高麗楓 李秀麗 張雪輝 王晉
摘 要:槲皮素是一種在蔬菜、水果、茶葉等廣泛存在的黃酮類多酚化合物,具有抗氧化、抗炎、免疫調(diào)節(jié)、肝臟保護(hù)等多種藥物活性以及抗腫瘤作用。肝細(xì)胞癌是一種嚴(yán)重危害生命健康的常見惡性腫瘤,在我國的病死率在消化系統(tǒng)惡性腫瘤中排第二位。大量報道證明槲皮素可以通過抑制腫瘤細(xì)胞生長、抑制腫瘤細(xì)胞侵襲轉(zhuǎn)移、增加化療藥的抗癌作用以及改善肝功能等方面對肝細(xì)胞癌發(fā)揮治療作用。本文對近年來國內(nèi)外有關(guān)槲皮素抗肝細(xì)胞癌作用機(jī)制的研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:槲皮素;肝細(xì)胞癌;細(xì)胞凋亡;脂質(zhì)代謝
中圖分類號:R282.17 ?文獻(xiàn)標(biāo)識碼:A ?文章編號:1673-260X(2021)06-0065-06
槲皮素是一種廣泛存在于蔬菜、水果、茶葉中的黃酮類多酚化合物[1],有廣泛的藥物活性,如抗氧化[2]、抗炎[3]、免疫調(diào)節(jié)[4]、肝保護(hù)作用和抑制肝纖維化[5],改善脂代謝等功能[6,7]。近年來,槲皮素的抗腫瘤功能[8,9]逐漸引起重視。有大量研究表明,槲皮素在胃癌[10]、食管癌[11]、肝癌[12]、結(jié)直腸癌[13]、胰腺癌[14]、卵巢癌[15]及乳腺癌[16]等多種腫瘤治療中發(fā)揮顯著的抗癌活性。
肝細(xì)胞癌(hepatocellular carcinoma, HCC)是一種常見的惡性腫瘤,我國的病死率在消化系統(tǒng)惡性腫瘤中排第二位。目前HCC的病因主要有以乙型肝炎病毒(HBV)和丙型肝炎病毒(HCV)感染為主的慢性肝炎、非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)、過度飲酒等[17]。在我國及部分東南亞地區(qū),HCC的主要原因為HBV及HCV病毒性肝炎,而西方發(fā)達(dá)國家則以酒精性肝硬化和NAFLD為主[18]。隨著肝炎病毒疫苗的普及接種和抗病毒藥物的出現(xiàn),HBV和HCV得到一定的控制,預(yù)計在不久的將來NAFLD將成為HCC的最主要病因[19]。槲皮素可以通過多種機(jī)制發(fā)揮抗肝癌作用,本文就槲皮素抗HCC作用機(jī)制方面的研究進(jìn)展進(jìn)行綜述。
1 抑制腫瘤細(xì)胞生長
1.1 細(xì)胞周期阻滯
抗腫瘤要解決的最為重要的目標(biāo)即抑制腫瘤細(xì)胞生長增殖,正常細(xì)胞的增殖依賴于細(xì)胞周期有條不紊地進(jìn)行,進(jìn)入細(xì)胞周期的有絲分裂受到促進(jìn)或抑制生長信號的嚴(yán)格控制,這些信號則是細(xì)胞不會無限增殖和分裂的重要保障[20]。在真核細(xì)胞中,細(xì)胞周期蛋白(cyclins)和細(xì)胞周期蛋白依賴性激酶(CDKs)是負(fù)責(zé)調(diào)控細(xì)胞周期的必要因子,而G1/S期和G2/M期則是細(xì)胞周期的兩個關(guān)鍵調(diào)控點[21]。JIN ZHOU等[22]采用流式細(xì)胞術(shù)觀察不同槲皮素濃度對HepG2細(xì)胞周期分布的影響,發(fā)現(xiàn)槲皮素能通過抑制cyclin D1的表達(dá)誘導(dǎo)肝癌細(xì)胞HepG2發(fā)生G1期阻滯從而抑制細(xì)胞增殖,并通過體內(nèi)動物實驗進(jìn)行了深入的驗證[23]。槲皮素還能通過上調(diào)p53及p21的表達(dá),下調(diào)Cyclin D1、CDK2和CDK7的表達(dá)來發(fā)揮G2/M期阻滯,并通過促進(jìn)活性氧(ROS)的合成而加速細(xì)胞凋亡及死亡[24]。Bishayee K[25]等稱槲皮素以納米顆粒的形式傳遞,誘導(dǎo)ROS的產(chǎn)生和p53的丟失,在亞G期阻滯細(xì)胞周期,通過線粒體途徑誘導(dǎo)肝癌細(xì)胞凋亡。
