• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      過表達ZmIBH1-1提高玉米苗期抗旱性

      2021-11-19 07:38:04朱芳芳董亞輝任真真王志勇蘇慧慧庫麗霞陳彥惠
      中國農(nóng)業(yè)科學(xué) 2021年21期
      關(guān)鍵詞:耐旱性株系擬南芥

      朱芳芳,董亞輝,任真真,王志勇,蘇慧慧,庫麗霞,陳彥惠

      過表達提高玉米苗期抗旱性

      朱芳芳,董亞輝,任真真,王志勇,蘇慧慧,庫麗霞,陳彥惠

      河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/省部共建小麥玉米作物學(xué)國家重點實驗室,鄭州 450046

      【】干旱是嚴重影響玉米生長發(fā)育進程的一個重要因素。挖掘玉米抗旱相關(guān)基因,通過轉(zhuǎn)基因功能驗證和轉(zhuǎn)錄組分析,解析關(guān)鍵基因在響應(yīng)干旱脅迫過程中的分子調(diào)控機制,為抗旱分子育種和遺傳改良提供理論依據(jù)。以玉米自交系B104(WT)為背景材料,利用農(nóng)桿菌介導(dǎo)方法構(gòu)建過表達轉(zhuǎn)基因株系(-OE);通過對轉(zhuǎn)基因植株進行草銨膦抗性篩選、標記基因和目的基因PCR檢測,以及運用實時熒光定量PCR檢測目的基因的表達情況,鑒定陽性植株和株系;以WT和-OE轉(zhuǎn)基因株系為材料,通過干旱處理(20% PEG6000),進行表型鑒定和耐旱生理生化指標測定,驗證的抗旱功能;通過對干旱脅迫下玉米4葉期轉(zhuǎn)錄組的比較分析,鑒定出差異表達的基因(differentially expressed genes,DEGs);結(jié)合DAP-seq(DNA affinity purification sequencing)分析,初步確定ZmIBH1-1蛋白直接調(diào)控與抗旱相關(guān)的下游靶基因,利用基因組可視化軟件IGV(integrative genomics viewer)分析ZmIBH1-1蛋白結(jié)合候選靶基因的位置,然后通過Dual-Luciferase試驗驗證ZmIBH1-1蛋白與靶基因的調(diào)控關(guān)系。通過玉米遺傳轉(zhuǎn)化獲得12個轉(zhuǎn)化事件;T3代中,能同時檢測到標記基因和目的基因的植株有458個,實時熒光定量PCR檢測結(jié)果表明,-OE中的表達量顯著高于WT,株系3和株系8表達量最高,將其自交獲得T4代轉(zhuǎn)基因株系用于后續(xù)試驗。在干旱脅迫條件下,-OE株系存活率、葉片相對含水量、葉綠素含量、可溶性蛋白含量及其生理生化指標(超氧化物歧化酶、過氧化物酶、過氧化氫酶活性)均顯著高于WT,說明玉米中過量表達賦予玉米更高的耐旱性。轉(zhuǎn)錄組分析結(jié)果表明,WT與-OE株系在干旱脅迫下有1 214個差異表達基因;Gene Ontology(GO)功能富集分析結(jié)果表明,差異表達基因主要涉及生物過程、細胞組分和分子功能,如在生物過程中主要涉及到光合作用、應(yīng)激響應(yīng)、脫水響應(yīng)等;KEGG富集分析表明,差異表達基因主要參與植物激素信號傳導(dǎo)、新陳代謝等過程。結(jié)合轉(zhuǎn)錄組顯著差異表達基因和DAP-Seq分析所得到ZmIBH1-1蛋白的靶基因,初步確定ZmIBH1-1蛋白直接調(diào)控與抗旱相關(guān)的11個候選靶基因,包括2個鈣信號相關(guān)基因、3個半胱氨酸代謝相關(guān)基因、1個bHLH轉(zhuǎn)錄因子、1個應(yīng)激響應(yīng)蛋白、1個谷胱甘肽轉(zhuǎn)移酶、1個氧化還原過程蛋白和2個乙烯響應(yīng)因子;基因組可視化結(jié)果顯示ZmIBH1-1蛋白可以結(jié)合靶基因啟動子區(qū);隨后通過Dual-Luciferase試驗進一步表明,ZmIBH1-1蛋白可以直接作用于11個候選靶基因,其中,ZmIBH1-1蛋白可以促進、、、、和的表達,抑制、、、和的表達。此外,在干旱脅迫下NAC、WRKY、MYB等轉(zhuǎn)錄因子在-OE和WT株系中也存在差異表達。的過表達可以增強玉米苗期的耐旱性;ZmIBH1-1蛋白通過直接調(diào)控乙烯信號通路中的和的表達提高玉米的耐旱性;ZmIBH1-1蛋白通過直接調(diào)控鈣信號相關(guān)基因和增強玉米的耐旱性;ZmIBH1-1蛋白可能通過間接調(diào)控NAC、WRKY、MYB等轉(zhuǎn)錄因子響應(yīng)干旱脅迫。

