孟夏瑩, 杜 君, 劉 健
(電磁散射重點(diǎn)實(shí)驗(yàn)室,上海 200438)
高超聲速飛行器是指利用稀薄大氣特點(diǎn)以馬赫數(shù)為5以上的速度在(20~100)km 的臨近空間進(jìn)行高超聲速機(jī)動(dòng)飛行的飛行器。高超聲速飛行器飛行速度快、機(jī)動(dòng)能力強(qiáng),是用于突破下一代一體化防空系統(tǒng)的革命性裝備,對(duì)國家戰(zhàn)略安全起著至關(guān)重要的作用。高超聲速飛行器包括無動(dòng)力的高超聲速助推滑翔飛行器和有動(dòng)力的高超聲速巡航飛行器。其中,高超聲速助推滑翔飛行器能夠無動(dòng)力滑翔數(shù)千至一萬余公里,并具有較強(qiáng)的側(cè)向機(jī)動(dòng)和突防能力,能攜帶核彈頭或常規(guī)彈頭實(shí)施遠(yuǎn)距離快速打擊。這類飛行器在助推段由火箭運(yùn)載攜帶至最高點(diǎn),飛行器與助推火箭分離,通過改變姿態(tài)和控制變量再入大氣層,然后進(jìn)入無動(dòng)力滑翔階段。高超聲速滑翔飛行器在滑翔階段具有較高的升阻比,由于受到重力、阻力以及升力等作用,其運(yùn)動(dòng)軌跡往往呈現(xiàn)出“跳躍”特征。因此,研究高超聲速滑翔飛行器的運(yùn)動(dòng)彈道具有重要意義,能夠?yàn)楦叱曀賹?dǎo)彈軌跡規(guī)劃與制導(dǎo)系統(tǒng)設(shè)計(jì)等任務(wù)提供參考。
高超聲速滑翔飛行器滑翔段的運(yùn)動(dòng)彈道分為平衡滑翔和跳躍滑翔兩種,高超聲速飛行器的運(yùn)動(dòng)狀態(tài)和控制量決定著其飛行時(shí)受到的氣動(dòng)力。當(dāng)縱向上的氣動(dòng)升力、重力和離心力的合力為0時(shí),高超聲速飛行器處于平衡滑翔狀態(tài);當(dāng)這一合力不為0 時(shí),高超聲速飛行器處于跳躍滑翔狀態(tài)[1]。CHEN 等[2]對(duì)飛行器的平衡滑翔軌跡進(jìn)行了深入分析,推導(dǎo)了速度、航跡傾角和飛行高度等狀態(tài)量之間的解析關(guān)系;李廣華等[3]區(qū)分了平衡滑翔和跳躍滑翔,基于平衡滑翔狀態(tài)仿真分析了跳躍軌跡的運(yùn)動(dòng)參數(shù)變化規(guī)律。然而,上述文獻(xiàn)均未探討高超聲速滑翔飛行器滑翔初始運(yùn)動(dòng)狀態(tài)的改變對(duì)滑翔階段彈道的具體影響。
本文采用理論推導(dǎo)和數(shù)值仿真的方法對(duì)跳躍滑翔這種典型的飛行彈道模式進(jìn)行分析,建立高超聲速滑翔飛行器滑翔段的運(yùn)動(dòng)彈道模型,分析飛行器滑翔的不同初始運(yùn)動(dòng)狀態(tài)對(duì)滑翔階段彈道的影響。
高超聲速飛行器彈道建模是分析其運(yùn)動(dòng)特性的前提和基礎(chǔ)。高超聲速飛行器開始滑翔時(shí),由于高升阻比,飛行器所受氣動(dòng)力和地球重力分別約為科氏慣性力和地球自轉(zhuǎn)引起的慣性離心力的100倍和1 000倍,因此可以忽略慣性離心力,假設(shè)地球?yàn)閳A球不旋轉(zhuǎn)模型[4]。
