• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      泵站側(cè)向進(jìn)水前池幾何參數(shù)優(yōu)化

      2022-02-06 01:02:42王嘵林劉厚林
      關(guān)鍵詞:前池流態(tài)均勻度

      李 明,王 勇,2,熊 偉,王嘵林,劉厚林

      泵站側(cè)向進(jìn)水前池幾何參數(shù)優(yōu)化

      李 明1,王 勇1,2※,熊 偉1,王嘵林1,劉厚林1

      (1. 江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,鎮(zhèn)江 212013;2. 蘇州工業(yè)職業(yè)技術(shù)學(xué)院精密制造工程系,蘇州 215104)

      為了減少泵站側(cè)向進(jìn)水結(jié)構(gòu)內(nèi)的不良流態(tài),提高泵組運(yùn)行效率,基于計(jì)算流體力學(xué)(Computational Fluid Dynamics,CFD)和響應(yīng)面法(Response Surface Method,RSM)對(duì)泵站側(cè)向進(jìn)水前池進(jìn)行幾何參數(shù)優(yōu)化。采用參數(shù)化設(shè)計(jì)對(duì)泵站側(cè)向進(jìn)水前池進(jìn)行建模,通過與Workbench關(guān)聯(lián)以對(duì)側(cè)向進(jìn)水前池的擴(kuò)散角、坡度以及轉(zhuǎn)向角實(shí)現(xiàn)指定值,采用典型Box-Behnke設(shè)計(jì)(Box-Behnke Design,BBD)方法得到17組三因素三水平試驗(yàn)方案,利用響應(yīng)面法建立喇叭管出口斷面流速分布均勻度與側(cè)向進(jìn)水前池?cái)U(kuò)散角、坡度以及轉(zhuǎn)向角的回歸方程,以最大出口斷面流速分布均勻度為響應(yīng)目標(biāo),確定最優(yōu)參數(shù)組合,并將最優(yōu)側(cè)向進(jìn)水結(jié)構(gòu)的內(nèi)部流動(dòng)特性同原模型進(jìn)行對(duì)比分析。研究結(jié)果表明,擴(kuò)散角、坡度以及轉(zhuǎn)向角對(duì)喇叭管出口斷面流速分布均勻度具有顯著影響(<0.05),擴(kuò)散角與轉(zhuǎn)向角的交互項(xiàng)對(duì)出口斷面流速分布均勻度耦合作用顯著,擴(kuò)散角10°~13°、坡度8°~9°、轉(zhuǎn)向角74°~75°時(shí)喇叭管出口斷面流速分布均勻度達(dá)到最優(yōu)。同原模型相比,優(yōu)化后的側(cè)向進(jìn)水結(jié)構(gòu)在設(shè)計(jì)水位下,斷面流速分布均勻度至少提高23.41個(gè)百分點(diǎn),流速加權(quán)平均偏流角提高13.95°,在低水位下斷面流速分布均勻度至少提高18.30個(gè)百分點(diǎn),流速加權(quán)平均偏流角提高14.79°,流道內(nèi)沒有偏斜流和大面積回流產(chǎn)生。該研究對(duì)于促進(jìn)泵站側(cè)向進(jìn)水結(jié)構(gòu)的優(yōu)化設(shè)計(jì)具有一定的參考意義。

      泵站;優(yōu)化;數(shù)值模擬;側(cè)向進(jìn)水前池;流態(tài);幾何參數(shù)

