDEc基因在脂肪組織中的相對(duì)表達(dá)量極顯著高于在其他器官組織的相對(duì)表達(dá)量,與Wang等(2013)研究發(fā)現(xiàn)牛CIDEc基因在脂肪組織中高表達(dá)的結(jié)論一致。山羊CIDEc基因CDS序列與人類CIDEc基因CDS序列的相似性為85.2%,而與綿羊、獼猴、大鼠、小鼠和豬CIDEc基因CDS序列的相似性為99.0%、87.2%、79.6%、80.6%和85.8%,說明CIDEc基因在不同哺乳動(dòng)物中的保守性較高?;贑IDEc基因CDS序列相似性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹也顯示,隆林山羊與綿羊和豬等哺乳動(dòng)物及人類的遺傳距離相對(duì)較近,而與大鼠和小鼠相距較遠(yuǎn),與物種分類學(xué)保持較高的一致性。李紅強(qiáng)等(2020)研究發(fā)現(xiàn)CIDEc能招募其他調(diào)控蛋白而促進(jìn)脂滴的融合和生長(zhǎng)。本研究對(duì)隆林山羊CIDEc蛋白的二、三級(jí)結(jié)構(gòu)進(jìn)行預(yù)測(cè),結(jié)果發(fā)現(xiàn)CIDEc蛋白確實(shí)能形成二級(jí)結(jié)構(gòu)乃至更高的三級(jí)結(jié)構(gòu),預(yù)示著其存在重要的生理作用與功能。

      本研究還發(fā)現(xiàn),CIDEc基因在努比亞山羊脂肪組織(皮下脂肪和腹脂)中的相對(duì)表達(dá)量顯著高于其在隆林山羊中的相對(duì)表達(dá)量。曹艷紅(2019)的研究顯示,努比亞山羊和隆林山羊在生長(zhǎng)速度方面差異極顯著,2種羊肉中的不飽和脂肪酸含量也差異顯著,究其原因可能與努比亞山羊生長(zhǎng)速度快,而隆林山羊生長(zhǎng)速度較慢有關(guān)。此外,Liang等(2003)研究發(fā)現(xiàn)CIDEc作為FSP27的人類同源物,與FSP27有60%的相似性。FSP27僅在成熟脂肪細(xì)胞中表達(dá)(Danesch et al.,1992),與脂肪細(xì)胞分化密切相關(guān),但由于存在種屬間差異,因此有關(guān)山羊CIDEc基因?qū)χ鞠嚓P(guān)代謝機(jī)制的調(diào)控作用尚有待進(jìn)一步探究。

      4 結(jié)論

      CIDEc基因在隆林山羊各器官組織中均有表達(dá),以在脂肪組織中的表達(dá)量較豐富,且其在努比亞山羊脂肪組織(皮下脂肪和腹脂)中的表達(dá)水平顯著高于在隆林山羊中的表達(dá)水平??梢姡珻IDEc蛋白是脂肪代謝的重要調(diào)節(jié)劑,與動(dòng)物體內(nèi)脂質(zhì)存儲(chǔ)密切相關(guān)。

      參考文獻(xiàn):

      曹艷紅. 2019. 利用高通量測(cè)序解析隆林山羊與努比亞山羊的遺傳差異及表達(dá)差異[D]. 楊凌:西北農(nóng)林科技大學(xué). doi:10.27409/d.cnki.gxbnu.2019.000029. [Cao Y H. 2019. Analysis of genetic and expression differences between Longlin goat and Nubia goat by high throughput sequen-cing[D]. Yangling:Northwest A & F University.]

      高磊,許瑞霞,趙偉利,楊井泉,梁耀偉,劉守仁,沈敏,王新華. 2015. 綿羊誘導(dǎo)細(xì)胞凋亡的DFF45樣效應(yīng)因子c基因(CIDEC)克隆及其在持續(xù)饑餓條件下阿勒泰羊尾脂組織中的差異表達(dá)[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),23(2):227-235. doi:10.3969/j.issn.1674-7968.2015.02.010. [Gao L,Xu R X,Zhao W L,Yang J Q,Liang Y W,Liu S R,Shen M,Wang X H. 2015. Cloning of sheep cell death- inducing DFFA-like effector c(CIDEC) cDNA and its differential expression in tail fat tissue of Altay sheep (Ovis aries) in persistent starvation[J]. Journal of Agricultural Biotechnology,23(2):227-235.]