1.2 調(diào)控腫瘤相關(guān)因子及通路
細(xì)胞凋亡由多種因子進(jìn)行調(diào)控,機(jī)制復(fù)雜。其中抗凋亡蛋白與促凋亡蛋白的比例是細(xì)胞是否發(fā)生凋亡的重要因素之一。Bcl-2具有抗氧化活性并對鈣離子跨膜流動有抑制作用,Bax則是一個具有對抗Bcl-2蛋白和促進(jìn)凋亡作用的因子,Bcl-2/Bax比值影響細(xì)胞凋亡,二者呈負(fù)相關(guān)[26]。研究發(fā)現(xiàn),槲皮素能通過降低Bcl-2/Bax比值從而誘發(fā)線粒體凋亡[27]。MCL-1是Bcl-2蛋白家族成員之一,研究表明腫瘤細(xì)胞中MCL-1過表達(dá),而通過下調(diào)MCL-1表達(dá)水平,從而抑制腫瘤細(xì)胞增殖[28]。張紅萍等[29]檢測給予槲皮素后γδT細(xì)胞對Huh-7細(xì)胞的殺傷毒性,發(fā)現(xiàn)槲皮素可以通過降低肝癌中MCL-1蛋白表達(dá)從而促進(jìn)γδT細(xì)胞介導(dǎo)的線粒體途徑的凋亡。PI3K/AKT信號通路是參與細(xì)胞凋亡重要通路之一,PI3K/AKT信號通路受多種因素調(diào)節(jié),其負(fù)反饋主要由PTEN和SHIP2調(diào)節(jié),后兩者的活化可使PIP3去磷酸化降解從而阻斷AKT及下游效應(yīng)分子的活化[30]。孫佳等發(fā)現(xiàn)經(jīng)槲皮素處理48小時后的肝癌細(xì)胞SMMC-7721的PTEN水平增多,PIP3水平下降,進(jìn)而促進(jìn)細(xì)胞凋亡[31]。此外,有報道稱槲皮素在抗肝癌的過程中,會導(dǎo)致miR-125表達(dá)下降,而其下調(diào)繼而導(dǎo)致了p53上調(diào),促進(jìn)腫瘤細(xì)胞凋亡[32]。
2 抑制腫瘤轉(zhuǎn)移
1.1 抑制癌細(xì)胞侵襲轉(zhuǎn)移
肝癌進(jìn)展快及療效差的主要原因之一是極易發(fā)生肝內(nèi)、肝外轉(zhuǎn)移,而細(xì)胞發(fā)生上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transition, EMT)是轉(zhuǎn)移發(fā)生的重要機(jī)制之一,內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)又是介導(dǎo)EMT的重要因素[33,34]。李絲絲等[35]對衣霉素加槲皮素聯(lián)合及單衣霉素給藥后的GRP78、Snail、Vimentin mR-NA和蛋白表達(dá)量檢測發(fā)現(xiàn),聯(lián)合給藥組均明顯低于衣霉素組,E-cadherin明顯高于衣霉素組,從基因和蛋白水平證實了槲皮素可抑制衣霉素誘導(dǎo)的ERS及其介導(dǎo)的EMT。
基質(zhì)金屬蛋白酶(matrix metalloproteinase, MMPs)是與腫瘤轉(zhuǎn)移密切相關(guān)的一大家族。因其需要鈣離子、鋅離子等金屬離子作為輔助因子而得名。MMP-2和MMP-9是MMPs家族成員,二者均與多種腫瘤的遷移、侵襲及轉(zhuǎn)移相關(guān)[36]。Jun Lu等[37]發(fā)現(xiàn)槲皮素可通過調(diào)控PI3K/AKT通路下調(diào)MMP-2和MMP-9D的表達(dá),進(jìn)而抑制HCC細(xì)胞系HCCLM3的遷移和侵襲能力。劉鋒等[38]借助一種具有高轉(zhuǎn)移侵襲傾向的肝癌細(xì)胞系HCCLM6,研究發(fā)現(xiàn)槲皮素可明顯抑制其增殖和侵襲能力。陳鵬[39]等將HCCLM6細(xì)胞接種至裸鼠構(gòu)建肝癌切除術(shù)后轉(zhuǎn)移的動物模型,槲皮素給藥后觀察發(fā)現(xiàn)槲皮素能抑制肝癌術(shù)后發(fā)生肺部轉(zhuǎn)移。