      0 引 言

      泵站在跨流域調(diào)水、工農(nóng)業(yè)用水、防洪排澇等方面發(fā)揮了巨大作用[1]。泵站進(jìn)水結(jié)構(gòu)包括進(jìn)水前池和進(jìn)水流道,進(jìn)水前池作為銜接引水段和進(jìn)水流道的關(guān)鍵裝置,對(duì)于促進(jìn)水流平穩(wěn)、均勻地流至進(jìn)水流道,提高泵組的運(yùn)行效率具有重要意義[2]。泵站進(jìn)水前池按照進(jìn)水方式可以分為正向進(jìn)水前池和側(cè)向進(jìn)水前池,受地理及施工條件的約束,往往采用側(cè)向進(jìn)水前池。相比于正向進(jìn)水前池,水流在側(cè)向進(jìn)水前池內(nèi)流動(dòng)過程中方向會(huì)發(fā)生偏轉(zhuǎn),極易在轉(zhuǎn)向過程中產(chǎn)生脫流和回流等不良流態(tài)[3-4],導(dǎo)致水泵機(jī)組運(yùn)行效率偏低,甚至?xí)T發(fā)不良振動(dòng)、噪聲等[5-7]。因此,對(duì)側(cè)向進(jìn)水前池進(jìn)行優(yōu)化設(shè)計(jì),對(duì)于改善進(jìn)水結(jié)構(gòu)內(nèi)的流態(tài)和提高泵組運(yùn)行效率具有重要意義。

      數(shù)值計(jì)算方法相對(duì)于試驗(yàn)方法具有成本低、效率高、易操作等明顯優(yōu)勢(shì),其在泵站進(jìn)水結(jié)構(gòu)優(yōu)化以及內(nèi)流分析方面,已經(jīng)成為了一種不可或缺的手段。最初,國(guó)內(nèi)外學(xué)者主要采用數(shù)值計(jì)算的方法對(duì)進(jìn)水前池及進(jìn)水流道內(nèi)的復(fù)雜流態(tài)進(jìn)行分析[8-12],得到了內(nèi)部流動(dòng)規(guī)律及旋渦對(duì)流動(dòng)穩(wěn)定性的影響。隨后,針對(duì)進(jìn)水前池流態(tài)較差的問題,國(guó)內(nèi)外學(xué)者采用數(shù)值模擬的方法研究了整流措施對(duì)前池內(nèi)流態(tài)的影響,主要包括設(shè)置底坎[13]、設(shè)置壓水板和配水孔[14-15]、導(dǎo)流柵[16]、導(dǎo)流墩[17-18]、導(dǎo)流柱[19-20]等,盡管以上措施已被證明對(duì)于提高進(jìn)水前池流態(tài)穩(wěn)定性具有顯著效果,但是,這些措施大多采用增設(shè)輔助裝置來改善流態(tài),對(duì)于復(fù)雜的輸水場(chǎng)景特別是施工空間有限時(shí),適用性較差。對(duì)進(jìn)水前池的關(guān)鍵幾何參數(shù)進(jìn)行優(yōu)化,是解決上述問題的一個(gè)有效措施。Constantinescu等[21]采用-湍流模型和-湍流模型對(duì)比分析了具有壁面粗糙度的流道內(nèi)渦的分布和強(qiáng)度,發(fā)現(xiàn)-湍流模型和低雷諾數(shù)-湍流對(duì)旋渦強(qiáng)度的預(yù)測(cè)結(jié)果基本保持一致,壁面粗糙度對(duì)邊壁渦的影響較大。何婷婷等[22]基于VOF模型和RNG-湍流模型對(duì)開敞式進(jìn)水池進(jìn)行數(shù)值模擬研究,提出了一種能夠有效地消除后壁旋渦的對(duì)稱橢圓進(jìn)水池后壁。資丹等[23]采用CFD和響應(yīng)面相結(jié)合的方法對(duì)泵站進(jìn)水前池的喇叭管懸空高度、與后壁距離和淹沒深度進(jìn)行優(yōu)化設(shè)計(jì),得到進(jìn)水池的最優(yōu)結(jié)構(gòu),通過流場(chǎng)計(jì)算發(fā)現(xiàn),進(jìn)水池內(nèi)流態(tài)改善效果顯著。Gao等[24]采用遺傳算法和響應(yīng)面法相結(jié)合的方法對(duì)雙向流道結(jié)構(gòu)進(jìn)出口擴(kuò)散段形狀進(jìn)行優(yōu)化研究,結(jié)果發(fā)現(xiàn)優(yōu)化后的雙流道結(jié)構(gòu)水力損失、流速不均勻程度和流量不均勻性程度均明顯降低。響應(yīng)面法能夠充分考慮多因素對(duì)進(jìn)水前池流態(tài)的影響,是一種準(zhǔn)確且高效的優(yōu)化方法,在側(cè)向進(jìn)水前池的多參數(shù)優(yōu)化中表現(xiàn)出巨大的潛力[25]。

