凌霄 陳玉歡 王盼盼 李春曉 李學(xué)林
中圖分類(lèi)號(hào) R284;R285 文獻(xiàn)標(biāo)志碼 A 文章編號(hào) 1001-0408(2021)18-2287-07
DOI 10.6039/j.issn.1001-0408.2021.18.18
摘 要 目的:綜述代謝酶和轉(zhuǎn)運(yùn)體介導(dǎo)的藥食同源中藥中黃酮類(lèi)成分對(duì)其他藥物的影響,為臨床合理用藥提供參考。方法:介紹藥食同源中藥中常見(jiàn)的黃酮類(lèi)成分,總結(jié)代謝酶和轉(zhuǎn)運(yùn)體對(duì)藥物在人體內(nèi)吸收和代謝過(guò)程中的作用,并對(duì)代謝酶和轉(zhuǎn)運(yùn)體介導(dǎo)的藥食同源中藥中常見(jiàn)黃酮類(lèi)成分對(duì)其他藥物的影響進(jìn)行綜述。結(jié)果與結(jié)論:藥食同源中藥中的槲皮素、山柰酚、木犀草素、蘆丁、甘草苷、柚皮苷、染料木素等黃酮類(lèi)成分可以提高主要由細(xì)胞色素P450代謝和P-糖蛋白、乳腺癌耐藥相關(guān)蛋白轉(zhuǎn)運(yùn)的藥物(如小分子激酶抑制劑、抗腫瘤藥物、質(zhì)子泵抑制劑等)的藥-時(shí)曲線下面積和最大血藥濃度;槲皮素、山柰酚、芹菜素、柚皮素、染料木素等黃酮類(lèi)成分對(duì)葡萄糖醛酸轉(zhuǎn)移酶家族和有機(jī)陰離子轉(zhuǎn)運(yùn)體、有機(jī)陽(yáng)離子轉(zhuǎn)運(yùn)體具有一定的抑制作用,可以減少許多藥物類(lèi)底物如抗病毒藥物(如阿昔洛韋、阿德福韋)等的代謝,降低其清除率,提高其生物利用度。應(yīng)充分重視藥食同源中藥對(duì)代謝酶和轉(zhuǎn)運(yùn)體的影響,同時(shí)加強(qiáng)藥食同源中藥和其他藥物相互作用的體內(nèi)研究(尤其是臨床研究)及藥效學(xué)研究。
關(guān)鍵詞 藥食同源;黃酮類(lèi)成分;藥物相互作用;代謝酶;轉(zhuǎn)運(yùn)體
藥食同源是指在中醫(yī)藥學(xué)研究中,藥物與食物之間并無(wú)絕對(duì)的分界線,如唐初楊上善所撰《黃帝內(nèi)經(jīng)太素》一書(shū)中寫(xiě)道:“空腹食之為食物,患者食之為藥物”[1],就反映出了“藥食同源”的思想。藥食同源的中藥在日常生活中應(yīng)用廣泛,如決明子、百合、肉豆蔻、肉桂、羅漢果等,既可藥用,也可食用。近年來(lái),有關(guān)藥動(dòng)學(xué)改變引起的藥物相互作用和不良反應(yīng)屢有報(bào)道[2]。藥物相互作用的靶點(diǎn)主要包括代謝酶和轉(zhuǎn)運(yùn)體,它們均為機(jī)體處置藥物的關(guān)鍵蛋白,且大部分藥物的體內(nèi)處置過(guò)程均需要它們的共同參與[2]。黃酮類(lèi)化合物對(duì)代謝酶和轉(zhuǎn)運(yùn)體有較強(qiáng)的調(diào)節(jié)作用[3],因此應(yīng)重視富含黃酮類(lèi)成分的藥食同源中藥對(duì)其他藥物藥動(dòng)學(xué)的潛在影響?;诖?,筆者從代謝酶和轉(zhuǎn)運(yùn)體角度,綜述了藥食同源中藥中黃酮類(lèi)成分對(duì)其他藥物的影響,以期從藥動(dòng)學(xué)角度為臨床合理使用藥食同源中藥提供參考。
1 藥食同源中藥中的黃酮類(lèi)成分
黃酮類(lèi)化合物在植物中廣泛存在,以芹菜素、木犀草素為代表的黃酮類(lèi)成分在藥食同源中藥中分布廣泛且含量較高[3](表1)。這些黃酮類(lèi)成分對(duì)于諸多代謝酶和轉(zhuǎn)運(yùn)體有不同程度的調(diào)控作用,需要關(guān)注這類(lèi)成分對(duì)同時(shí)服用的其他藥物體內(nèi)過(guò)程的影響。
2 代謝酶和轉(zhuǎn)運(yùn)體對(duì)藥物在人體內(nèi)吸收和代謝的影響
2.1 代謝酶