1.2 抗血管生成
在HCC發(fā)生轉(zhuǎn)移的過程中,新生血管生成發(fā)揮了極其重要的作用。作用于血管內(nèi)皮細(xì)胞的血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF),能通過增加血管通透性,從而使血漿蛋白外滲并與其他蛋白形成纖維網(wǎng)格,最終誘導(dǎo)新生血管生成,加速腫瘤生長,促進(jìn)轉(zhuǎn)移發(fā)生[40]。韋艷等[41]發(fā)現(xiàn)在缺氧環(huán)境中槲皮素可以降低肝癌細(xì)胞VEGF的表達(dá),從而抑制腫瘤細(xì)胞侵襲轉(zhuǎn)移。HBx是HBV4個開放讀碼框中x編碼的一種病毒多功能蛋白,研究發(fā)現(xiàn)HBx在肝癌形成過程中參與肝癌血管生成[42],可能通過多種復(fù)雜的細(xì)胞信號轉(zhuǎn)導(dǎo)途徑參與細(xì)胞凋亡、細(xì)胞周期等,與HCC發(fā)生及轉(zhuǎn)移有著密切關(guān)聯(lián)[43]。而通過槲皮素體外干預(yù),過表達(dá)HBx的肝癌細(xì)胞侵襲遷移及增殖能力明顯受到抑制[44]。
3 化療增敏作用
HCC的治療目前尚無有效方式,手術(shù)之外以化療為主。目前臨床上使用的化療藥均具有不同程度的毒副作用,并且患者在接受一段時間的治療后會對藥物產(chǎn)生耐藥性。研究發(fā)現(xiàn),槲皮素可以作為化療增敏劑通過多種機(jī)制促進(jìn)多種化療藥物的抗肝細(xì)胞癌效應(yīng)。
腫瘤細(xì)胞的多藥耐藥(multidrug resistance, MDR)是導(dǎo)致治療失敗的重要因素。MDR指腫瘤對某一藥物產(chǎn)生耐藥性后,逐漸對其他抗腫瘤藥物產(chǎn)生交叉耐藥,即便這些藥物結(jié)構(gòu)、作用靶點以及機(jī)制均不相同[45]。韋艷等[46]發(fā)現(xiàn)槲皮素可下調(diào)耐藥細(xì)胞中MDR1、MRP、Hras等基因的表達(dá),從而逆轉(zhuǎn)肝癌細(xì)胞的多藥耐藥性。Wei Dai等[47]發(fā)現(xiàn)槲皮素可以明顯抑制腫瘤的增長和5-氟尿嘧啶治療的有效性;Bahman, A. A.等[48]對肝癌細(xì)胞株Hep3b和Hepg2給予分子靶向藥索拉非尼與槲皮素聯(lián)合使用對比單獨(dú)用藥治療,觀察細(xì)胞增殖、細(xì)胞周期、凋亡和與細(xì)胞周期和凋亡相關(guān)蛋白表達(dá)情況后,發(fā)現(xiàn)索拉非尼和槲皮素(120μM)連用明顯降低了索拉非尼的IC50。Guanyu Wang等[49]發(fā)現(xiàn)槲皮素在保護(hù)正常肝細(xì)胞的同時也選擇性致敏阿霉素(DOX)誘導(dǎo)肝癌細(xì)胞毒性,槲皮素通過bcl-xl/bax介導(dǎo)的線粒體通路增強(qiáng)DOX介導(dǎo)的肝癌細(xì)胞凋亡,降低DOX處理小鼠血清丙氨酸氨基轉(zhuǎn)移酶和天門冬氨酸氨基轉(zhuǎn)移酶水平,且槲皮素和DOX聯(lián)合治療可顯著降低小鼠肝癌移植瘤的生長。此外,槲皮素還逆轉(zhuǎn)了DOX誘導(dǎo)的小鼠肝臟病理變化。Hai Zou等[50]發(fā)現(xiàn)槲皮素可以通過抑制溶瘤腺病毒ZD55-TRAIL誘導(dǎo)的NF-κB激活而促進(jìn)ZD55-TRAIL對肝癌細(xì)胞的生長抑制和促凋亡作用,槲皮素和ZD55-TRAIL聯(lián)合用藥明顯抑制荷瘤小鼠的腫瘤生長。
4 調(diào)節(jié)肝臟功能
4.1 改善脂質(zhì)代謝