      盡管國(guó)內(nèi)外學(xué)者就泵站進(jìn)水前池的優(yōu)化展開了大量工作,然而,他們的研究大多集中在對(duì)泵站的正向進(jìn)水前池進(jìn)行優(yōu)化,且大多數(shù)偏向于采用整流裝置來改善流態(tài),對(duì)于使用越來越廣泛的多機(jī)組泵站的側(cè)向進(jìn)水前池幾何參數(shù)優(yōu)化研究還比較少,在這方面的優(yōu)化經(jīng)驗(yàn)還比較缺失。因此,本文針對(duì)多機(jī)組泵站的側(cè)向進(jìn)水前池幾何參數(shù)進(jìn)行優(yōu)化,結(jié)合計(jì)算流體力學(xué)和響應(yīng)面法對(duì)泵站側(cè)向進(jìn)水前池的擴(kuò)散角、坡度和轉(zhuǎn)向角進(jìn)行優(yōu)化研究,分析不同參數(shù)對(duì)泵站側(cè)向進(jìn)水結(jié)構(gòu)內(nèi)部流動(dòng)特性的影響,并將優(yōu)化模型和原模型的流場(chǎng)進(jìn)行對(duì)比分析,以期為泵站側(cè)向進(jìn)水前池的優(yōu)化設(shè)計(jì)提供一種高效的方法。

      1 材料與方法

      1.1 數(shù)值計(jì)算方法

      1.1.1 計(jì)算模型

      泵站側(cè)向進(jìn)水結(jié)構(gòu)二維布置圖如圖1所示,該泵站包含3臺(tái)容量50%的循環(huán)水泵,每臺(tái)水泵均由獨(dú)立的進(jìn)水流道提供進(jìn)水條件。泵站的設(shè)計(jì)水位H=7 m,最低水位H=6.5 m,循環(huán)水泵流量Q=8.76 m3/s,揚(yáng)程H=26.0 m,循環(huán)水泵吸入口直徑D=2 500 mm,設(shè)計(jì)最小淹沒深度H=4.5 m。側(cè)向進(jìn)水前池?cái)U(kuò)散角為,坡度為,轉(zhuǎn)向角為。側(cè)向進(jìn)水前池閘門和進(jìn)水流道銜接處流態(tài)較為復(fù)雜,故將特征斷面1設(shè)在此處;通常選取距進(jìn)水喇叭管中心1.5(為喇叭管進(jìn)口直徑)處流態(tài)代表進(jìn)水流道流態(tài)情況,故將特征斷面2設(shè)于此處。

      注:H1、H2、H3分別為距底面不同高度的斷面,其距離底面高度分別為2.10、4.55和5.95 m。α、β、γ分別為擴(kuò)散角、坡度、轉(zhuǎn)向角。

      1.1.2 計(jì)算域及邊界條件

      圖2 側(cè)向進(jìn)水結(jié)構(gòu)計(jì)算域

      1.1.3 網(wǎng)格劃分及無(wú)關(guān)性驗(yàn)證

      式中Hf為模型總水力損失,m;Pin為引水段進(jìn)口斷面總壓,Pa;Pout為進(jìn)水喇叭管出口斷面總壓,Pa;ρ為水的密度,kg/m3;g為重力加速度,m/s2。Hf隨網(wǎng)格數(shù)變化趨勢(shì)如圖3所示。