藥物在人體內(nèi)的代謝主要分為以氧化、還原及水解反應(yīng)為主的Ⅰ相代謝和以結(jié)合反應(yīng)為主的Ⅱ相代謝。細(xì)胞色素P450(CYPs)是參與藥物Ⅰ相代謝的主要酶系,目前已被證實(shí)人體中有十多個(gè)CYPs亞型酶參與了藥物代謝,其中CYP3A4、CYP2C19和CYP2C9對(duì)藥物代謝的影響較大[26]。Ⅱ相代謝的研究主要針對(duì)葡萄糖醛酸轉(zhuǎn)移酶(UGTs)和磺酸基轉(zhuǎn)移酶(SULTs)[26-27],二者的底物分布廣泛,包含了來(lái)自外源和內(nèi)源的一系列結(jié)構(gòu)不同的親脂分子,其中外源性底物包括藥物、環(huán)境毒素和飲食中消耗的生物活性化合物等[27-28]。藥食同源中藥中的黃酮類(lèi)成分可能通過(guò)調(diào)節(jié)CYPs、UGTs和SULTs而影響藥物的體內(nèi)代謝過(guò)程。
2.2 轉(zhuǎn)運(yùn)體
轉(zhuǎn)運(yùn)體按照轉(zhuǎn)運(yùn)方式被分為以P-糖蛋白(P-gp)、多藥耐藥相關(guān)蛋白(MRP)、乳腺癌耐藥相關(guān)蛋白(BCRP)為代表的原發(fā)性主動(dòng)轉(zhuǎn)運(yùn)型和以有機(jī)陰離子轉(zhuǎn)運(yùn)多肽(OATP)、有機(jī)陰離子轉(zhuǎn)運(yùn)體(OAT)、有機(jī)陽(yáng)離子轉(zhuǎn)運(yùn)體(OCT)為代表的繼發(fā)性主動(dòng)轉(zhuǎn)運(yùn)型[29]。其中,P-gp是三磷酸腺苷結(jié)合盒轉(zhuǎn)運(yùn)蛋白超家族中的一員,在肝、腎、胰腺等組織和血腦屏障中廣泛表達(dá),其底物包含大量結(jié)構(gòu)和功能不同的藥物,如質(zhì)子泵抑制劑、抗病毒藥物、血管緊張素Ⅱ受體拮抗劑、酪氨酸激酶抑制劑、大環(huán)內(nèi)酯類(lèi)抗菌藥物、免疫抑制劑、抗凝血藥物、抗癲癇藥物等均是P-gp的高敏感性底物[29]。P-gp可以將藥物從細(xì)胞內(nèi)排出,降低藥物在體內(nèi)的生物利用度,被認(rèn)為是多藥耐藥問(wèn)題的主要原因之一[29]。另外,MRP也是多藥耐藥的形成機(jī)制之一,在多種腫瘤中都有表達(dá),其主要參與細(xì)胞內(nèi)外多種復(fù)合物的轉(zhuǎn)運(yùn),調(diào)整細(xì)胞內(nèi)物質(zhì)的分布;其中MRP1和MRP2是人體內(nèi)表達(dá)水平較高的兩類(lèi)蛋白,也是對(duì)藥物相互作用影響較大的兩類(lèi)蛋白[29]。BCRP是從真核細(xì)胞中發(fā)現(xiàn)的一類(lèi)較為重要的多藥耐藥蛋白,抗病毒藥物、他汀類(lèi)藥物、酪氨酸激酶抑制劑和大環(huán)內(nèi)酯類(lèi)抗菌藥物均是BCRP的高敏感代表性底物,而B(niǎo)CRP的活性增強(qiáng)會(huì)直接導(dǎo)致這些藥物在人體內(nèi)的生物利用度下降[29]。OATP具有廣泛的底物特異性,許多藥物(如他汀類(lèi)藥物、血管緊張素轉(zhuǎn)換酶受體抑制劑、大環(huán)內(nèi)酯類(lèi)抗菌藥物和酪氨酸激酶抑制劑等)均是OATP的高親和力底物[30]。OAT對(duì)藥物(抗菌藥物、抗病毒藥物、利尿劑、非甾體抗炎藥等)、毒素(汞、馬兜鈴酸等)和營(yíng)養(yǎng)素(維生素、類(lèi)黃酮等)在體內(nèi)的轉(zhuǎn)運(yùn)過(guò)程有著較大的影響[31]。OCT主要負(fù)責(zé)轉(zhuǎn)運(yùn)親水性、低分子量的有機(jī)陽(yáng)離子,其典型底物有二甲雙胍、奧沙利鉑等,相應(yīng)抑制劑有奎寧、丙吡胺等[32]。OATP、OAT和OCT可以介導(dǎo)多種化合物、代謝物等的吸收,其活性的增強(qiáng)可以加速這些藥物底物的體內(nèi)清除過(guò)程,提升部分藥物的清除率,其中OATP和OAT對(duì)藥物相互作用的影響也是研究者重點(diǎn)關(guān)注的領(lǐng)域。
3 代謝酶和轉(zhuǎn)運(yùn)體介導(dǎo)的藥食同源中藥中常見(jiàn)的黃酮類(lèi)成分對(duì)其他藥物的影響
3.1 槲皮素