      玉米;干旱脅迫;;RNA-Seq;轉(zhuǎn)錄因子;基因表達

      0 引言

      【研究意義】玉米是世界第一大糧食作物,其產(chǎn)量占全球總谷物產(chǎn)量的37.2%[1]。玉米產(chǎn)量的提高對保障國家糧食安全至關(guān)重要。干旱、鹽堿、礦物質(zhì)缺乏等非生物脅迫對玉米正常的生長發(fā)育會造成極大的影響,進而導(dǎo)致玉米產(chǎn)量的損失。其中,干旱是制約玉米產(chǎn)量提高的重要因素之一。因此,挖掘玉米抗旱耐旱的關(guān)鍵基因,從分子水平上揭示玉米抗旱機制,為培育抗旱耐旱玉米新品種提供理論依據(jù),對保障糧食產(chǎn)量穩(wěn)定具有十分重要的意義?!厩叭搜芯窟M展】為了適應(yīng)復(fù)雜多變的自然環(huán)境,在漫長的進化過程中,植物自身形成了一種特異的適應(yīng)機制,植物在應(yīng)對干旱等逆境時,會啟動相應(yīng)的功能基因,調(diào)節(jié)其生理生化水平,以適應(yīng)不良環(huán)境[2-3]。已有的研究表明,植物中bHLH、NAC、WRKY、bZIP、NF-Y、MYB等轉(zhuǎn)錄因子家族的基因通過不同的調(diào)控路徑,在植物抵御逆境脅迫反應(yīng)中發(fā)揮著重要的作用[4-10]。在干旱等脅迫條件下,多個玉米轉(zhuǎn)錄因子家族基因的過量表達可以提高植物的抗旱耐旱特性。例如,玉米苗期過表達可以提高玉米水分利用率并誘導(dǎo)干旱響應(yīng)基因的表達,進而提高玉米干旱耐受性[4];的表達受干旱、高鹽等脅迫條件誘導(dǎo),過表達可以增強擬南芥干旱耐受性[5]。作為干旱脅迫和高溫脅迫的正調(diào)控因子,通過調(diào)控ABA信號路徑相關(guān)基因,過表達提高了擬南芥中超氧化物歧化酶(superoxide dismutase,SOD)、過氧化物酶(peroxidase,POD)和過氧化氫酶(catalase,CAT)活性,降低了活性氧(reactive oxygen species,ROS)含量,轉(zhuǎn)基因擬南芥表現(xiàn)出耐旱性和耐熱性[6]。過表達提高干旱脅迫下轉(zhuǎn)基因擬南芥中POD和CAT的活性,降低了ROS積累,通過調(diào)控脅迫相關(guān)基因提高轉(zhuǎn)基因擬南芥的抗旱性[7]。植物bZIP轉(zhuǎn)錄因子調(diào)節(jié)多種功能,包括植物發(fā)育、脅迫反應(yīng)和信號傳導(dǎo)等過程,過表達的擬南芥比野生型的電解質(zhì)滲漏低,水分流失慢,干旱和鹽耐受性增強[8]。干旱處理24 h后,地上部的表達量升高5.49倍,推測該基因可能參與了玉米干旱脅迫響應(yīng)[9]。干旱和鹽脅迫誘導(dǎo)的表達,擬南芥過表達該基因呈現(xiàn)生長性能增強,存活率高,CAT、POD和SOD活性升高,增強了轉(zhuǎn)基因擬南芥對干旱和鹽脅迫的耐受性[10]。除去轉(zhuǎn)錄因子,還有與干旱脅迫響應(yīng)相關(guān)的基因的報道。例如,干旱處理后,過表達轉(zhuǎn)基因玉米成活率顯著提高,而敲除突變體對干旱表現(xiàn)出更加敏感,說明增強了玉米干旱耐受性[11]。ZHANG等[12]發(fā)現(xiàn)過表達的轉(zhuǎn)基因玉米根毛長度增加,對水分虧缺的耐性提升。DING等[13]發(fā)現(xiàn)的遺傳變異與玉米苗期抗旱性顯著關(guān)聯(lián)。玉米突變體表皮蠟質(zhì)減少、角質(zhì)層滲透性增加,降低了幼苗抗旱性[14]。通過誘導(dǎo)脅迫響應(yīng)基因和提高ROS清除酶活性,可能在干旱和鹽脅迫耐受中起作用[15]。WANG等[16]鑒定到一個玉米Ⅰ類SUMO結(jié)合酶基因(),該基因在干旱脅迫下表達上調(diào),擬南芥中過表達該基因則增強其抗旱性。在干旱條件下,過表達的轉(zhuǎn)基因株系通過提高SOD和CAT的活性,增加氣孔關(guān)閉,減少ROS的積累正向調(diào)控植物耐旱性[17]。bHLH家族是僅次于MYB家族的第二大家族[18],在植物抗旱中發(fā)揮著重要作用。與編碼典型的bHLH轉(zhuǎn)錄因子,可以促進轉(zhuǎn)基因擬南芥體內(nèi)類黃酮生物合成、脫落酸(abscisic acid,ABA)信號通路、脯氨酸生物合成及ROS清除酶等基因表達上調(diào),增強擬南芥耐旱性[19-20]。胡楊基因被干旱誘導(dǎo)后表達上調(diào),主要通過調(diào)節(jié)氣孔密度和大小、光合作用及生長發(fā)育等從而提高其抗旱性[21]。茶樹在干旱脅迫下有39個bHLH轉(zhuǎn)錄因子表達上調(diào)[22]。擬南芥是耐旱性、耐鹽性等多個逆境脅迫信號的調(diào)節(jié)因子[23]。在水稻中,高量表達顯著提高了水稻的抗旱性[24]。ZmPTF1是一種磷酸饑餓誘導(dǎo)的bHLH轉(zhuǎn)錄因子,過表達株系改善玉米根系發(fā)育,增加ABA含量,激活A(yù)BA-、CBF4-、ATAF2-和NAC30介導(dǎo)的脅迫響應(yīng),提高玉米的耐旱性[25]?!颈狙芯壳腥朦c】編碼一個bHLH型轉(zhuǎn)錄因子,在葉夾角形成發(fā)育中負向調(diào)控玉米葉夾角的大小[26]。然而,關(guān)于是否可以提高植物的耐旱性,目前尚未報道?!緮M解決的關(guān)鍵問題】本研究以B104(WT)及B104為背景的過表達轉(zhuǎn)基因(-OE)株系為材料,對玉米幼苗進行干旱脅迫處理,結(jié)合RNA-Seq和DAP-Seq數(shù)據(jù)分析,解析響應(yīng)干旱脅迫的分子機制,為挖掘玉米抗旱基因及選育抗旱型玉米新品種奠定理論基礎(chǔ)。

      1 材料與方法

      試驗于2018年6月—2020年10月在河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/省部共建小麥玉米作物學(xué)國家重點實驗室完成。

      1.1 試驗材料

      玉米遺傳轉(zhuǎn)化所用農(nóng)桿菌()菌株EHA105購自河南三瑞生物科技有限公司;pFGC5941植物表達載體購自BioVector NTCC典型培養(yǎng)物保藏中心;過表達重組質(zhì)粒由河南農(nóng)業(yè)大學(xué)省部共建小麥玉米作物學(xué)國家重點實驗室陳彥惠教授課題組構(gòu)建,T-DNA區(qū)結(jié)構(gòu)如圖1所示;玉米遺傳轉(zhuǎn)化由北京博美興奧科技有限公司完成;T1—T4自交純合及陽性轉(zhuǎn)基因植株鑒定由河南農(nóng)業(yè)大學(xué)省部共建小麥玉米作物學(xué)國家重點實驗室陳彥惠教授課題組完成。過表達轉(zhuǎn)基因株系命名為-OE。