根據(jù)任務(wù)的需要或描述方便,可基于合適的參考坐標(biāo)系建立飛行器運(yùn)動(dòng)方程。通常情況下,在高超聲速飛行器滑翔過程中,其運(yùn)動(dòng)方程主要在半速度坐標(biāo)系中進(jìn)行描述。半速度坐標(biāo)系如圖1所示。原點(diǎn)o為飛行器質(zhì)心,x軸與飛行器速度方向一致,y軸位于射擊平面內(nèi),且垂直于x軸,指向上方,z軸與x軸、y軸形成右手坐標(biāo)系[5]。
圖1 半速度坐標(biāo)系示意圖
在半速度坐標(biāo)系下,以時(shí)間為自變量的高超聲速飛行器縱平面質(zhì)心運(yùn)動(dòng)方程為[6]
式中:v為飛行器運(yùn)動(dòng)速度;D為飛行器飛行過程中受到的氣動(dòng)阻力;m為飛行器質(zhì)量;g為重力加 速 度,取g=9.8 m/s2;θ為 速 度 傾 角;σ為 控 制量傾側(cè)角;L為飛行器飛行過程中受到的氣動(dòng)升力;R為地球半徑,取R=9.937 8×106m;h為飛行器距離地球表面的高度;α為攻角;φ為緯度;ψ為 速 度 方 位 角;λ為 經(jīng) 度。
飛行器飛行過程中受到的氣動(dòng)升力L和氣動(dòng)阻力D的計(jì)算公式為
式中:ρ為大氣密度;C L和C D分別為升力系數(shù)和阻力系數(shù),通常為攻角和馬赫數(shù)的函數(shù);S為參考面積。
攻角是一個(gè)很重要的控制參數(shù),雖不顯含在高超聲速滑翔飛行器的運(yùn)動(dòng)方程中,但它是影響氣動(dòng)升力和阻力系數(shù)的關(guān)鍵參數(shù),進(jìn)而影響著飛行器受力和飛行器氣動(dòng)加速度。在攻角的設(shè)計(jì)過程中,主要考慮熱防護(hù)和最大射程兩個(gè)方面。再入大氣層時(shí),熱流密度是飛行器的主要安全制約因素。采用較大攻角飛行可以提高第一次變軌下降的最低點(diǎn)高度,從而減小飛行器熱流密度峰值。最大射程制約著飛行器所能打擊的最遠(yuǎn)距離。一般升阻比越大,射程越遠(yuǎn),所以當(dāng)飛行速度下降到熱流密度不再是主要安全制約因素時(shí),高超聲速滑翔飛行器可以采用最大升阻比對(duì)應(yīng)的攻角進(jìn)行設(shè)計(jì)。攻角模型為速度的分段線性函數(shù)[7],表達(dá)式為
式中:αmax和αmax(K)分別為最大飛行攻角和最大升阻比對(duì)應(yīng)攻角,其中K=L/D為升阻比;v1和v2為攻角曲線的分段速度。
以CAV-H(common aero vehicle-H)高超聲速滑翔飛行器為例,開展高超聲速飛行器氣動(dòng)和運(yùn)動(dòng)參數(shù)仿真分析。
為開展不同彈道下高超聲速飛行器運(yùn)動(dòng)特性分析,還需要獲得飛行器氣動(dòng)參數(shù)數(shù)據(jù)。飛行器氣動(dòng)參數(shù)為飛行馬赫數(shù)和攻角的函數(shù)。表1 和表2分別為CAV-H 高超聲速滑翔飛行器的氣動(dòng)阻力系數(shù)表和氣動(dòng)升力系數(shù)表[8]?;诰€性插值方法,可以得到不同馬赫數(shù)和不同攻角下高超聲速滑翔飛行器的升力系數(shù)和阻力系數(shù)。
表1 阻力系數(shù)表
表2 升力系數(shù)表
(1)仿真條件