槲皮素可抑制大鼠體內(nèi)CYPs酶活性,減少阿霉素、溴隱亭、吡格列酮、依托泊苷、環(huán)孢素等藥物的代謝,提高這些藥物的生物利用度[33]。低濃度槲皮素可增強(qiáng)Caco-2細(xì)胞葡萄糖醛酸酶活性[34]。該成分也是人體肝臟中SULT1A1的有效抑制劑[35]。除代謝酶外,槲皮素對(duì)大部分轉(zhuǎn)運(yùn)蛋白均表現(xiàn)出較強(qiáng)的抑制作用。例如其可通過(guò)抑制P-gp的表達(dá)來(lái)增大P-gp底物(如長(zhǎng)春新堿、紫杉醇、阿霉素、奎尼丁、地高辛、環(huán)孢素等)的藥-時(shí)曲線下面積(AUC)[33];還可抑制其他耐藥轉(zhuǎn)運(yùn)蛋白(如BCRP、MRP等)的表達(dá),增加部分合用藥物(如磺胺吡啶等)的AUC和最大血藥濃度(cmax),抑制HEK293細(xì)胞中OATP1A2和OATP2B1的轉(zhuǎn)運(yùn)活性,從而降低此類(lèi)藥物的體內(nèi)清除率[33]。此外,其能以劑量依賴(lài)的方式降低抗逆轉(zhuǎn)錄病毒藥物阿德福韋介導(dǎo)的細(xì)胞毒性,表明其對(duì)OAT1有一定程度的抑制作用[36],在藥物聯(lián)用過(guò)程中應(yīng)加以注意。
3.2 芹菜素
芹菜素可抑制CYP3A4的活性,增加大鼠體內(nèi)小分子激酶抑制劑(如奈拉替尼、培米替尼等)和文拉法辛的AUC和cmax[37]。Caco-2細(xì)胞模型研究結(jié)果表明,芹菜素可誘導(dǎo)UGT1A1的表達(dá)[38]。除了對(duì)代謝酶的作用外,芹菜素還可以抑制P-gp和BCRP的表達(dá),減少抗腫瘤藥物(如紫杉醇、阿霉素)的外排[39-40];抑制OAT1活性,減少抗病毒藥物(如阿昔洛韋、阿德福韋)的代謝,從而提高這些藥物的AUC和cmax[36]。
3.3 山柰酚
山柰酚可以抑制大鼠體內(nèi)CYP3A4和P-gp的表達(dá),提高硝苯地平、氨氯地平、依托泊苷、他莫昔芬、咪達(dá)唑侖和奎尼丁的AUC和cmax[41-44]。在轉(zhuǎn)運(yùn)體方面,山柰酚可以抑制P-gp、BCRP的表達(dá),減少抗腫瘤藥物(如他莫昔芬、紫杉醇、依托泊苷、阿霉素、替莫唑胺、喜樹(shù)堿、拓?fù)涮婵档龋?、抗逆轉(zhuǎn)錄病毒藥物(如利托那韋、沙奎那韋、阿德福韋等)和鈣離子通道阻滯劑(如硝苯地平、氨氯地平等)的外排,提高這些藥物的AUC[45-47]。同時(shí),山柰酚還可以抑制OATP1B1、OATP1A2的表達(dá),從而減少非索非那定、阿托伐他汀和甲氨蝶呤等藥物的代謝,降低其清除率,提高其生物利用度[48-49]。
3.4 木犀草素
木犀草素可以抑制人肝微粒體中CYP3A4、CYP2C8、CYP2C9的活性,還可抑制HEK293細(xì)胞中OATP1B1的活性,從而減少甲氨蝶呤的代謝[49-50];大鼠實(shí)驗(yàn)研究也證實(shí),合用甲氨蝶呤和木犀草素可以增加甲氨蝶呤的AUC0-t[49,51]。
3.5 柚皮素
柚皮素可以抑制CYP1A2、CYP3A4的活性,減少咪達(dá)唑侖、雷沙吉蘭、辛伐他汀、紫杉醇在大鼠體內(nèi)的AUC和cmax[52-54]。除代謝酶外,柚皮素可通過(guò)抑制大鼠體內(nèi)P-gp的表達(dá)來(lái)減少非洛地平、雷沙吉蘭和阿霉素的外排,提高這些藥物的生物利用度[53,55-56]。
3.6 高良姜素
分子對(duì)接研究表明,高良姜素對(duì)CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4均表現(xiàn)出較強(qiáng)的親和性[57]。大鼠實(shí)驗(yàn)研究也證實(shí),高良姜素可以顯著降低CYP1A2和CYP2B3探針?biāo)幬铮ǚ悄俏鞫?、安非他酮)的AUC0-∞和cmax[57-58]。
3.7 楊梅素
體外研究表明,楊梅素是CYP2C9和CYP2D6的非競(jìng)爭(zhēng)性抑制劑,是CYP2B1的競(jìng)爭(zhēng)性抑制劑,也是CYP3A2、CYP2C11和CYP2D1的抑制劑[59]。大鼠體內(nèi)研究表明,楊梅素可抑制CYP2C9和CYP3A4的表達(dá),從而顯著降低非那西丁的AUC和cmax[60]。在轉(zhuǎn)運(yùn)體方面,楊梅素可抑制大鼠體內(nèi)P-gp的表達(dá),從而減少抗腫瘤藥物(如多西紫杉醇、阿霉素)的外排,增加藥物的AUC和cmax[61-62]。此外,楊梅素還可以逆轉(zhuǎn)體外細(xì)胞中MRP1和MRP2介導(dǎo)的長(zhǎng)春新堿耐藥性,從而增加長(zhǎng)春新堿的吸收[63]。
3.8 蘆丁