      LB:T-DNA的左邊重復(fù)序列;Tnos:終止子;Bar:除草劑篩選基因;PMAS:MAS啟動子;P35S:35S啟動子;ETMV:TMV增強子;RB:T-DNA的右邊重復(fù)序列

      1.2 轉(zhuǎn)基因植株的檢測

      采用除草劑抗性篩選、標記和目的基因PCR鑒定和目的基因的熒光定量PCR表達分析3種方法對轉(zhuǎn)基因植株進行檢測鑒定。除草劑抗性篩選:利用WT和-OE為材料,從植株3片葉開始,每隔3—5 d向葉片噴施草銨膦(300 mg·L-1),共噴施3次,處理一周后觀察抗性表型,初步篩選轉(zhuǎn)基因陽性植株。標記和目的基因PCR鑒定:以提取的植株葉片DNA為模板,利用標記基因特異引物(Bar-F和Bar-R)和特異引物(ZmIBH-F和ZmIBH-R)進行擴增檢測,根據(jù)擴增條帶鑒定出轉(zhuǎn)基因陽性植株,所用引物序列見表1。目的基因的熒光定量PCR表達分析:用Trizol法提取玉米第4片完全展開葉的RNA,按PrimeScripTMRT reagent Kit(TaKaRa)的操作步驟進行RNA反轉(zhuǎn)錄,用定量引物(qIBH-F和qIBH-R)和內(nèi)參引物(Tublin-F和Tublin-R)進行熒光定量PCR檢測,采用2-ΔΔCt法進行定量分析[27]檢測陽性植株。每個樣品3次生物學(xué)重復(fù),3次技術(shù)重復(fù),引物序列見表1。將轉(zhuǎn)基因不同世代經(jīng)過PCR檢測到的陽性單株移栽到大田,在開花期進行人工套袋自交獲得種子。

      表1 試驗所用引物

      1.3 干旱脅迫下WT和ZmIBH1-1-OE的表型鑒定

      干旱脅迫處理:將-OE和WT玉米籽粒置于10%的H2O2中浸泡洗滌20 min,無菌水洗滌3次,每次5 min。消毒后的種子放在無菌濕潤的發(fā)芽紙中,28℃黑暗培養(yǎng)2 d,挑選發(fā)芽均一的籽粒種植蛭石中,在(30±2)℃恒溫培養(yǎng)室中培養(yǎng)(12 h黑暗/12 h光照)。玉米幼苗生長至2葉1心轉(zhuǎn)入Hoagland營養(yǎng)液,4葉1心時采用添加20% PEG-6000的Hoagland營養(yǎng)液進行干旱處理,同時設(shè)置對照(Hoagland營養(yǎng)液),試驗重復(fù)3次。

      耐旱表型鑒定:選取對照和干旱處理的WT和-OE植株進行存活率統(tǒng)計和相對含水量測定。

      相對含水量(relative water content,RWC)的測定:干旱處理24 h后取新鮮葉片擦干凈后稱重(fresh weight,F(xiàn)M),將葉片放入水中5—6 h,使葉片吸水達到飽和狀態(tài)后,取出葉片并擦干葉片表面水分后再稱重(saturation weight,TM),再將葉片放入烘箱,105℃殺青30 min,然后在80℃環(huán)境下烘至恒重,稱重(dry weight,DM)。葉片相對含水量RWC(%)=(FM-DM)/(TM-DM)×100。

      1.4 生理生化指標的測定

      干旱處理24 h后取處理組和對照組的植株葉片,用于生理生化指標的測定,每個指標3次生物學(xué)重復(fù)。用韓贊平[28]方法進行SOD、POD、CAT活性測定;用葉綠素用丙酮-乙醇混合液的萃取方法[29]進行葉綠素含量(chlorophyll contents,Cht)和類胡蘿卜素含量(carotenoids,Car)測定,稱取0.2 g新鮮玉米葉片,加入80%預(yù)冷的丙酮,研磨成勻漿,于6 000 r/min離心15 min,抽取上清液測定其在665、649和470 nm波長下的吸光值,試驗在黑暗環(huán)境中進行。計算公式為:

      葉綠素a濃度(mg·L-1)Ca=13.95A665-6.8A649

      葉綠素b濃度(mg·L-1)Cb=24.96 A649-7.32A665

      葉綠素濃度(mg·L-1)Cht=Ca+Cb

      類胡蘿卜素濃度(mg·L-1)Car=(1000A470-2.05Ca- 114.8Cb)/248

      采用考馬斯亮藍染色法[30],對可溶性蛋白(soluble protein,SP)含量進行測定,稱取0.1 g新鮮玉米葉片,采用Tris-HCL緩沖液(pH6.8)進行可溶性蛋白研磨提取,通過測定595 nm處吸光值測定可溶性蛋白含量。

      1.5 數(shù)據(jù)分析

      應(yīng)用Microsoft Excel 2010進行數(shù)據(jù)分析和作圖。

      1.6 轉(zhuǎn)錄組測序及分析

      以正常、干旱處理的WT和-OE植株的葉片(2個生物學(xué)重復(fù))為材料,委托武漢希望組生物科技有限公司完成RNA提取和文庫構(gòu)建,然后通過MGI-T7平臺對文庫進行PE150測序,共構(gòu)建8個cDNA文庫。使用在線軟件Trim Galore(www.bioinformatics.babraham.ac.uk/projects/trim_galore/)處理測序產(chǎn)出的原始數(shù)據(jù),去除含有接頭、poly-N及低質(zhì)量reads后獲得高質(zhì)量clean reads,并對Q20、Q30、GC含量以及重復(fù)序列進行統(tǒng)計;將上述高質(zhì)量的clean reads與玉米基因組B73_V4(AGPV4版本)進行比對,通過FPKM(Fragments per Kilobase per Millon Mapped Fragments)對基因表達量進行標準化,以FPKM>1為表達標準,隨后根據(jù)正常與干旱處理的WT和-OE的比較,用DEseq(|log2FC(fold change)|≥1和-value/FDR<0.05)確定DEGs。利用Uniprot、Swissprot、COG、NR、GO和KEGG等數(shù)據(jù)庫對DEGs進行功能注釋,利用在線工具WEGO(http://wego.genomics.org.cn)和Gene Ontology(http://www.geneontology.org/)對差異基因進行GO功能分類[31]。通過KEGG分析DEGs主要參與的代謝途徑和信號通路(https://www.kegg.jp/)。