CAV-H 高超聲速滑翔飛行器的參考面積為0.35 m2,質(zhì)量為907kg[8]。假設(shè)滑翔初始運(yùn)動(dòng)狀態(tài)速度傾角為0°,速度方位角為0°,傾側(cè)角為10°。為分析不同滑翔初始高度和初始速度對(duì)飛行器跳躍高度和滑翔速度的影響,采用兩組彈道進(jìn)行仿真,仿真計(jì)算初始條件如表3所示。第一組工況是以相同初始速度、不同初始高度作為滑翔初始條件;第二組工況是以相同初始高度、不同初始速度作為滑翔初始條件。
表3 飛行器滑翔彈道仿真初始條件
在給定滑翔初始條件后,根據(jù)式(1)~式(3)對(duì)飛行器在半速度坐標(biāo)系下的運(yùn)動(dòng)狀態(tài)進(jìn)行迭代計(jì)算,即可得到對(duì)應(yīng)仿真結(jié)果。
(2)初始高度對(duì)彈道的影響
圖2為第一組工況下,以相同初始速度、不同初始高度作為滑翔初始條件,CAV-H 飛行器在1 000 s內(nèi)滑翔的三維軌跡仿真結(jié)果。
圖2 第一組工況CAV-H 飛行器滑翔三維軌跡圖
從圖中空間軌跡可以看出:按彈道1~彈道4滑翔,高超聲速滑翔飛行器滑翔高度呈周期性變化,滑翔初始高度越高,飛行器跳躍幅度越大;由于大氣阻力作用,飛行器滑翔過程中能量越來越低,彈道跳躍幅度越來越小,逐漸趨于平緩。從圖中彈下點(diǎn)軌跡可以看出,彈道1~彈道4的彈下點(diǎn)軌跡基本重合,滑翔初始高度對(duì)彈下點(diǎn)軌跡無影響。
圖3為第一組工況下滑翔速度隨時(shí)間變化的仿真曲線。
圖3 第一組工況CAV-H 飛行器滑翔馬赫數(shù)隨時(shí)間變化曲線
可以看出,高超聲速飛行器滑翔馬赫數(shù)呈周期性變化,滑翔初始高度越高,飛行器速度跳躍幅度越大。當(dāng)初始高度為60 km 時(shí),速度隨時(shí)間趨向于線性變化。
(3)初始速度對(duì)彈道的影響
圖4為第二組工況下,以相同初始高度、不同初始速度作為滑翔初始條件,CAV-H 飛行器在1 000 s內(nèi)的滑翔三維軌跡仿真結(jié)果。
圖4 第二組工況CAV-H 飛行器滑翔三維軌跡圖
從圖中空間軌跡可以看出,按彈道5~彈道8滑翔,高超聲速飛行器滑翔高度呈周期性變化,滑翔初始馬赫數(shù)越高,飛行器跳躍高度幅度越小。從圖中彈道5~彈道8的彈下點(diǎn)軌跡可以看出,滑翔初始馬赫數(shù)越高,射程越大。可見,如果要維持臨近空間的較長射程,滑翔初始速度的高低至關(guān)重要。
圖5為第二組仿真工況下滑翔速度隨時(shí)間變化的仿真曲線。
圖5 第二組工況CAV-H 飛行器滑翔馬赫數(shù)隨時(shí)間變化曲線
可以看出,高超聲速飛行器滑翔馬赫數(shù)呈周期性變化,滑翔初始馬赫數(shù)越高,滑翔速度跳躍幅度越小?;? 000 s后,彈道5~彈道8速度分別衰減了15.5%,19.2%,33.9%,45.9%??梢?滑翔初始馬赫數(shù)越高,滑翔速度衰減越慢。
本文對(duì)高超聲速飛行器跳躍滑翔彈道進(jìn)行了建模,仿真分析了不同初始條件對(duì)彈道的影響。高超聲速飛行器滑翔的初始高度對(duì)射程基本無影響,但會(huì)明顯影響飛行器滑翔高度和速度的跳躍幅度。高超聲速飛行器滑翔初始高度越高,滑翔高度和速度的跳躍幅度越大;滑翔的初始速度越大,射程越長,滑翔速度衰減越慢。通過滑翔初始速度和高度對(duì)飛行器飛行三維軌跡影響的仿真分析,提高了對(duì)高超聲速滑翔飛行器滑翔段運(yùn)動(dòng)特性的認(rèn)識(shí),為彈道預(yù)報(bào)、軌跡規(guī)劃與制導(dǎo)系統(tǒng)設(shè)計(jì)等任務(wù)提供了指導(dǎo)。