      黃柳梅. 2016. CIDEa和CIDEc基因在肉雞中的表達(dá)分析[D]. 南昌:江西農(nóng)業(yè)大學(xué). [Huang L M. 2016. Expression analysis of CIDEa and CIDEc genes in broiler chickens[D]. Nanchang:Jiangxi Agricultural University.]

      李煩繁. 2010. CIDEC在人脂肪細(xì)胞分化中的作用及其機(jī)制研究[D]. 西安:第四軍醫(yī)大學(xué). doi:10.7666/d.d219379. [Li F F. 2010. The role and possible mechanism of CIDEC in human adipocyte differentiation[D]. Xi?an:Fourth Mi-litary Medical University.]

      李紅強(qiáng),郭振清,杜金友. 2020. 誘導(dǎo)細(xì)胞凋亡DFF45樣效應(yīng)因子C的結(jié)構(gòu)與表達(dá)調(diào)控及其功能[J]. 中國(guó)生物化學(xué)與分子生物學(xué)報(bào),36(5):512-518. doi:10.13865/j.cnki.cjbmb.2020.02.1532. [Li H Q,Guo Z Q,Du J Y. 2020. Structural,expression and functional analysis of cell dea-thinducing DNA fragmentation factor 45-like effector C(CIDEC)[J]. Chinese Journal of Biochemistry and Molecular Biology,36(5):512-518.]

      李紅強(qiáng),李海玉,李婧實(shí),高飛飛,李鑫波,郭振清. 2017. CIDEC的亞細(xì)胞定位及其功能初步研究[J]. 核農(nóng)學(xué)報(bào),31(8):1494-1499. doi:10.11869/j.issn.100-8551.2017.08. 1494. [Li H Q,Li H Y,Li J S,Gong F F,Li X B,Guo Z Q. 2017. Localization and preliminarily functional analysis of CIDEC[J]. Journal of Nuclear Agricultural Scien-ces,31(8):1494-1499.]

      李艷華. 2008. 豬CIDE家族基因的克隆及功能研究[J]. 武漢:華中農(nóng)業(yè)大學(xué). doi:10.7666/d.y1394601. [Li Y H. 2008. Cloning and functional research of porcine CIDEs family[J]. Wuhan:Huazhong Agricultural University.]

      吳海. 2011. 隆林縣發(fā)展隆林山羊現(xiàn)狀及前景分析[J]. 廣西畜牧善醫(yī),27(4):235-236. doi:10.3969/j.issn.1002-5235. 2011.04.019. [Wu H. 2011. Analysis of present situation and prospect of developing Longlin goats in Longlin County[J]. Guangxi Journal of Animal Husbandry & Ve-terinary Medicine,27(4):235-236.]

      向梳瑕,潘志雄,李亮,王繼文. 2010. DNA斷裂因子相似蛋白(CIDE)家族在甘油三酯代謝中的作用[J]. 生命科學(xué),22(6):575-578. doi:10.13376/j.cbls/2010.06.004. [Xiang S X,Pan Z X,Li L,Wang J W. 2010. The role of cell-death-inducing DNA-fragmentation-factor-like effector (CIDE) family in TG metabolism[J]. Chinese Bulletin of Life Sciences,22(6):575-578.]

      Barneda D,Planas-Iglesias J,Gaspar M L,Mohammadyani D,Prasannan S,Dormann D,Han G S,Jesch S A,Carman G M,Kagan V,Parker M G,Ktistakis N T,Klein-Seetha-raman J,Dixon A M,Henry S A,Christian M. 2015. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix[J]. eLife,4:e07485. doi:10.7554/eLife.07485.

      Danesch U,Hoeck W,Ringold G M. 1992. Cloning and transcriptional regulation of a novel adipocyte-specific gene,F(xiàn)SP27. CAAT-enhancer-binding protein(C/EBP) and C/EBP-like proteins interact with sequences required for differentiation-dependent expression[J]. The Journal of Biological Chemistry,267(10):7185-7193.

      Goodman J M. 2008. The gregarious lipid droplet[J]. The Journal of Biological Chemistry,283(42):28005-28009. doi:10.1074/jbc.R800042200.