      1.7 ZmIBH1-1對其直接作用的下游靶基因的調(diào)控分析

      為了明確在玉米發(fā)育過程中的調(diào)控網(wǎng)絡(luò),Cao等[26]采用DAP-seq技術(shù)證明了ZmIBH1-1蛋白通過綁定4個Cis-elements(NNCAAGTNG、CANGTN、CTTCGNN和GGNGGAGA)直接作用于啟動子區(qū)域的靶基因有1 188個,結(jié)合RNA-Seq數(shù)據(jù)明確了調(diào)控玉米葉夾角發(fā)育的靶基因。為了進一步明確響應(yīng)干旱脅迫所涉及的調(diào)控路徑,首先用VLOOKUP對干旱脅迫下的RNA-Seq分析獲得的差異表達基因和ZmIBH1-1蛋白DAP-seq獲得的1 188個靶基因[26]進行交集分析,初步確定干旱脅迫響應(yīng)的候選靶基因。然后用基因組可視化軟件IGV(integrative genomics viewer)分析ZmIBH1-1蛋白結(jié)合候選靶基因的位置。

      采用Dual-Luciferase試驗進一步驗證ZmIBH1-1與靶基因的調(diào)控關(guān)系。將靶基因的啟動子(含有ZmIBH1-1的結(jié)合位點)克隆到pGreenII0800-luc載體上(含有報告基因);將基因克隆到pCAMBIA1300載體上。將上述重組載體分別轉(zhuǎn)入農(nóng)桿菌GV3101中,采用3種組合(融合有靶基因啟動子的雙熒光素酶報告載體、過表達轉(zhuǎn)錄因子載體以及融合有靶基因啟動子的雙熒光素酶報告載體、雙熒光素酶報告載體(空載))侵染煙草()葉片。培養(yǎng)(14 h光照/10 h黑暗)2 d后,提取煙草葉片蛋白(Cat#E1910,Promega),使用Glomax?20/20生物/化學(xué)發(fā)光檢測儀(Cat#E5311,Promega)測定螢火蟲熒光素酶(firefly luciferase,LUC)和海腎熒光素酶(renilla luciferase,REN),每個樣品3個生物學(xué)重復(fù)。

      2 結(jié)果

      2.1 ZmIBH1-1-OE轉(zhuǎn)基因玉米陽性植株的鑒定

      通過玉米遺傳轉(zhuǎn)化共獲得12個轉(zhuǎn)化事件。T3代時,每個轉(zhuǎn)化事件種植5個株系,每個株系種植10個單株,共600個單株,進行鑒定(圖2)。結(jié)果表明,T3代株系中約80%具有篩選標記基因和目的基因。標記基因和目的基因同時被檢測到的植株有458個,其中,來自于2個(3、8)轉(zhuǎn)化事件的3個株系,共30個單株全部為陽性。

      對T3代12個獨立事件的轉(zhuǎn)基因株系在4葉期進行qRT-PCR檢測,結(jié)果表明,-OE株系中的表達量顯著高于WT,且在3、8轉(zhuǎn)化事件中該基因的表達量最高(圖3)。結(jié)合抗除草劑鑒定和PCR檢測結(jié)果,說明這兩個轉(zhuǎn)化事件已經(jīng)純合。轉(zhuǎn)化事件3和8套袋自交獲得的T4代轉(zhuǎn)基因株系用于后續(xù)試驗研究。

      A:噴灑或涂抹除草劑草胺膦的表型鑒定;B:Bar引物PCR檢測;C:IBH1-1引物PCR檢測。WT:野生型單株;T:轉(zhuǎn)基因單株;1:陽性對照(質(zhì)粒DNA);2:空白對照;M:DL5000 DNA Marker;其余泳道代表轉(zhuǎn)基因植株

      WT:野生型;1—12:12個轉(zhuǎn)化事件的ZmIBH1-1-OE株系(n=3,±SD,**P<0.01)

      2.2 過表達ZmIBH1-1增強玉米耐旱性

      -OE和WT植株模擬干旱處理后發(fā)現(xiàn),-OE株系比WT植株抗旱性強(圖4-A)。具體表現(xiàn)為:干旱脅迫下,-OE株系的存活率顯著高于WT(圖4-B),-OE株系的葉片相對含水量顯著高于WT(圖4-C),-OE株系的SOD、CAT及POD酶活性均顯著高于WT(圖4-D),類胡蘿卜素、總?cè)~綠素、可溶性蛋白含量也均顯著高于WT(圖4-E)。以上結(jié)果說明過表達增強玉米的耐旱性。

      2.3 干旱脅迫下ZmIBH1-1-OE和WT葉片轉(zhuǎn)錄組分析

      為明確-OE植株在干旱脅迫下轉(zhuǎn)錄水平變化,對正常和干旱脅迫下WT和-OE株系的幼苗進行轉(zhuǎn)錄組測序。去除低質(zhì)量reads后,8個樣品均有超過91%的clean reads。將clean reads與玉米B73基因組參考序列V4進行比對,8個樣品均有超過88%的unique reads(表2);PCA分析結(jié)果顯示不同樣品間存在差異,同一樣品不同生物學(xué)重復(fù)聚集(圖5-A);相關(guān)性分析表明,生物學(xué)重復(fù)間相關(guān)系數(shù)高(圖5-B)。以上結(jié)果表明轉(zhuǎn)錄組數(shù)據(jù)穩(wěn)定可靠,可用于后續(xù)分析。

      A:B104和ZmIBH1-1-OE株系在PEG6000脅迫下的表型;B:B104和ZmIBH1-1-OE株系在PEG6000脅迫下的存活率(n=3,±SD,**P<0.01,n.s不顯著);C:B104和ZmIBH1-1-OE株系在PEG6000脅迫下的葉片平均含水量(n=3,±SD,**P<0.01,n.s不顯著);D:B104和ZmIBH1-1-OE株系在PEG6000脅迫下的POD、SOD、CAT酶活性測定(n=3,±SD,**P<0.01,n.s不顯著);E:B104和ZmIBH1-1-OE株系在PEG6000脅迫下的總?cè)~綠素(Cht)、類胡蘿卜素(Car)和可溶性蛋白(SP)含量的變化測定(n=3,±SD,**P<0.01,n.s不顯著)

      表2 RNA-seq數(shù)據(jù)reads數(shù)總結(jié)