蘆丁可以通過(guò)抑制CYP3A4的活性來(lái)增加大鼠體內(nèi)環(huán)孢素的AUC和cmax[64]。除CYPs外,蘆丁對(duì)大部分藥物轉(zhuǎn)運(yùn)蛋白均有不同程度的調(diào)控作用。細(xì)胞研究表明,蘆丁可以下調(diào)P-gp的表達(dá),從而顯著降低阿霉素、紫杉醇、格列本脲、伊達(dá)比星的耐藥性[65-66]。此外,蘆丁可以抑制BCRP的活性,從而增加雙氯芬酸的生物利用度[67];抑制OATP1A2和OATP2B1的轉(zhuǎn)運(yùn)活性,從而減少其對(duì)非索非那定和他汀類(lèi)藥物的代謝[68-69]。
3.9 甘草苷
甘草苷對(duì)CYPs的影響尚未形成統(tǒng)一的結(jié)論。部分研究發(fā)現(xiàn),甘草苷可以抑制CYP1A1和CYP2C9的活性[70];但也有另外的研究發(fā)現(xiàn),甘草苷對(duì)CYPs具有一定的誘導(dǎo)作用[71-72]。除CYPs以外,甘草苷及其苷元對(duì)多種UGTs亞型酶(如UGT1A1、 UGT1A9等)介導(dǎo)的葡萄糖醛酸化反應(yīng)均有競(jìng)爭(zhēng)性抑制作用[73],這可能是甘草苷與藥物相互作用的機(jī)制之一。此外,甘草苷還可以上調(diào)Caco-2細(xì)胞中多種外排蛋白的表達(dá),可能加速藥物的外排,降低藥物的生物利用度[74]。
3.10 表兒茶素
表兒茶素可以抑制大鼠體內(nèi)CYP2C9和CYP3A4的表達(dá),從而提高諸多藥物(如對(duì)乙酰氨基酚、尼卡地平、維拉帕米、地爾硫 、辛伐他汀、非那西丁、紫杉醇等)的AUC和cmax[75]。此外,表兒茶素還可能通過(guò)抑制CYP3A4的活性來(lái)增加健康志愿者體內(nèi)丁螺環(huán)酮的AUC[75]。
3.11 染料木素、葛根素、大豆苷
染料木素、葛根素、大豆苷對(duì)主要的CYPs亞型酶(如CYP2B6、CYP2C9、CYP3A4、CYP1A1)具有顯著的抑制作用,從而減少非那西丁、安非他酮、奧美拉唑、紫杉醇、他林洛爾等藥物的代謝,并有可能增加這些藥物的血藥濃度[76-77]。體外細(xì)胞實(shí)驗(yàn)表明,染料木素對(duì)UGT2B7有較強(qiáng)的抑制作用[78];葛根素可以上調(diào)大鼠心臟成纖維細(xì)胞中UGT1A1的表達(dá)[79];大豆苷和染料木素對(duì)腫瘤細(xì)胞中P-gp和BCRP的活性均表現(xiàn)出較強(qiáng)的逆轉(zhuǎn)作用,可以抑制腫瘤細(xì)胞外排蛋白的表達(dá),有利于緩解抗腫瘤藥物的耐藥性[47,80]。
代謝酶、轉(zhuǎn)運(yùn)體介導(dǎo)的藥食同源中藥中常見(jiàn)黃酮類(lèi)成分對(duì)其他藥物的影響分別見(jiàn)表2、表3。
4 討論
本文對(duì)代謝酶和轉(zhuǎn)運(yùn)體介導(dǎo)的藥食同源中藥中常見(jiàn)的黃酮類(lèi)成分對(duì)其他藥物的影響進(jìn)行了綜述。結(jié)果表明,黃酮類(lèi)成分在藥食同源中藥中含量豐富;其中的槲皮素、山柰酚、木犀草素、蘆丁、甘草苷、柚皮苷、染料木素等黃酮類(lèi)成分可以提高主要由CYPs代謝和P-gp、BCRP、MRP轉(zhuǎn)運(yùn)的藥物(如小分子激酶抑制劑、抗腫瘤藥物、質(zhì)子泵抑制劑等)的AUC和cmax,槲皮素、山柰酚、芹菜素、柚皮素、染料木素等黃酮類(lèi)成分對(duì)UGTs家族和OAT、OATP具有一定的調(diào)控作用。這提示在使用抗腫瘤藥物、小分子激酶抑制劑、質(zhì)子泵抑制劑等藥物時(shí),可以適當(dāng)選擇一些安全性較高的藥食同源中藥配伍使用,以提高臨床療效;但另一方面,針對(duì)部分治療窗狹窄的藥物,應(yīng)盡量避免其與藥食同源中藥一起使用,以免使前述藥物的cmax超出安全范圍。
在進(jìn)行文獻(xiàn)研究的過(guò)程中,筆者發(fā)現(xiàn)藥食同源中藥與其他藥物相互作用的研究雖然已有較大的發(fā)展,但仍存在一些不足:(1)目前的藥物相互作用研究仍以動(dòng)物實(shí)驗(yàn)和體外實(shí)驗(yàn)為主,尚需加強(qiáng)體內(nèi)研究(尤其是臨床研究);(2)目前的研究大多以藥動(dòng)學(xué)為核心展開(kāi),缺乏將藥動(dòng)學(xué)與藥效學(xué)結(jié)合的研究;(3)中藥對(duì)轉(zhuǎn)運(yùn)體和代謝酶影響的研究眾多,但缺少轉(zhuǎn)運(yùn)體和代謝酶對(duì)中藥藥動(dòng)學(xué)影響的研究。這些不足之處是中藥與其他藥物相互作用研究未來(lái)需要努力的方向。