研究表明,肝細(xì)胞癌的發(fā)生發(fā)展與脂質(zhì)代謝紊亂有著密不可分的關(guān)系[51]。肝臟是重要的脂質(zhì)代謝器官,肝細(xì)胞癌一般伴隨著肝功能的受損,而肝功能損傷勢必影響脂質(zhì)代謝的調(diào)節(jié)。而對脂質(zhì)代謝的改善也從一定程度上改善了HCC的肝臟功能,提高病人的生活質(zhì)量。槲皮素具有調(diào)節(jié)脂肪的吸收、抑制脂肪消化及代謝酶活性,從而發(fā)揮改善肝臟功能作用。David Porrasa[52]等發(fā)現(xiàn)飲食中加入槲皮素可以降低附睪脂肪的積累和血脂。G.V. Gnoni[53]發(fā)現(xiàn)槲皮素可使肝細(xì)胞脂肪酸合成受到抑制,而且在新合成的脂肪酸中,棕櫚酸的生成大大減少,這說明新合成脂肪酸的酶促步驟受到了影響。槲皮素還可以通過抑制脂肪合成相關(guān)基因SREBP-1和FAS的基因表達(dá)從而改善胰島素抵抗和肝臟脂質(zhì)堆積[54]。Satyakumar Vidyashankar[55]等在HepG2培養(yǎng)基中加入油酸(OA)24小時發(fā)現(xiàn)加入槲皮素后肝脂肪變性相關(guān)抗氧化酶包括超氧化物歧化酶、過氧化氫酶和谷胱甘肽過氧化物酶活性分別增加1.68、2.19和1.71倍,而丙氨酸氨基轉(zhuǎn)移酶(ALAT)活性被槲皮素顯著降低,從而改善OA誘導(dǎo)的肝脂肪變性。
4.2 抗炎作用
腫瘤炎性微環(huán)境在肝癌發(fā)生發(fā)展中也發(fā)揮了極其重要的作用,炎癥相關(guān)信號通路、細(xì)胞因子、趨化因子影響著肝癌細(xì)胞的增殖、遷移和轉(zhuǎn)移[56]。Wang W等[57]研究發(fā)現(xiàn)槲皮素可以明顯抑制細(xì)胞氧化應(yīng)激的調(diào)節(jié)因子硫氧還蛋白相互作用蛋白(TXNIP),TXNIP與類節(jié)點受體3(NLRP3)炎癥小體的激活、炎癥和脂質(zhì)代謝有關(guān),槲皮素可以通過靶向TXNIP降低高血糖條件下肝臟炎癥和脂質(zhì)積累。Shu Liu等[58]研究發(fā)現(xiàn)槲皮素可顯著降低血清丙氨酸氨基轉(zhuǎn)移酶、天冬氨酸氨基轉(zhuǎn)移酶、堿性磷酸酶、乳酸脫氫酶和總膽汁酸水平,并抑制氧化應(yīng)激生物標(biāo)記丙二醛、過氧化氫和8-羥基-2-脫氧鳥苷,減少促炎細(xì)胞因子和白細(xì)胞介素6的水平、環(huán)氧化酶-2和c反應(yīng)蛋白的數(shù)量。這些結(jié)果結(jié)合肝臟組織病理學(xué)研究表明,槲皮素通過減輕氧化應(yīng)激、減輕炎癥和抑制肝細(xì)胞凋亡等機(jī)制,對肝損傷具有潛在的保護(hù)作用。
5 結(jié)論與展望
肝癌發(fā)病率逐年攀升,又是一種高死亡率的癌癥,嚴(yán)重威脅人類健康。而肝臟作為一種藥物代謝器官,多數(shù)抗癌藥物的毒副作用在治療的同時給肝癌病人帶來巨大的痛苦。因此,從植物來源的天然化合物中尋找一種既能對癌細(xì)胞有殺傷作用,又能保護(hù)正常細(xì)胞不受影響的藥物,將會是廣大肝癌病人的福音。槲皮素是天然黃酮類活性分子,具有廣泛的藥物活性,如抗氧化、抗炎、免疫調(diào)節(jié)、肝保護(hù)作用和抑制肝纖維化等功能,對腫瘤細(xì)胞有抑制增殖及侵襲轉(zhuǎn)移的作用,又能通過聯(lián)合用藥,增加化療藥物的抗腫瘤作用及逆轉(zhuǎn)多藥耐藥,在抗癌治療方面具有廣闊的前景。然而槲皮素作用于肝癌的分子和細(xì)胞機(jī)制,還有待于更深入的研究和探索。
參考文獻(xiàn):
〔1〕Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schafer B, Hirsch-Ernst KI, et al. Safety Aspects of the Use of Quercetin as a Dietary Supplement[J]. Molecular nutrition & food research,2018,62(01):1700447-1700461.