      轉(zhuǎn)錄組分析結(jié)果表明,干旱脅迫下的表達量顯著高于正常條件,且在-OE株系中表達量顯著高于WT(圖5-C);WT與-OE株系在干旱脅迫下有1 214個基因表達差異顯著。將1 214個差異表達基因進行GO注釋分析(電子附圖1-A),這些基因主要涉及到生物過程、細胞組分和分子功能。KEGG代謝通路分析結(jié)果表明,差異表達基因主要參與植物激素信號傳導(dǎo)、新陳代謝等路徑(電子附圖1-C)。1 214個差異表達基因中還包括Ca+通道蛋白及NAC、WRKY、MYB等類型轉(zhuǎn)錄因子(電子附圖1-B和電子附表1)。

      A:轉(zhuǎn)錄組數(shù)據(jù)PCA分析。p代表PEG處理,0 h代表未處理,1和2代表2個生物學(xué)重復(fù);B:轉(zhuǎn)錄組相關(guān)性分析熱圖;C:正常和干旱條件下,B104和ZmIBH1-1-OE株系中ZmIBH1-1的表達量(n=2,±SD,**p<0.01)

      2.4 ZmIBH1-1蛋白直接作用的干旱脅迫響應(yīng)的靶基因分析

      為進一步解析ZmIBH1-1蛋白直接作用的干旱響應(yīng)靶基因,對RNA-Seq差異表達基因和DAP-Seq分析得到的ZmIBH1-1蛋白的靶基因[26]進行分析,初步確定11個ZmIBH1-1可能直接調(diào)控的與抗旱相關(guān)的候選靶基因(電子附表2),包括2個鈣信號相關(guān)基因(:Zm00001d025340;:Zm00001d051676)、3個半胱氨酸代謝相關(guān)基因(:Zm00001d034736;:Zm00001d049110;:Zm00001d038173)、1個bHLH轉(zhuǎn)錄因子(:Zm00001d011847)、1個應(yīng)激響應(yīng)蛋白(:Zm00001d047302)、1個谷胱甘肽轉(zhuǎn)移酶(:Zm00001d036951)、1個氧化還原過程蛋白(:Zm00001d029519)和2個乙烯響應(yīng)因子(:Zm00001d017466;:Zm00001d028974)。ZmIBH1-1的DAP-Seq結(jié)果顯示ZmIBH1-1在靶基因啟動子區(qū)域存在peaks富集(圖6),說明ZmIBH1-1可以直接結(jié)合靶基因啟動子。

      A—D分別代表ZmIBH1-1分別結(jié)合ZmEIN3、ZmERF-107、ZmCLPB3和ZmAGD12的啟動子區(qū)域。紅框代表ZmIBH1-1結(jié)合峰所在位置

      隨后采用Dual-Luciferase試驗進一步驗證ZmIBH1-1對候選靶基因的調(diào)控作用(圖7-A)。結(jié)果表明,ZmIBH1-1分別顯著增強由、、、、和的啟動子啟動的報告基因的表達(圖7-B),而顯著降低由、、、和的啟動子啟動的報告基因的表達(圖7-C);RNA-Seq結(jié)果表明,在干旱脅迫下,、、、、和在-OE株系中的表達量顯著高于WT,而、、、和在-OE株系中的表達量顯著低于WT。以上結(jié)果表明ZmIBH1-1可以直接調(diào)控靶基因的表達。

      A:35s啟動子啟動海腎熒光素酶(REN)作為內(nèi)參,基因啟動子啟動報告基因螢火蟲熒光素酶(LUC)基因,ZmIBH1-1作為效應(yīng)因子,空載體為對照,在本氏煙草中瞬時表達。B—C:LUC/REN的比值代表啟動子的活性,每個試驗重復(fù)3次(n=3,±SD,**p<0.01)。NC:陰性對照

      3 討論

      本研究結(jié)果表明,過表達可以增強玉米的耐旱性,ZmIBH1-1蛋白直接結(jié)合11個靶基因的啟動子調(diào)控靶基因的表達,其中包括2個乙烯響應(yīng)基因和,因此推測可能通過乙烯信號通路來響應(yīng)干旱脅迫。植物在受到干旱脅迫時植物體內(nèi)的內(nèi)源乙烯含量會有很大程度的提升[32],過量的乙烯會誘發(fā)植物細胞的衰老和程序性死亡[33-34]。在玫瑰中促進表達,而可以顯著抑制乙烯受體蛋白基因的表達[35],ETRs結(jié)合乙烯,減少或抑制乙烯信號轉(zhuǎn)導(dǎo)誘發(fā)的細胞死亡[36]。ZmEIN3作為EIN3-like轉(zhuǎn)錄因子,是乙烯信號通路中的重要轉(zhuǎn)錄因子[37]。本研究結(jié)果表明,在干旱脅迫下,的表達被顯著抑制。說明可能通過直接抑制的表達,間接促進玉米中乙烯受體蛋白基因的表達,從而減少或抑制乙烯誘發(fā)的細胞程序性死亡,提高玉米的抗旱性。在逆境脅迫下,植物通過轉(zhuǎn)錄因子調(diào)控相關(guān)基因的表達提高植物體抵御逆境脅迫的能力[4-10]。ERF轉(zhuǎn)錄因子在響應(yīng)逆境脅迫中起到重要作用[38-39]。ERF家族成員通過特異結(jié)合基因啟動子GCC-box,從而參與乙烯應(yīng)答及非生物脅迫[38]。水稻中,過表達ERF轉(zhuǎn)錄因子基因()和可以調(diào)節(jié)內(nèi)源乙烯等激素合成的功能,以抵抗淹水脅迫[39]。本研究中ZmIBH1-1蛋白通過抑制乙烯響應(yīng)因子基因的表達參與玉米對干旱脅迫響應(yīng)的調(diào)節(jié)。

      鈣離子作為第二信使,在植物應(yīng)對非生物脅迫時(鹽、干旱、低溫等)發(fā)揮著重要作用[40-41]。干旱缺水引起細胞質(zhì)內(nèi)鈣離子濃度變化從而激活鈣依賴性蛋白激酶(calmodulin-dependent protein kinases,CPKs)信號導(dǎo)致ABA釋放,ABA濃度的積累導(dǎo)致氣孔關(guān)閉減少水分損失[42-43]。本研究中,在干旱脅迫下,-OE植株的RWC顯著高于WT。RNA-Seq分析發(fā)現(xiàn)多個與鈣信號相關(guān)的基因在WT和-OE株系中存在差異表達,其中,ZmIBH1-1直接作用于和的啟動子調(diào)控其表達,間接調(diào)控鈣依賴性蛋白激酶Zm00001d014773以及鈣調(diào)素蛋白Zm00001d040323和Zm00001d028948。說明ZmIBH1-1可能通過調(diào)控鈣信號相關(guān)基因的表達使氣孔關(guān)閉減少水分蒸騰,從而提高玉米- OE植株的抗旱性。