參考文獻(xiàn)
[ 1 ] 楊上善.黃帝內(nèi)經(jīng)太素[M].李云,點(diǎn)校.北京:學(xué)苑出版社,2007:9.
[ 2 ] 周燕,武新安,鄧毅.藥物轉(zhuǎn)運(yùn)體與代謝酶間的協(xié)作關(guān)系對(duì)腸肝藥物處置的影響[J].藥學(xué)學(xué)報(bào),2020,55(8):1762-1767.
[ 3 ] HOSTETLER G L,RALSTON R A,SCHWARTZ S J. Flavones:food sources,bioavailability,metabolism,and bioactivity[J]. Adv Nutr,2017,8(3):423-435.
[ 4 ] BAI L,LI X,HE L,et al. Antidiabetic potential of flavonoids from traditional Chinese medicine:a review[J]. Am J Chin Med,2019,47(5):933-957.
[ 5 ] 趙永艷,胡瀚文,彭騰,等.佛手的化學(xué)成分藥理作用及開(kāi)發(fā)應(yīng)用研究進(jìn)展[J].時(shí)珍國(guó)醫(yī)國(guó)藥,2018,29(11):2734- 2736.
[ 6 ] 張東,鄔國(guó)棟.沙棘黃酮的化學(xué)成分及藥理作用研究進(jìn)展[J].中國(guó)藥房,2019,30(9):1292-1296.
[ 7 ] 吳龍火,張劍.枳椇子的化學(xué)成分研究[J].時(shí)珍國(guó)醫(yī)國(guó)藥,2013,24(5):1028-1029.
[ 8 ] 尹偉,宋祖榮,劉金旗,等.香櫞化學(xué)成分研究[J].中藥材,2015,38(10):2091-2094.
[ 9 ] 劉均玉.橘皮的化學(xué)成分與黃酮類(lèi)化合物的提取、純化研究[D].福州:福建師范大學(xué),2009.
[10] SHAO Y,SUN Y,LI D,et al. Chrysanthemum indicum L.:a comprehensive review of its botany,phytochemistry and pharmacology[J]. Am J Chin Med,2020,48(4):871- 897.
[11] 徐凌玉,李振麟,蔡芷辰,等.薄荷化學(xué)成分的研究[J].中草藥,2013,44(20):2798-2802.
[12] 王艷慧.化橘紅的研究進(jìn)展[J].世界科學(xué)技術(shù)(中醫(yī)藥現(xiàn)代化),2017,19(6):1076-1082.
[13] MARTINEZ M,POIRRIER P,CHAMY R,et al. Taraxacum officinale and related species:an ethnopharmacolo- gical review and its potential as a commercial medicinal plant[J]. J Ethnopharmacol,2015,169:244-262.
[14] PASTORINO G,CORNARA L,SOARES S,et al. Liquorice(Glycyrrhiza glabra):a phytochemical and pharmacological review[J]. Phytother Res,2018,32(12):2323-2339.
[15] 劉磊磊,肖卓炳.野菊花的化學(xué)成分研究[J].中草藥,2018,49(22):5254-5258.
[16] 劉琳,程偉.槐花化學(xué)成分及現(xiàn)代藥理研究新進(jìn)展[J].中醫(yī)藥信息,2019,36(4):125-128.
[17] BASRI A M,TAHA H,AHAMAD N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation[J]. Pharmacogn Rev,2017,11(21):43-56.