      隨著網(wǎng)格數(shù)的增加,總水力損失總體上呈現(xiàn)下降趨勢(shì),當(dāng)網(wǎng)格的數(shù)量超過790萬(wàn)后,水力損失變化幅度保持在5%以內(nèi),達(dá)到網(wǎng)格無(wú)關(guān)性分析的要求。為使計(jì)算效率提高,本計(jì)算在設(shè)計(jì)水位雙泵運(yùn)行工況下的計(jì)算域網(wǎng)格數(shù)量為950萬(wàn)。其他方案計(jì)算模型網(wǎng)格劃分時(shí)也采用相同的網(wǎng)格尺度。

      1.1.4 流態(tài)評(píng)價(jià)指標(biāo)

      1)流速分布均勻度

      選用軸向流速分布均勻度來表征特征斷面1、2軸向流速分布情況。其計(jì)算式如下:

      2)流速加權(quán)平均偏流角

      選用流速加權(quán)平均偏流角來表征喇叭管出口斷面(泵進(jìn)口斷面)上橫向流速角度分布情況。其計(jì)算式如下:

      1.1.5 計(jì)算方案

      在設(shè)計(jì)水位和低水位下,采用“兩開一閉”的泵組運(yùn)行方式,得到表1所示的計(jì)算方案。

      表1 數(shù)值計(jì)算方案

      注:1#、2#、3#表示泵序號(hào)。

      Note: 1#, 2#, and 3# represent the pump number.

      1.2 響應(yīng)面法及因素水平選取

      當(dāng)側(cè)向進(jìn)水前池?cái)U(kuò)散角和轉(zhuǎn)向角較大時(shí),會(huì)導(dǎo)致水流進(jìn)入轉(zhuǎn)向段內(nèi)側(cè)流速升高,易在轉(zhuǎn)向后發(fā)生脫流,在進(jìn)入進(jìn)水流道前形成回流,導(dǎo)致側(cè)向進(jìn)水前池流態(tài)惡化,而側(cè)向進(jìn)水結(jié)構(gòu)轉(zhuǎn)向段與擴(kuò)散位置具有一定的坡度,在流入過程中,水流的過流面積不斷增大,流速不斷降低,在一定程度會(huì)抑制因轉(zhuǎn)向段內(nèi)側(cè)的脫流現(xiàn)象,因此擴(kuò)散角、轉(zhuǎn)向角和坡度對(duì)側(cè)向進(jìn)水前池的流態(tài)具有明顯影響。根據(jù)單因素模型試驗(yàn)得到的結(jié)果,當(dāng)擴(kuò)散角在10°~25°、坡度在6°~10°、轉(zhuǎn)向角在65°~80°時(shí),側(cè)向進(jìn)水結(jié)構(gòu)回流和旋渦較少,因此以此范圍作為自變量的最初取值范圍。采用Box-Behnke設(shè)計(jì)(Box-Behnke Design,BBD)方法進(jìn)行試驗(yàn)設(shè)計(jì)及后續(xù)分析,每個(gè)因素只能選擇3個(gè)水平,分別為上限值、下限之及其中間值。試驗(yàn)因素及水平如表2所示。