      已有的研究表明,植物中bHLH、NAC、WRKY、bZIP、NF-Y、MYB等轉(zhuǎn)錄因子家族的基因通過不同的調(diào)控路徑,在植物抵御逆境脅迫反應(yīng)中發(fā)揮著重要的作用[4-10]。MAO等[4]克隆了基因,該基因過表達明顯提高了玉米苗期的抗旱性和水分利用效率,并誘導(dǎo)應(yīng)答抗旱基因在干旱脅迫下表達上調(diào)。Ren等[44]對NAC型轉(zhuǎn)錄因子ZmNST3展開了研究,敲除導(dǎo)致玉米的耐旱耐鹽能力降低。MYB蛋白是植物抵御各種逆境的重要轉(zhuǎn)錄因子。如、A、、、、等都能通過不同的方式和路徑提高植物的抗旱性[45-49]。干旱和鹽脅迫可以誘導(dǎo)的表達,擬南芥過表達該基因,CAT、POD和SOD活性升高,增強了轉(zhuǎn)基因擬南芥對干旱和鹽脅迫的耐受性[10]。植物特有轉(zhuǎn)錄因子WRKY在植物非生物脅迫響應(yīng)過程中發(fā)揮重要作用[50]。在擬南芥中過表達、,通過提高SOD、POD和CAT活性降低ROS含量,進而提高轉(zhuǎn)基因擬南芥的耐旱性和耐熱性[6-7]。本研究中,轉(zhuǎn)錄組分析表明,在干旱脅迫下,WT與-OE株系的差異表達基因中包括8個NAC、8個WRKY、11個MYB類型轉(zhuǎn)錄因子(電子附圖1-B和電子附表1)。說明ZmIBH1-1可能通過間接調(diào)控NAC、MYB和WRKY轉(zhuǎn)錄因子參與干旱脅迫響應(yīng)。

      4 結(jié)論

      過表達可以增強玉米的耐旱性;ZmIBH1-1可以直接結(jié)合11個靶基因的啟動子區(qū)域,調(diào)控11個靶基因的表達;ZmIBH1-1通過直接調(diào)控乙烯信號通路中的基因和的表達提高玉米的耐旱性;ZmIBH1-1通過直接調(diào)控鈣信號相關(guān)基因和增強玉米的耐旱性;ZmIBH1-1可能通過間接調(diào)控NAC、WRKY、MYB等轉(zhuǎn)錄因子響應(yīng)干旱脅迫。

      [1] QU D Y. Food and Agriculture Organization of the United Nations. Viale delle Terme di Caracalla, Rome, Italy. 2016 [June 2021], http://www.fao.org/statistics/databases/en/.

      [2] 代宇佳, 羅曉峰, 周文冠, 陳鋒, 帥海威, 楊文鈺, 舒凱. 生物和非生物逆境脅迫下的植物系統(tǒng)信號. 植物學(xué)報, 2019, 54(2): 102-111.

      Dai Y J, Luo X F, Zhou W G, Chen F, Shuai H W, Yang W Y, Shu K. Plant systemic signaling under biotic and abiotic stresses conditions. Chinese Bulletin of Botany, 2019, 54(2): 102-111. (in Chinese)

      [3] Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 2005, 24(1): 23-58.

      [4] Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran L, Qin F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015, 6: 8326.

      [5] Mao H, Yu L, Han R, Li Z, Liu H. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic. Plant Physiology & Biochemistry, 2016, 105: 55-66.

      [6] Wang C T, Ru J N, Liu Y W, Li M, Zhao D, Yang J F, Fu J D, Xu Z S. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018, 19(10): 3046.

      [7] Wang C T, Ru J N, Liu Y W, Yang J F, Meng L, Xu Z S, Fu J D. The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic. International Journal of Molecular Sciences, 2018, 19(9): 2580.

      [8] Ying S, Zhang D F, Jing F, Shi Y S, Song Y C, Wang T Y, Yu L. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic. Planta, 2012, 235(2): 253-266.

      [9] 劉彥丹, 英生, 張登峰, 石云素, 宋燕春, 白志川, 王天宇, 黎裕. 玉米逆境脅迫響應(yīng)基因ZmbZIP71的克隆與表達分析. 植物遺傳資源學(xué)報, 2011, 12(5): 775-781.

      Liu Y D, Ying S, Zhang D F, Shi Y S, Song Y C, Bai Z C, Wang T Y, Li Y. Isolation and expression analysis of a stress-responsive gene ZmbZIP71 in maize (L.). Journal of Plant Genetic Resources, 2011, 12(5): 775-781. (in Chinese)

      [10] Wu J, Jiang Y, Liang Y, Chen L, Chen W, Cheng B. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiology and Biochemistry, 2019, 137: 179-188.

      [11] Zhang H, Xiang Y, He N, Liu X, Dai M. Enhanced vitamin C production mediated by an ABA-induced PTP-like nucleotidase improves drought tolerance ofand maize. Molecular Plant, 2020, 13(5): 760-776.

      [12] Zhang X, Mi Y, Mao H, Liu S, Qin F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 2020, 18(5): 1271-1283.

      [13] Ding S, He F, Tang W, Du H, Wang H. Identification of maize CC-type glutaredoxins that are associated with response to drought stress. Genes, 2019, 10(8): 610.

      [14] Li L, Du Y, He C, Dietrich C R, Zheng J. Maize glossy6 is involved in cuticular wax deposition and drought tolerance. Journal of Experimental Botany, 2019, 70(12): 3089-3099.

      [15] Zhou L, Zhou J, Xiong Y, Liu C, Wang J, Wang G, Cai Y, Wu K. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in. Plos One, 2018, 13(6): e198639.

      [16] Wang H, Wang M, Xia Z. The maize class-I SUMO conjugating enzyme ZmSCE1d is involved in drought stress response. International Journal of Molecular Sciences, 2019, 21(1): 29.

      [17] Liang Y, Jiang Y, Du M, Li B, Wu J. ZmASR3 from the maize ASR gene family positively regulates drought tolerance in transgenic. International Journal of Molecular Sciences, 2019, 20(9): 2278.