[18] SOLEIMANI V,SAHEBKAR A,HOSSEINZADEH H. Turmeric (Curcuma longa) and its major constituent(cur- cumin) as nontoxic and safe substances:review[J]. Phytother Res,2018,32(6):985-995.
[19] 吳華東.山柰化學(xué)成分的研究[D].武漢:華中科技大學(xué),2016.
[20] 李昕,潘俊嫻,陳士國(guó),等.葛根化學(xué)成分及藥理作用研究進(jìn)展[J].中國(guó)食品學(xué)報(bào),2017,17(9):189-195.
[21] FU J,WANG Z,HUANG L,et al. Review of the botanical characteristics,phytochemistry,and pharmacology of? ?Astragalus membranaceus(Huangqi)[J]. Phytother Res,2014,28(9):1275-1283.
[22] 陳俏,劉曉月,石亞囡,等.赤小豆化學(xué)成分的研究[J].中成藥,2017,39(7):1419-1422.
[23] 袁珊琴,于能江,趙毅民,等.淡豆豉中的化學(xué)成分[J].中藥材,2008,31(8):1172-1174.
[24] 黃艷,鄭金燕,楊剛勁,等.苦丁茶冬青根的化學(xué)成分研究[J].中草藥,2015,46(16):2371-2376.
[25] 侯晉軍,韓利文,楊官娥,等.羅布麻葉化學(xué)成分和藥理活性研究進(jìn)展[J].中草藥,2006,37(10):1603-1605.
[26] MANIKANDAN P,NAGINI S. Cytochrome P450 structure,function and clinical significance:a review[J]. Curr Drug Targets,2018,19(1):38-54.
[27] MEECH R,HU D G,MCKINNON R A,et al. The UDP- glycosyltransferase(UGT) superfamily:new members,new functions,and novel paradigms[J]. Physiol Rev,2019,99(2):1153-1222.
[28] SUIKO M,KUROGI K,HASHIGUCHI T,et al. Updated perspectives on the cytosolic sulfotransferases(SULTs) and SULT-mediated sulfation[J]. Biosci Biotechnol Biochem,2017,81(1):63-72.
[29] FDA. Drug development and drug interactions:table substrates inhibitors and inducers[EB/OL].(2020-10-03)[2020- 12-14].https//www.fda.gov/drugs/drug-interactions-labe- ling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers.
[30] OSWALD S. Organic anion transporting polypeptide(OATP) transporter expression,localization and function in the human intestine[J]. Pharmacol Ther,2019,195:39-53.
[31] NIGAM S K,BUSH K T,MARTOVETSKY G,et al. The organic anion transporter(OAT) family:a systems bio-? ?logy perspective[J]. Physiol Rev,2015,95(1):83-123.
[32] KOPESELL H. Organic cation transporters in health and disease[J]. Pharmacol Rev,2020,72(1):253-319.
[33] MOHOS V,F(xiàn)LISZ?R-NY?L E,UNGV?RI O,et al. Inhibitory effects of quercetin and its main methyl,sulfate,and glucuronic acid conjugates on cytochrome P450 enzymes,and on OATP,BCRP and MRP2 transporters[J]. Nutrients,2020,12(8):2306.
[34] GALIJATOVIC A,WALLE U K,WALLE T. Induction of UDP-glucuronosyltransferase by the flavonoids chrysin and quercetin in Caco-2 cells[J]. Pharm Res,2000,17(1):21-26.
[35] PACIFICI G M. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals:a review of the literature[J]. Int J Clin Pharmacol Ther,2004,42(9):488-495.
[36] WU T,LI H,CHEN J,et al. Apigenin,a novel candidate involving herb-drug interaction(HDI),interacts with organic anion transporter 1(OAT1)[J]. Pharmacol Rep,2017,69(6):1254-1262.
[37] CHEN Y,JIA X,CHEN J,et al. The pharmacokinetics of raloxifene and its interaction with apigenin in rat[J]. Molecules,2010,15(11):8478-8487.
[38] SVEHL?KOV? V,WANG S,JAKUB?KOV? J,et al. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in Caco-2 cells[J]. Carcinogenesis,2004,25(9):1629-1637.
[39] KUMAR K K,PRIYANKA L,GNANANATH K,et al. Pharmacokinetic drug interactions between apigenin,rutin and paclitaxel mediated by P-glycoprotein in rats[J]. Eur J Drug Metab Pharmacokinet,2015,40(3):267-276.
[40] FAN X,BAI J,ZHAO S,et al. Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein(BCRP):from library screening to biological evaluation to structure-activity relationship[J]. Toxicol In Vitro,2019,61:104642.
[41] PARK J W,CHOI J S. Role of kaempferol to increase bioavailability and pharmacokinetics of nifedipine in rats[J]. Chin J Nat Med,2019,17(9):690-697.
[42] LI C,LI X,CHOI J S. Enhanced bioavailability of etoposide after oral or intravenous administration of etoposide with kaempferol in rats[J]. Arch Pharm Res,2009,32(1):133-138.