      He J,Zhang B,Gan H. 2018. CIDEC is involved in LPS-induced inflammation and apoptosis in renal tubular epithelial cells[J]. Inflammation,41(5):1912-1921. doi:10.1007/ s10753-018-0834-3.

      Inohara N,Koseki T,Chen S,Wu X,Nú?ez G. 1998. CIDE,a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor[J]. The EMBO Journal,17(9):2526-2533. doi:10.1093/emboj/17.9.2526.

      Keller P,Petrie J T,de Rose P,Gerin I,Wright W S,Chiang S H,Nielsen A R,F(xiàn)ischer C P,Pedersen B K,MacDougald O A. 2008. Fat-specific protein 27 regulates storage of triacylglycerol[J]. The Journal of Biological Chemistry,283(21):14355-14365. doi:10.1074/jbc.M708323200.

      Langhi C,Arias N,Rajamoorthi A,Basta J,Lee R G,Baldán ?. 2017. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance[J]. Journal of Lipid Research,58(1):81-91. doi:10.1194/jlr.M069799.

      Langhi C,Baldán A. 2015. CIDEC/FSP27 is regulated by pero-xisome proliferator-activated receptor alpha and plays a critical role in fasting- and diet-induced hepatosteatosis[J]. Hepatology,61(4):1227-1238. doi:10.1002/hep. 27607.

      Li J Z,Ye J,Xue B F,Qi J Z,Zhang J,Zhou Z H,Li Q,Wen Z L,Li P. 2007. Cideb regulates diet-induced obesity,li-ver steatosis,and insulin sensitivity by controlling lipogenesis and fatty acid oxidation[J]. Diabetes,56(10):2523-2532. doi:10.2337/db07-0040.

      Li Y H,Lei T,Chen X D,Xia T,Peng Y,Long Q Q,Zhang J,F(xiàn)eng S Q,Zhou L,Yang Z Q. 2009. Molecular cloning,chromosomal location and expression pattern of porcine CIDEa and CIDEc[J]. Molecular Biology Report,36(3):575-582. doi:10.1007/s11033-008-9216-5.

      Liang L,Zhao M J,Xu Z H,Yokoyama K K,Li T. 2003. Molecular cloning and characterization of CIDE-3,a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family[J]. The Biochemical Journal,370(1):195-203. doi:10.1042/BJ20020656.

      Liangpunsakul S,Gao B. 2016. Alcohol and fat promote stea-tohepatitis:A critical role for fat-specific protein 27/CIDEC[J]. Journal of Investigative Medicine,64(6):1078-1081. doi: 10.1136/jim-2016-000204.

      Nishino N,Tamori Y,Tateya S,Kawaguchi T,Shibakusa T,Mizunoya W,Inoue K,Kitazawa R,Kitazawa S,Matsuki Y,Hiramatsu R,Masubuchi S,Omachi A,Kimura K,Saito M,Amo T,Ohta S,Yamaguchi T,Osumi T,Cheng J L,F(xiàn)ujimoto T,Nakao H,Nakao K,Aiba A,Okamura H,F(xiàn)ushiki T,Kasuga M. 2008. Fsp27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets[J]. The Journal of Clinical Investigation,118(8):2808-2821. doi:10.1172/JCI34090.

      Puri V,Czech M P. 2008. Lipid droplets:FSP27 knockout enhances their sizzle[J]. The Journal of Clinical Investigation,118(8):2693-2696. doi:10.1172/JCI36554.

      Qian H,Chen Y,Nian Z,Su L,Yu H Y,Chen F J,Zhang X Q,Xu W Y,Zhou L K,Liu J M,Yu J H,Yu L X,Gao Y,Zhang H C,Zhang H H,Zhao S M,Yu L,Xiao R P,Bao Y Q,Hou S C,Li P P,Li J D,Deng H T,Jia W P,Li P. 2017. HDAC6-mediated acetylation of lipid droplet-bin-ding protein CIDEC regulates fat-induced lipid storage[J]. The Journal of Clinical Investigation,127(4):1353-1369. doi:10.1172/JCI85963.