      [18] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal for Cell & Molecular Biology, 2011, 66(1): 94-116.

      [19] Wang F, Zhu H, Kong W, Peng R, Liu Q, Yao Q. The antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic. Planta, 2016, 244(1): 59-73.

      [20] Wang F, Zhu H, Chen D, Li Z, Peng R, Yao Q. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic. Plant Cell Tissue & Organ Culture, 2016, 125(2): 387-398.

      [21] DONG Y, WANG C, HAN X, TANG S, LIU S, XIA X, YIN W. A novel bHLH transcription factor PebHLH35 fromconfers drought tolerance through regulating stomatal development, photosynthesis and growth in. Biochemical and Biophysical Research Communications, 2014, 450(1): 453-458.

      [22] Cui X, Wang Y X, Liu Z W, Wang W L, Li H, Zhuang J. Transcriptome-wide identification and expression profile analysis of the bHLH family genes in. Functional and Integrative Genomics, 2018, 18(5): 489-503.

      [23] Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li W X. bHLH122is important for drought and osmotic stress resistance inand in the repression of ABA catabolism. New Phytologist, 2014, 201(4): 1192-1204.

      [24] Seo J S, Joo J, Kim M J, Kim Y K, Nahm B H, Sang I S, Cheong J J, Lee J S, Kim J K, Yang D C. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant Journal for Cell & Molecular Biology, 2011, 65(6): 907-921.

      [25] Li Z, Liu C, Zhang Y, Wang B, Ran Q, Zhang J. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and ABA synthesis. Journal of Experimental Botany, 2019, 70(19): 5471-5486.

      [26] Cao Y, Zeng H, Ku L X, Ren Z, Han Y, Su H, Dou D, Liu H, Dong Y, Zhu F. ZmIBH1-1 regulates plant architecture in maize. Journal of Experimental Botany, 2020, 71(10): 2943-2955.

      [27] Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2002, 25: 402-408.

      [28] 韓贊平. 玉米種子活力相關(guān)性狀QTL定位及相關(guān)基因的克隆[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2014.

      Han Z P. QTL mapping of seed vigor related traits and related gene cloning in maize [D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese)

      [29] 姚曉云, 藍海軍, 鄧偉, 陳紅萍, 羅晨曦, 況震, 羅宗銘, 王記林, 陳大洲. 水稻淡白葉突變體的葉綠素含量測定及農(nóng)藝性狀比較分析. 江西農(nóng)業(yè)學(xué)報, 2020, 32(12): 12-15.

      Yao X Y, Lan H J, Deng W, Chen H P, Luo C X, Kuang Z, Luo Z M, Wang L J, Chen D Z. Determination of chlorophyll content and comparative analysis of agronomic traits of pale-white- leaf mutant in rice. Acta Agriculturae Jiangxi, 2020, 32(12): 12-15. (in Chinese)

      [30] 焦?jié)? 考馬斯亮藍G-250染色法測定苜蓿中可溶性蛋白含量. 農(nóng)業(yè)工程技術(shù), 2016, 36(17): 33-34.

      Jiao J. Determination of soluble protein content in Alfalfa by Coomassie brilliant blue G-250 staining. Agricultural Engineering Technology, 2016, 36(17): 33-34. (in Chinese)

      [31] Ye J. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 2006, 34(Web Server issue): W293-W297.

      [32] Pierik R, Sasidharan R, Voesenek L. Growth control by ethylene: Adjusting phenotypes to the environment. Journal of Plant Growth Regulation, 2007, 26(2): 188-200.

      [33] Lanahan M B. The never ripe mutation blocks ethylene perception in tomato. The Plant Cell, 1994, 6(4): 521-530.

      [34] Grbi V, Bleecker A B. Ethylene regulates the timing of leaf senescence in. The Plant Journal, 1995, 8(4): 595-602.

      [35] Luo J, Ma N, Pei H, Chen J, Li J, Gao J. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. Journal of Experimental Botany, 2013, 64(16): 5075-5084.

      [36] Hua J, Meyerowitz E M. Ethylene responses are negatively regulated by a receptor gene family in. Cell (Cambridge), 1998, 94(2): 261-271.

      [37] Guo H W. Paradigms and paradox in the ethylene signaling pathway and interaction network. Molecular Plant, 2011, 4(4): 626-634.

      [38] OHME-TAKAGI M, SHINSHI H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 1995, 7(2): 173-182.

      [39] HATTORI Y, NAGAI K, FURUKAWA S, SONG XJ, KAWANO R, SAKAKIBARA H, WU J, MATSUMOTO T, YOSHIMURA A, KITANO H, MATSUOKA M, MORI H, ASHIKARI M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460(7258): 1026-1030.

      [40] Knight H. Calcium signaling during abiotic stress in plants. International Review of Cytology-a Survey of Cell Biology, 1999, 195: 269-324.

      [41] Reddy A, Ali G S, Celesnik H, Day I S. Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. The Plant Cell, 2011, 23(6): 2010-2032.

      [42] Dubrovina A S, Kiselev K V, Khristenko V S, Aleynova O A. VaCPK20, a calcium-dependent protein kinase gene of wild grapevineRupr., mediates cold and drought stress tolerance. Journal of Plant Physiology, 2015, 185: 1-12.

      [43] Zou J J, Li X D, Ratnasekera D, Wang C, Liu W X, Song L F, Zhang W Z, Wu W H.CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2homeostasis in stomatal guard cells under drought stress. The Plant Cell, 2015, 27(5): 1445-1460.

      [44] Ren Z, Zhang D, Cao L, Zhang W, Ku L. Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress. Plant Cell and Environment, 2020, 43(9): 2272-2286.

      [45] Oh JE, Kwon Y, Kim JH, Noh H, Hong SW, Lee H. A dual role for MYB60 in stomatal regulation and root growth ofunder drought stress. Plant Molecular Biology, 2011, 77(1/2): 91-103.

      [46] Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K. Enhancement of oxidative and drought tolerance inby overaccumulation of antioxidant flavonoids. The Plant Journal, 2014, 77(3): 367-379.

      [47] Dai X Y, Xu Y Y, Ma Q B, Xu W Y, Wang T, Xue Y B, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic. Plant Physiology, 2007, 143(4): 1739-1751.

      [48] Hong S, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H. Heterologous expression of the chrysanthemum R2R3-MYB Transcription Factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in. Molecular Biotechnology, 2012, 51(2): 160-173.