      表2 試驗(yàn)因素及水平

      2 結(jié)果與分析

      2.1 數(shù)值計(jì)算結(jié)果驗(yàn)證

      按照幾何比尺1∶10搭建模型試驗(yàn)臺(tái)對(duì)特征斷面1各縱向測(cè)點(diǎn)的流速進(jìn)行測(cè)量,在不同水位下進(jìn)行多次試驗(yàn)并取平均值以消除偶然誤差,引入相對(duì)誤差值來表示數(shù)值計(jì)算與試驗(yàn)的誤差。選擇設(shè)計(jì)水位A1方案和低水位B1方案下的模型試驗(yàn)結(jié)果同數(shù)值計(jì)算結(jié)果進(jìn)行對(duì)比分析。從表3可以看出,兩方案1斷面四層縱向測(cè)點(diǎn)的平均流速誤差均在10%以內(nèi),說明計(jì)算方式基本符合泵站流道流動(dòng)計(jì)算要求。從表4可以看出,兩方案出口斷面流速分布均勻度模型試驗(yàn)和數(shù)值計(jì)算誤差均在5%以內(nèi),數(shù)值計(jì)算結(jié)果與模型試驗(yàn)結(jié)果基本一致,說明數(shù)值計(jì)算方法具有一定準(zhǔn)確性。

      表3 C1斷面縱向測(cè)點(diǎn)平均流速模型試驗(yàn)和數(shù)值計(jì)算誤差

      注:表示縱向測(cè)點(diǎn)距底面距離,為相對(duì)誤差,下同。

      Note:is the distance from the longitudinal measuring point to the bottom,is the relative error, the same below.

      表4 C1斷面流速分布均勻度模型試驗(yàn)和數(shù)值計(jì)算誤差

      2.2 響應(yīng)面法優(yōu)化結(jié)果

      2.2.1 試驗(yàn)設(shè)計(jì)結(jié)果

      選取A1方案的1#泵喇叭管出口斷面流速分布均勻度為目標(biāo)函數(shù),BBD試驗(yàn)設(shè)計(jì)結(jié)果如表5所示。

      表5 BBD試驗(yàn)設(shè)計(jì)結(jié)果

      注:1、2、3分別為因素1、2、3的水平值。

      Note:1,2and3are the level values of factors1,2and3, respectively.

      2.2.2 參數(shù)顯著性分析

      BBD試驗(yàn)設(shè)計(jì)方法是一種擬合響應(yīng)曲面的二階三水平設(shè)計(jì),是利用含有二次項(xiàng)的方程來表征因子與響應(yīng)值之間的關(guān)系。喇叭管出口斷面流速分布均勻度的回歸方程如下:

      通過方差分析對(duì)回歸方程進(jìn)行分析,當(dāng)<0.05時(shí),則該項(xiàng)的差異性顯著,<0.001時(shí),則該項(xiàng)的差異性極其顯著,>0.05時(shí),則該項(xiàng)的差異性不顯著?;貧w方程系數(shù)的顯著性檢驗(yàn)結(jié)果見表6,從表中可以看出,回歸方程的值小于0.000 1,表明回歸方程極其顯著,能夠很好地反映3個(gè)參數(shù)對(duì)出口斷面流速分布均勻度的影響。1、2、3的值分別為0.004 8、0.009 0、0.000 9,均小于0.05,因此,擴(kuò)散角、坡度、轉(zhuǎn)向角都是顯著影響因素,且單一幾何參數(shù)對(duì)出口斷面流速分布均勻度的影響程度從大到小依次為:轉(zhuǎn)向角(3)、擴(kuò)散角(1)、坡度(2)。