      Tan X R,Cao Z Z,Li M,Xu E,Wang J J,Xiao Y F. 2016. TNF-α downregulates CIDEC via MEK/ERK pathway in human adipocytes[J]. Obesity(Silver Spring),24(5):1070-1080. doi:10.1002/oby.21436.

      Tanaka N,Takahashi S,Matsubara T,Jiang C,Sakamoto W,Chanturiya T,Teng R,Gavrilova O,Gonzalez F J. 2015. Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice[J]. The Journal of Biological Chemistry,290(5):3092-3105. doi:10.1074/jbc.M114.605980.

      Toh S Y,Gong J Y,Du G L,Li J Z,Yang S Q,Ye J,Yao H L,Zhang Y X,Xue B F,Li Q,Yang H Y,Wen Z L,Li P. 2008. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice[J]. PLoS One,3(8):e2890. doi:10.1371/journal.pone.0002890.

      Wang J,Cao X K,Pan H,Hua L S,Yang M J,Lei C Z,Lan X Y,Chen H. 2013. Cell death-inducing DFFA-like effector c(CIDEC/Fsp27) gene:Molecular cloning,sequence characterization,tissue distribution and polymorphisms in Chinese cattles[J]. Molecular Biololoy Reports,40(12):6765-6774. doi:10.1007/s11033-013-2793-y.

      Wu X L,Shi Q S,Liu X C,Peng Y L,Jiang J,Yang S L,Xiao B N. 2002. A search for chromosome 13 QTL in a complex pig family[J]. Acta Genetics Sinica,29(1):1-6.

      Xu L,Zhou L K,Li P. 2012. CIDE proteins and lipid metabolism[J]. Arteriosclerosis Thrombosis & Vascular Biology,32(5):1094-1098.

      Xu W,Wu L,Yu M,Chen F J,Arshad M,Xia X Y,Ren H,Yu J H,Xu L,Xu D J,Li J Z,Li P,Zhou L K. 2016. Differential roles of cell death-inducing DNA fragmentation factor-α-like effector(CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes[J]. The Journal of Biological Chemistry,291(9):4282-4293. doi:10.1074/jbc.M115.701094.

      Zhou L K,Park S Y,Xu L,Xia X Y,Ye J,Su L,Jeong K H,Hur J H,Oh H,Tamori Y,Zingaretti C M,Cinti S,Argente J,Yu M,Wu L Z,Ju S H,Guan F F,Yang H Y,Choi C S,Savage D B,Li P. 2015. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice[J]. Nature Communications,6:5949. doi:10.1038/ncomms6949.

      Zhou Z H,Toh Toh S,Chen Z M,Guo K,Ng C P,Ponniah S,Lin S C,Hong W J,Li P. 2003. Cidea-deficient mice have lean phenotype and are resistant to obesity[J]. Nature Genetics,35(1):49-56. doi:10.1038/ng1225.

      (責(zé)任編輯 蘭宗寶)

      猜你喜歡
      生物信息學(xué)分析克隆
      克隆狼
      浙江:誕生首批體細(xì)胞克隆豬
      侏羅紀(jì)世界 當(dāng)克隆遇到恐龍
      斑節(jié)對(duì)蝦金屬硫蛋白全基因DNA克隆及生物學(xué)信息分析
      雷公藤貝殼杉烯酸氧化酶基因的全長(zhǎng)cDNA克隆與表達(dá)分析
      西瓜食酸菌CusB蛋白的生物信息學(xué)分析
      羊種布氏桿菌3型Omp25基因序列及其表達(dá)蛋白生物信息學(xué)分析
      抗BP5-KLH多克隆抗體的制備及鑒定
      西藏牦牛NGB基因克隆及生物信息學(xué)分析
      屬于“我們”
      合江县| 太湖县| 玉树县| 乐山市| 宁国市| 交口县| 五指山市| 泸定县| 绥棱县| 叶城县| 镇康县| 上高县| 屯门区| 华安县| 广安市| 丹凤县| 尼木县| 湖州市| 济源市| 襄城县| 化德县| 鹤庆县| 探索| 广宁县| 浮山县| 晴隆县| 临猗县| 兴化市| 新野县| 札达县| 涞源县| 信宜市| 柯坪县| 甘孜| 崇文区| 宝清县| 浦江县| 松江区| 遂川县| 肃南| 华阴市|