      [49] Qin Y, Wang M, Tian Y, He W, Lu H, Xia G. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in. Molecular Biology Reports, 2012, 39(6): 7183-7192.

      [50] Finatto T, Viana V E, Woyann L G, Busanello C, Oliveira A. Can WRKY transcription factors help plants to overcome environmental challenges? Genetics & Molecular Biology, 2018, 41(3): 533-544.

      附表1 正常和干旱條件下,B104和ZmIBH1-1過表達株系中脅迫和光合作用相關(guān)的差異表達基因Supplementary table 1 Differentially expressed genes related to stressand photosynthesisin B104and ZmIBH1-1overexpression linesundernormaland droughtstress

      ?

      ?

      ?

      ?

      ?

      附表2 干旱條件下,ZmIBH1-1直接調(diào)控的差異表達基因Supplementary table 2 DEGsdirectly regulated by ZmIBH1-1underdroughtstress

      Over-expression ofto improve drought resistance in maize seedlings

      ZHU FangFang, DONG YaHui, REN ZhenZhen, WANG ZhiYong, SU HuiHui, KU LiXia, CHEN YanHui

      College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046

      【】Drought is an important factor that affects the growth and development of maize seriously. Through the mining of genes related to drought resistance in maize, transgene function verification and transcriptome analysis, analyzing the molecular regulation mechanism of key genes in response to drought stress, this paper provides the theoretical basis for drought resistance molecular breeding and genetic improvement. 【】In this study, the maize inbred line B104 (wild-type, WT) was used as the background to construct theoverexpression (-OE) transgenic line by-mediated method. The transgenic plants and lines were identified via screening transgenic plants for glufosinate-ammonium resistance, PCR detection of marker gene and target gene and expression analysis of target gene by qRT-PCR. We used the-OE and WT transgenic lines as materials. Through drought treatment (20% PEG6000), phenotype identification and drought tolerance physiological and biochemical index determination were carried out to verify the drought resistance function of; RNA-Seq was used to identify differentially expressed genes (DEGs) under drought stress at the 4-leaf stage; Combined with DAP-seq (DNA affinity purification sequencing) analysis, it is preliminarily determined that ZmIBH1-1 protein directly regulates downstream target genes related to drought resistance, and IGV (Integrative Genomics Viewer) was used to analyze the position of the ZmIBH1-1 protein binding candidate target gene, and then the Dual-Luciferase assay was used to verify the regulatory relationship between ZmIBH1-1 protein and target genes. 【】12 transformation events were obtained by genetic transformation of maize. In the T3generation, there were 458 plants in which the marker geneand the target genewere simultaneously detected. The results of qRT-PCR showed that the expression level of-OE lines was significantly higher than that of WT and the expression levels of transformation events 3 and 8 were the highest, which were self-crossed to obtain T4generation for subsequent experiments. Under drought stress, the survival rate, the relative water content, the chlorophyll content, soluble protein content and the physiological and biochemical indicators (superoxide dismutase, peroxidase, catalase activity) of-OE were higher than those of WT significantly, which indicating that the overexpression of-OE lines. Gene Ontology (GO) analysis showed that DEGs were mainly involved in biological processes, cell components and molecular functions, such as photosynthesis, stress response, dehydration response, etc. in biological processes; KEGG enrichment analysis showed that DEGs were mainly involved in the signal transduction of plant hormones, the metabolism and other processes. Combining the significantly DEGs of RNA-Seq and the target genes of ZmIBH1-1 obtained from DAP-seq analysis, it is preliminarily identified 11 candidate target genes related to drought resistance that may be directly regulated by ZmIBH1-1, including 2 calcium signal related genes, 3 cysteine metabolism related genes, 1 bHLH transcription factor, 1 stress response protein, 1 glutathione transferase, 1 redox process protein and 2 ethylene response factor; Integrative genomics viewer showed that ZmIBH1-1 protein could bind to the promoters of the target genes; Subsequent Dual-Luciferase assay further showed that ZmIBH1-1 protein can directly act on 11 candidate target genes, of which, ZmIBH1-1 directly binds to the promoters of,,,,andto promote their expression, and directly binds to the promoters of,,,andto repress their expression. In addition, transcription factors such as NAC, WRKY and MYB also differentially expressed between WT and-OE under drought stress. 【】The overexpression ofcan enhance the drought tolerance of maize; ZmIBH1-1 improves the drought tolerance of maize by directly regulating the expression of genesandand; ZmIBH1-1 may indirectly regulate NAC, WRKY, MYB and other transcription factors in response to drought stress.

      maize; drought stress;; RNA-Seq; transcription factor; gene expression

      10.3864/j.issn.0578-1752.2021.21.002

      2021-04-25;

      2021-06-16

      國家自然科學(xué)基金(31871639)

      朱芳芳,E-mail:1261546452@qq.com。董亞輝,E-mail:1018661461@qq.com。朱芳芳和董亞輝為同等貢獻作者。通信作者陳彥惠,E-mail:chy9890@163.com

      (責(zé)任編輯 李莉)

      猜你喜歡
      耐旱性株系擬南芥
      不同耐旱性紫花苜蓿干旱脅迫下生理響應(yīng)和轉(zhuǎn)錄調(diào)控的差異研究
      擬南芥:活得粗糙,才讓我有了上太空的資格
      過表達NtMYB4a基因增強煙草抗旱能力
      甘藍型油菜苗期耐旱性綜合評價與耐旱性鑒定指標篩選*
      揭示PTP類核苷酸酶的抗旱作用(2020.2.16 萊肯生物)
      嫦娥5號返回式試驗衛(wèi)星小麥育種材料研究進展情況
      尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
      水、旱稻抗旱機制研究中取得新進展
      兩種LED光源作為擬南芥生長光源的應(yīng)用探究
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機制探究
      东乡族自治县| 东平县| 开江县| 涿鹿县| 宣恩县| 隆回县| 霍州市| 惠东县| 高淳县| 广宗县| 万盛区| 炉霍县| 腾冲县| 广德县| 阿瓦提县| 新竹市| 富民县| 黄平县| 甘肃省| 咸丰县| 运城市| 普兰店市| 丽水市| 栾川县| 茌平县| 陇川县| 家居| 乌拉特前旗| 镇坪县| 平果县| 西乌珠穆沁旗| 金门县| 宁化县| 涞源县| 长治市| 清新县| 云和县| 阿城市| 若尔盖县| 剑川县| 巴东县|