[43] PIAO Y,SHIN S C,CHOI J S. Effects of oral kaempferol on the pharmacokinetics of tamoxifen and one of its metabolites,4-hydroxytamoxifen,after oral administration of tamoxifen to rats[J]. Biopharm Drug Dispos,2008,29(4):245-249.
[44] HA H R,CHEN J,LEUENBERGER P M,et al. In vitro inhibition of midazolam and quinidine metabolism by flavonoids[J]. Eur J Clin Pharmacol,1995,48(5):367-371.
[45] PATEL J,BUDDHA B,DEY S,et al. In vitro interaction of the HIV protease inhibitor ritonavir with herbal consti- tuents:changes in P-gp and CYP3A4 activity[J]. Am J Ther,2004,11(4):262-277.
[46] LIMTRAKUL P,KHANTAMAT O,PINTHA K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin[J]. J Chemother,2005,17(1):86-95.
[47] IMAI Y,TSUKAHARA S,ASADA S,et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance[J]. Cancer Res,2004,64(12):4346-4352.
[48] MANDERY K,BUJOK K,SCHMIDT I,et al. Influence of the flavonoids apigenin,kaempferol,and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1[J]. Biochem Pharmacol,2010,80(11):1746-1753.
[49] FAN X,BAI J,HU M,et al. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects
[J]. Toxicology,2020,437:152445.
[50] QUINTIERI L,PALATINI P,NASSI A,et al. Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP3A4 and CYP3A5 enzymes[J]. Biochem Pharmacol,2008,75(6):1426-1437.
[51] AN G,WANG X,MORRIS M E. Flavonoids are inhibitors of human organic anion transporter 1(OAT1)-media- ted transport[J]. Drug Metab Dispos,2014,42(9):1357- 1366.
[52] LU W J,F(xiàn)ERLITO V,XU C,et al. Enantiomers of naringenin as pleiotropic,stereoselective inhibitors of cytochrome P450 isoforms[J]. Chirality,2011,23(10):891- 896.
[53] SANDEEP M S,SRIDHAR V,PUNEETH Y,et al. Enhanced oral bioavailability of felodipine by naringenin in Wistar rats and inhibition of P-glycoprotein in everted rat gut sacs in vitro[J]. Drug Dev Ind Pharm,2014,40(10):1371-1377.
[54] MOTAWI T K,TELEB Z A,EL-BOGHDADY N A,et al. Effect of simvastatin and naringenin coadministration on rat liver DNA fragmentation and cytochrome P450 activity:an in vivo and in vitro study[J]. J Physiol Biochem,2014,70(1):225-237.
[55] PINGILI R,VEMULAPALLI S,MULLAPUDI S S,et al. Pharmacokinetic interaction study between flavanones(hesperetin,naringenin) and rasagiline mesylate in Wistar rats[J]. Drug Dev Ind Pharm,2016,42(7):1110-1117.
[56] ZHANG F Y,DU G J,ZHANG L,et al. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein[J]. Pharm Res,2009,26(4):914-925.
[57] QIU J X,ZHOU Z W,HE Z X,et al. Estimation of the binding modes with important human cytochrome P450 enzymes,drug interaction potential,pharmacokinetics,and hepatotoxicity of ginger components using molecular docking,computational,and pharmacokinetic modeling studies[J]. Drug Des Devel Ther,2015,9:841-866.
[58] MA Y L,ZHAO F,YIN J T,et al. Two approaches for evaluating the effects of galangin on the activities and mRNA expression of seven CYP450[J]. Molecules,2019,24(6):1171.
[59] LOU D,BAO S S,LI Y H,et al. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes[J]. Eur J Drug Metab Pharmacokinet,2019,44(5):611-618.
[60] LI Y,NING J,WANG Y,et al. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship(QSAR) analysis for predicting potential effects[J]. Toxicol Lett,2018,294:27-36.
[61] WEI Y,ZHOU S,HAO T,et al. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin[J]. Eur J Pharm Sci,2019,129:21-30.
[62] CHOI S J,SHIN S C,CHOI J S. Effects of myricetin on the bioavailability of doxorubicin for oral drug delivery in rats:possible role of CYP3A4 and P-glycoprotein inhibition by myricetin[J]. Arch Pharm Res,2011,34(2):309- 315.
[63] ZANDEN J V,MUL A D,WORTELBOER H M,et al. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin[J]. Biochem Pharmacol,2005,69(11):1657-1665.
[64] YU C P,WU P P,HOU Y C,et al. Quercetin and rutin reduced the bioavailability of cyclosporine from neoral,an immunosuppressant,through activating P-glycoprotein and CYP3A4[J]. J Agric Food Chem,2011,59(9):4644- 4648.
[65] MOHANA S,GANESAN M,PRASAD N R,et al. Flavonoids modulate multidrug resistance through wnt signa- ling in P-glycoprotein overexpressing cell lines[J]. BMC Cancer,2018,18(1):1168.