〔2〕Fuentes J, Atala E, Pastene E, Carrasco-Pozo C, Speisky H. Quercetin Oxidation Paradoxically Enhances its Antioxidant and Cytoprotective Properties[J]. Journal of agricultural and food chemistry,2017,65(50):11002-11010.
〔3〕Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Watanabe K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis[J]. Drug discovery today,2016,21(04):632-639.
〔4〕Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, Inflammation and Immunity[J]. Nutrients, 2016,8(03):167.
〔5〕Lin SY, Wang YY, Chen WY, Chuang YH, Pan PH, Chen CJ. Beneficial effect of quercetin on cholestatic liver injury[J]. J Nutr Biochem,2014,25(11):1183-1195.
〔6〕Seiva FR, Chuffa LG, Braga CP, Amorim JP, Fernandes AA. Quercetin ameliorates glucose and lipid metabolism and improves antioxidant status in postnatally monosodium glutamate-induced metabolic alterations[J]. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2012,50(10):3556-3561.
〔7〕Aguirre L, Portillo MP, Hijona E, Bujanda L. Effects of resveratrol and other polyphenols in hepatic steatosis[J]. World journal of gastroenterology. 2014,20(23):7366-7380.
〔8〕Kundur S, Prayag A, Selvakumar P, Nguyen H, McKee L, Cruz C, et al. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines[J]. Journal of cellular physiology,2018.
〔9〕Ren KW, Li YH, Wu G, Ren JZ, Lu HB, Li ZM, et al. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells[J]. Int J Oncol, 2017,50(04):1299-1311.
〔10〕Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, et al. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells[J]. Environ Toxicol,2018,33(11):1168-1181.
〔11〕Lin Y, Yngve A, Lagergren J, Lu Y. A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of oesophageal cancer[J]. Br J Nutr,2014,112(12):2002-2009.
〔12〕Chang YF, Hsu YC, Hung HF, Lee HJ, Lui WY, Chi CW, et al. Quercetin induces oxidative stress and potentiates the apoptotic action of 2-methoxyestradiol in human hepatoma cells[J]. Nutr Cancer,2009,61(05):735-745.
〔13〕Xavier CP, Lima CF, Rohde M, Pereira-Wilson C. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation[J]. Cancer Chemother Pharmacol. 2011,68(06):1449-1457.
〔14〕Nwaeburu CC, Bauer N, Zhao Z, Abukiwan A, Gladkich J, Benner A, et al. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl[J]. Oncotarget.,2016,7(36):58367-58380.
〔15〕Yang Z, Liu Y, Liao J, Gong C, Sun C, Zhou X, et al. Quercetin induces endoplasmic reticulum stress to enhance cDDP cytotoxicity in ovarian cancer: involvement of STAT3 signaling[J]. FEBS J. 2015,282(06):1111-1125.
〔16〕Li H, Chen C. Quercetin Has Antimetastatic Effects on Gastric Cancer Cells via the Interruption of uPA/uPAR Function by Modulating NF-kappab, PKC-delta, ERK1/2, and AMPKalpha[J]. Integr Cancer Ther,2018,17(02):511-523.
〔17〕Kovacovicova K, Skolnaja M, Heinmaa M, Mistrik M, Pata P, Pata I, et al. Senolytic Cocktail Dasatinib+Quercetin (D+Q) Does Not Enhance the Efficacy of Senescence-Inducing Chemotherapy in Liver Cancer[J]. Front Oncol,2018,8:459.