      表6 出口斷面流速分布均勻度方差分析結(jié)果

      2.2.3 多因素作用分析

      圖4a為擴(kuò)散角和坡度交互項(xiàng)對(duì)出口斷面流速分布均勻度耦合影響的響應(yīng)面圖。由圖可知,隨著坡度的增加,喇叭管出口斷面流速分布均勻度先增大后減小,隨著擴(kuò)散角的增加,出口斷面流速分布均勻度逐漸減小。結(jié)合表6可知,擴(kuò)散角與坡度的交互項(xiàng)對(duì)出口斷面流速分布均勻度耦合作用不顯著,擴(kuò)散角對(duì)出口斷面流速分布均勻度的影響比坡度更為顯著,為了使出口斷面流速分布均勻度最高,坡度應(yīng)在8°~9°之間,擴(kuò)散角應(yīng)在10°~13°之間。圖4b為坡度和轉(zhuǎn)向角交互項(xiàng)對(duì)出口斷面流速分布均勻度耦合影響的響應(yīng)面圖。由圖可知,隨著坡度和轉(zhuǎn)向角的增加,出口斷面流速分布均勻度均先增大后減小。結(jié)合表6可知,坡度與轉(zhuǎn)向角的交互項(xiàng)對(duì)出口斷面流速分布均勻度耦合作用不顯著,轉(zhuǎn)向角對(duì)出口斷面流速分布均勻度的影響比坡度更為顯著,為了使出口斷面流速分布均勻度最高,轉(zhuǎn)向角應(yīng)在74°~75°之間。圖4c為擴(kuò)散角和轉(zhuǎn)向角交互項(xiàng)對(duì)出口斷面流速分布均勻度耦合影響的響應(yīng)面圖。從中可以發(fā)現(xiàn),隨著擴(kuò)散角和轉(zhuǎn)向角的增加,出口斷面流速分布均勻度先增大后減小。結(jié)合表6可知,擴(kuò)散角與轉(zhuǎn)向角的交互項(xiàng)對(duì)出口斷面流速分布均勻度耦合作用顯著,轉(zhuǎn)向角對(duì)出口斷面流速分布均勻度的影響比擴(kuò)散角更為顯著,為了使出口斷面流速分布均勻度最高,擴(kuò)散角應(yīng)在10°~13°之間。交互項(xiàng)對(duì)出口斷面流速分布均勻度的影響程度從大到小依次為:擴(kuò)散角和轉(zhuǎn)向角的交互項(xiàng)(13)、坡度和轉(zhuǎn)向角的交互項(xiàng)(23)、擴(kuò)散角和坡度的交互項(xiàng)(12)。

      最終,選擇擴(kuò)散角為11°、坡度為8°、轉(zhuǎn)向角為75°的側(cè)向進(jìn)水前池進(jìn)行內(nèi)部流動(dòng)特性分析。

      圖4 各因素作用對(duì)出口斷面流速分布均勻度的影響

      2.3 數(shù)值計(jì)算結(jié)果

      2.3.1 設(shè)計(jì)水位優(yōu)化模型數(shù)值計(jì)算結(jié)果

      選擇A1方案的流場(chǎng)計(jì)算結(jié)果進(jìn)行設(shè)計(jì)水位下側(cè)向進(jìn)水結(jié)構(gòu)優(yōu)化前后流態(tài)差異分析。由圖5可知,對(duì)于原模型,在1斷面處,水流在進(jìn)水流道側(cè)壁和后墻的共同作用下形成了小尺度的旋渦結(jié)構(gòu),其余位置沒有明顯渦帶,這是因?yàn)樵摂嗝骐x液面較遠(yuǎn),流態(tài)相對(duì)穩(wěn)定。在2斷面處,轉(zhuǎn)向段尾部和進(jìn)水流道內(nèi)部都出現(xiàn)了大尺度旋渦,這是因?yàn)?斷面位于閘門下方,水流撞擊閘門在閘門前產(chǎn)生了回流,此外,水流在閘門節(jié)流作用下速度增大,進(jìn)入進(jìn)水流道后來不及擴(kuò)散,在閘門后形成一定尺度的旋渦。3斷面離液面較近,回流和旋渦進(jìn)一步加劇,這是因?yàn)橐后w表面的速度較大,容易產(chǎn)生表面渦,離液面越近,液下流動(dòng)更容易受表面渦的影響,從而產(chǎn)生更大范圍的回流和旋渦。經(jīng)過優(yōu)化后可以發(fā)現(xiàn),各個(gè)斷面相比于原模型流態(tài)穩(wěn)定性大幅度提升,各斷面均沒有明顯的嚴(yán)重偏流和大范圍回流旋渦存在,喇叭管附近也無(wú)高強(qiáng)度的旋渦生成,而僅在部分?jǐn)嗝婵拷髩ξ恢靡约伴l門后方存在十分微弱的旋渦,這可能與固壁的影響有關(guān)。其余2個(gè)方案也有類似的結(jié)果。從表7也可以得出,原模型3種方案下1和2斷面處的平均流速分布均勻度分別為53.65%和61.65%,特征斷面流速分布均勻度較低,容易影響泵站穩(wěn)定性及效率,經(jīng)過優(yōu)化后,特征斷面1和2平均流速分布均勻度分別為78.67%和85.06%,分別提高了約25.02和23.41個(gè)百分點(diǎn),流態(tài)顯著改善,說明優(yōu)化方法對(duì)于提高設(shè)計(jì)水位各方案下的流動(dòng)穩(wěn)定性具有明顯效果。