[66] KUHLMANN O,HOFMANN H S,M?LLER S P,et al. Pharmacokinetics of idarubicin in the isolated perfused rat lung:effect of cinchonine and rutin[J]. Anticancer Drugs,2003,14(6):411-416.
[67] NGUYEN H,ZHANG S,MORRIS M E.Effect of flavonoids on MRP1-mediated transport in Panc-1 cells[J]. J Pharm Sci,2003,92(2):250-257.
[68] WONG C C,BOTTING N P,ORFILA C,et al. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1(OAT1/SLC22A6)[J].? ? Biochem Pharmacol,2011,81(7):942-949.
[69] OGURA J,KOIZUMI T,SEGAWA M,et al. Quercetin-3-rhamnoglucoside(rutin) stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1[J]. Biopharm Drug Dispos,2014,35(3):173-182.
[70] KIM S J,KIM S J,HONG M,et al. Investigation of selective inhibitory effects of glycyrol on human CYP 1A1 and 2C9[J]. Xenobiotica,2016,46(10):857-861.
[71] HE W,WU J J,NING J,et al. Inhibition of human cytochrome P450 enzymes by licochalcone A,a naturally occurring constituent of licorice[J]. Toxicol In Vitro,2015,29(7):1569-1576.
[72] WANG X,ZHANG H,CHEN L,et al. Liquorice,a unique “guide drug” of traditional Chinese medicine:a review of its role in drug interactions[J]. J Ethnopharmacol,2013,150(3):781-790.
[73] GUO B,F(xiàn)AN X R,F(xiàn)ANG Z Z,et al. Deglycosylation of liquiritin strongly enhances its inhibitory potential towards UDP-glucuronosyltransferase(UGT) isoforms[J]. Phytother Res,2013,27(8):1232-1236.
[74] HE Y,CI X,XIE Y,et al. Potential detoxification effect of active ingredients in liquorice by upregulating efflux transporter[J]. Phytomedicine,2019,56:175-182.
[75] SATOH T,F(xiàn)UJISAWA H,NAKAMURA A,et al. Inhibitory effects of eight green tea catechins on cytochrome P450 1A2,2C9,2D6,and 3A4 activities[J]. J Pharm Pharm Sci,2016,19(2):188-197.
[76] RRONIS M J. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity[J]. Drug Metab Rev,2016,48(3):331-341.
[77] KOPE?N?-ZAPLETALOV? M,KRASULOV? K,ANZENBACHER P,et al. Interaction of isoflavonoids with human liver microsomal cytochromes P450:inhibition of CYP enzyme activities[J]. Xenobiotica,2017,47(4):324-331.
[78] MITRA P S,BASU N K,OWENS I S. Src supports UDP- glucuronosyltransferase-2B7 detoxification of catechol? ?estrogens associated with breast cancer[J]. Biochem Biophys Res Commun,2009,382(4):651-656.
[79] CAI S A,HOU N,ZHAO G J,et al. Nrf2 is a key regulator on puerarin preventing cardiac fibrosis and upregula- ting metabolic enzymes UGT1A1 in rats[J]. Front Pharmacol,2018,9:540.
[80] GUO J,WANG Q,ZHANG Y,et al. Functional daidzein enhances the anticancer effect of topotecan and reverses BCRP-mediated drug resistance in breast cancer[J]. Pharmacol Res,2019,147:104387.
[81] MAHER H M,ALZOMAN N Z,SHEHATA S M,et al. Comparative pharmacokinetic profiles of selected irrever- sible tyrosine kinase inhibitors,neratinib and pelitinib,with apigenin in rat plasma by UPLC-MS/MS[J]. J Pharm Biomed Anal,2017,137:258-267.
[82] ZHAN Y Y,LIANG B Q,GU E M,et al. Inhibitory effect of apigenin onpharmacokinetics of venlafaxine in vivo and in vitro[J]. Pharmacology,2015,96(3/4):118-123.
[83] EUMKEB G,CHUKRATHOK S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant enterobacter cloacae[J]. Phytomedicine,2013,20(3/4):262-269.
[84] NAVARRO-N??EZ L,LOZANO M L,PALOMO M,et al. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway[J]. J Agric Food Chem,2008,56(9):2970-2976.
[85] 王篤軍,王碩,嚴(yán)峰,等.歐前胡素和異歐前胡素對(duì)小鼠肝CYP450的影響[J].中成藥,2017,39(1):14-20.
[86] 曹艷,鐘玉環(huán),原梅,等.歐前胡素和異歐前胡素對(duì)人和大鼠肝微粒體細(xì)胞色素P450酶活性的抑制作用[J].中國(guó)中藥雜志,2013,38(8):1237-1241.
[87] LIAO Z G,TANG T,GUAN X J,et al. Improvement of transmembrane transport mechanism study of imperatorin on P-glycoprotein-mediated drug transport[J]. Molecules,2016,21(12):1606.
(收稿日期:2020-12-21 修回日期:2021-08-12)
(編輯:胡曉霖)