〔18〕Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018,15(10):599-616.
〔19〕Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2013,10(11):656-665.
〔20〕Li Y, Quan J, Chen F, Pan X, Zhuang C, Xiong T, et al. MiR-31-5p acts as a tumor suppressor in renal cell carcinoma by targeting cyclin-dependent kinase 1 (CDK1)[J]. Biomed Pharmacother, 2019,111:517-526.
〔21〕Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nat Rev Cancer. 2009,9(03):153-166.
〔22〕Zhou J, Li LU, Fang LI, Xie H, Yao W, Zhou X, et al. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells[J]. Oncol Lett. 2016,12(01):516-522.
〔23〕Zhou J, Fang L, Liao J, Li L, Yao W, Xiong Z, et al. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo[J]. PLoS One, 2017,12(03):e0172838.
〔24〕Li Y, Duan S, Jia H, Bai C, Zhang L, Wang Z. Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells[J]. Acta Biochim Biophys Sin (Shanghai), 2014,46(06):460-470.
〔25〕Bishayee K, Khuda-Bukhsh AR, Huh SO. PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells[J]. Mol Cells,2015,38(06):518-527.
〔26〕Lu HF, Chie YJ, Yang MS, Lee CS, Fu JJ, Yang JS, et al. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax- and Bcl-2-triggered mitochondrial pathway[J]. Int J Oncol, 2010,36(06):1477-1484.
〔27〕盧創(chuàng)新,周云,薛飛,等.槲皮素抑制肝癌HepG2細(xì)胞的增殖及促凋亡機(jī)制的研究[J].中華實用診斷與治療雜志,2012,26(08):760-762.
〔28〕Mattoo AR, Zhang J, Espinoza LA, Jessup JM. Inhibition of NANOG/NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetic[J]s. Clin Cancer Res, 2014,20(21):5446-55.
〔29〕陳行輝,李昌芳.血脂水平與癌癥的相關(guān)性研究進(jìn)展[J].醫(yī)學(xué)綜述,2018,24(18):3608-3612.
〔30〕Sharrard RM, Maitland NJ. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines[J]. Cell Signal, 2007,19(01):129-138.
〔31〕孫佳,趙冬耕,王明艷,等.槲皮素對SMMC-7721肝癌細(xì)胞PI3K/AKT信號通路影響的探討[J].中國實驗方劑學(xué)雜志,2012,18(18):223-226.
〔32〕樓國華,劉艷寧,陳智.editors. miR-125調(diào)控的p53表達(dá)上調(diào)參與了槲皮素抗肝癌作用[C].中華醫(yī)學(xué)會第十六次全國病毒性肝炎及肝病學(xué)術(shù)會議,中國云南昆明,2013.
〔33〕Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients[J]. EMBO Mol Med,2014,6(10):1279-1293.
〔34〕Bambang IF, Xu S, Zhou J, Salto-Tellez M, Sethi SK, Zhang D. Overexpression of endoplasmic reticulum protein 29 regulates mesenchymal-epithelial transition and suppresses xenograft tumor growth of invasive breast cancer cells[J]. Lab Invest.,2009,89(11):1229-1242.
〔35〕李絲絲,彭瓊,甘惠中,袁媛,戴夫.槲皮素在衣霉素誘導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)肝癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化中的作用[J].胃腸病學(xué)和肝病學(xué)雜志,2017,26(04):386-389.
〔36〕Fiorentini C, Bodei S, Bedussi F, Fragni M, Bonini SA, Simeone C, et al. GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity[J]. Exp Cell Res, 2014,323(01):100-111.
〔37〕Lu J, Wang Z, Li S, Xin Q, Yuan M, Li H, et al. Quercetin Inhibits the Migration and Invasion of HCCLM3 Cells by Suppressing the Expression of p-Akt1, Matrix Metalloproteinase (MMP) MMP-2, and MMP-9[J]. Med Sci Monit, 2018,24:2583-2589.
〔38〕劉鋒,李剛,胡明道,王志萍,阿永俊.槲皮素對人肝癌高轉(zhuǎn)移細(xì)胞生長及侵襲能力的影響[J].昆明醫(yī)科大學(xué)學(xué)報,2014,35(05):29-32.