      圖5 A1方案特征斷面速度分布

      表7 設(shè)計(jì)水位下各運(yùn)行方案斷面流速均勻度

      圖6至圖8為設(shè)計(jì)水位下3種方案喇叭管出口斷面(泵進(jìn)口斷面)流速分布情況。由圖可知,原模型中各泵組喇叭管出口斷面流速分布總體呈現(xiàn)中間大四周小的趨勢(shì),且中高流速區(qū)域與中心位置均發(fā)生明顯偏離,一定程度上降低了循環(huán)水泵的進(jìn)水條件。模型優(yōu)化后,各泵組喇叭管出口斷面流速由中心向四周均勻減小,且中高流速區(qū)域基本同中心位置重合,能夠?yàn)檠h(huán)水泵提供良好的進(jìn)水條件。從表8可知,原模型各運(yùn)行方案喇叭管出口斷面流速加權(quán)平均偏流角平均值為65.49°,模型優(yōu)化后,各泵組運(yùn)行方案喇叭管出口斷面流速加權(quán)平均偏流角平均值為79.44°,比原模型提高了13.95°,水流穩(wěn)定性明顯提高,進(jìn)一步說明該優(yōu)化方法對(duì)于提高設(shè)計(jì)水位不同方案的流動(dòng)穩(wěn)定性具有明顯效果。

      圖6 設(shè)計(jì)水位下A1方案喇叭管出口斷面流速分布

      圖7 設(shè)計(jì)水位下A2方案喇叭管出口斷面流速分布

      圖8 設(shè)計(jì)水位下A3方案喇叭管出口斷面流速分布

      表8 設(shè)計(jì)水位下各方案喇叭管出口斷面流速加權(quán)平均偏流角

      2.3.2 低水位優(yōu)化模型數(shù)值計(jì)算結(jié)果

      選擇B1方案的流場(chǎng)計(jì)算結(jié)果進(jìn)行低水位下側(cè)向進(jìn)水結(jié)構(gòu)優(yōu)化前后流態(tài)差異分析,如圖9所示。同設(shè)計(jì)水位一樣,對(duì)于原模型,隨著斷面高度的增加,大尺度旋渦、回流以及偏流現(xiàn)象更加明顯,與之不同的是,這些旋渦的強(qiáng)度和尺度有所減小,這是因?yàn)槠露鹊拇嬖跁?huì)使得閘門承受一定水壓,水位較高時(shí),壓力較大,水流通過閥門后擴(kuò)散作用較強(qiáng),在進(jìn)水流道內(nèi)產(chǎn)生高強(qiáng)度大尺度旋渦,水位較低時(shí),閘門的埋入深度較小,水壓更小,因此水流通過閘門后,其擴(kuò)散作用也較弱,在進(jìn)水流道內(nèi)形成得旋渦強(qiáng)度和尺度都更小。模型優(yōu)化后,側(cè)向進(jìn)水結(jié)構(gòu)沒有出現(xiàn)明顯的偏流和大范圍回流旋渦。其余兩個(gè)方案也有類似的結(jié)果。從表9也可以看出,對(duì)于原模型,1和2斷面的平均流速分布均勻度分別為55.14%和67.43%,比設(shè)計(jì)水位下的流速分布均勻度有所提高,經(jīng)過優(yōu)化后,1和2斷面的平均流速分布均勻度分別為83.02%和85.73%,分別提高了27.88和18.30個(gè)百分點(diǎn)較于原模型顯著提高,說明優(yōu)化方法對(duì)于提高低水位工況各方案的流動(dòng)穩(wěn)定性也具有明顯效果。