〔39〕陳鵬,陽錫軍,趙方,李春滿,劉鋒,阿永俊.槲皮素對裸鼠肝癌切除術(shù)后腫瘤肺轉(zhuǎn)移的影響[J].現(xiàn)代腫瘤醫(yī)學(xué),2018,26(03):344-346.
〔40〕Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J]. J Clin Oncol, 2005,23(05):1011-27.
〔41〕韋艷,陸艷玲,王榮榮,馮勝進(jìn),等.槲皮素對缺氧人肝癌細(xì)胞HepG2增殖及HIF-1α、VEGF的影響[J].武警醫(yī)學(xué),2018,29(02):134-137.
〔42〕Wang C, Yang W, Yan HX, Luo T, Zhang J, Tang L, et al. Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine-treated HBx transgenic mice[J]. Hepatology,2012,55(01):108-120.
〔43〕Tang RX, Kong FY, Fan BF, Liu XM, You HJ, Zhang P, et al. HBx activates FasL and mediates HepG2 cell apoptosis through MLK3-MKK7-JNKs signal module[J]. World J Gastroenterol, 2012,18(13):1485-1495.
〔44〕成碧萍,蘇杰,姚楊,白跳艷,徐銳.槲皮素干預(yù)下HBx基因?qū)θ烁伟┘?xì)胞侵襲、遷移、增殖的影響[J].山西醫(yī)科大學(xué)學(xué)報,2013,44(11):840-843.
〔45〕Petraccia L, Onori P, Sferra R, Lucchetta MC, Liberati G, Grassi M, et al. [MDR (multidrug resistance) in hepatocarcinoma clinical-therapeutic implications[J]. Clin Ter, 2003,154(05):325-335.
〔46〕韋艷,張海英,梁鋼.槲皮素逆轉(zhuǎn)人肝癌細(xì)胞MDR作用的研究[J].天津醫(yī)藥,2012,40(10):1022-1025.
〔47〕Dai W, Gao Q, Qiu J, Yuan J, Wu G, Shen G. Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma[J]. Tumour Biol. 2016,37(05):6307-6313.
〔48〕Bahman AA, Abaza MSI, Khoushiash SI, Al-Attiyah RJ. Sequencedependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action[J]. Int J Mol Med, 2018,42(03):1695-1715.
〔49〕Wang G, Zhang J, Liu L, Sharma S, Dong Q. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl[J]. PLoS One, 2012,7(12):e51764.
〔50〕Zou H, Zheng YF, Ge W, Wang SB, Mou XZ. Synergistic Anti-tumour Effects of Quercetin and Oncolytic Adenovirus expressing TRAIL in Human Hepatocellular Carcinoma[J]. Sci Rep, 2018,8(01):2182.
〔51〕Kawaguchi T, Ohkawa K, Imanaka K, Tamai C, Kawada N, Ikezawa K, et al. Lipiodol accumulation and transarterial chemoembolization efficacy for HCC patients[J]. Hepatogastroenterology,2012,59(113):219-223.
〔52〕Porras D, Nistal E, Martinez-Florez S, Pisonero-Vaquero S, Olcoz JL, Jover R, et al. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation[J]. Free radical biology & medicine, 2017,102:188-202.
〔53〕Gnoni GV, Paglialonga G, Siculella L. Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells[J]. European journal of clinical investigation, 2009,39(09):761-768.
〔54〕Li X, Wang R, Zhou N, Wang X, Liu Q, Bai Y, et al. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model[J]. Biomed Rep,2013,1(01):71-76.
〔55〕Vidyashankar S, Sandeep Varma R, Patki PS. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells[J]. Toxicology in vitro : an international journal published in association with BIBRA, 2013,27(2):945-953.
〔56〕Takeda H, Takai A, Inuzuka T, Marusawa H. Genetic basis of hepatitis virus-associated hepatocellular carcinoma: linkage between infection, inflammation, and tumorigenesis[J]. J Gastroenterol, 2017,52(01):26-38.
〔57〕Wang W, Wang C, Ding XQ, Pan Y, Gu TT, Wang MX, et al. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats[J]. Br J Pharmacol,2013,169(06):1352-1371.
〔58〕Liu S, Tian L, Chai G, Wen B, Wang B. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLRP3 inflammasome activation[J]. Food Funct,2018,9(08):4184-4193.