      圖9 B1方案特征斷面速度分布

      圖10至圖12為低水位工況下3種方案喇叭管出口斷面流速分布情況。對(duì)于原模型,中間高流速區(qū)域與中心位置偏離程度較高,嚴(yán)重降低了循環(huán)水泵的水泵進(jìn)水條件。模型優(yōu)化后,B1和B3方案喇叭管出口斷面流速分布均勻性極大提高,中高流速區(qū)域與中心位置重合,但是B2方案喇叭管出口斷面四周出現(xiàn)小范圍高速區(qū),說明優(yōu)化結(jié)果對(duì)該運(yùn)行方案流態(tài)的改善效果不強(qiáng),但是對(duì)于其他運(yùn)行方案流態(tài)的改善效果十分明顯。從表10可知,原模型各運(yùn)行方案喇叭管出口斷面流速加權(quán)平均偏流角平均值約為63.72°,優(yōu)化后喇叭管出口斷面流速加權(quán)平均偏流角平均值約為78.51°,平均增幅為14.79°,總體上改善較為明顯,進(jìn)一步說明優(yōu)化方法對(duì)于提高低水位工況各方案的流動(dòng)穩(wěn)定性也具有一定效果。

      表9 低水位下各運(yùn)行方案斷面流速分布均勻度

      圖10 低水位下B1方案喇叭管出口斷面流速分布

      圖11 低水位下B2方案喇叭管出口斷面流速分布

      圖12 低水位下B3方案喇叭管出口斷面流速分布

      表10 低水位下各方案喇叭管出口斷面流速加權(quán)平均偏流角

      3 結(jié) 論

      本文基于計(jì)算流體力學(xué)和響應(yīng)面法對(duì)泵站側(cè)向進(jìn)水前池關(guān)鍵幾何參數(shù)進(jìn)行了優(yōu)化,并將優(yōu)化后的側(cè)向進(jìn)水結(jié)構(gòu)內(nèi)部流動(dòng)特性同原模型進(jìn)行了對(duì)比分析,主要得到以下結(jié)論:

      1)側(cè)向進(jìn)水前池?cái)U(kuò)散角、坡度、轉(zhuǎn)向角都是影響側(cè)向進(jìn)水結(jié)構(gòu)出口斷面流速分布均勻度的重要參數(shù),其對(duì)出口斷面流速分布均勻度的影響程度從大到小依次為:轉(zhuǎn)向角、擴(kuò)散角、坡度。

      2)為了使喇叭管出口斷面流速分布均勻度達(dá)到最優(yōu),側(cè)向進(jìn)水前池?cái)U(kuò)散角應(yīng)在10°~13°之間,坡度應(yīng)在8°~9°之間,轉(zhuǎn)向角應(yīng)在74°~75°之間。

      3)響應(yīng)面優(yōu)化結(jié)果對(duì)于改善設(shè)計(jì)水位和低水位下其他運(yùn)行方案的流態(tài)也具有明顯效果。在設(shè)計(jì)水位下,優(yōu)化后的側(cè)向進(jìn)水結(jié)構(gòu)在特征斷面1和2處流速分布均勻度分別提高了約25.02和23.41個(gè)百分點(diǎn),喇叭管出口斷面加權(quán)偏流角提高了13.95°左右;在低水位下,優(yōu)化后的側(cè)向進(jìn)水結(jié)構(gòu)在特征斷面1和2處流速分布均勻度分別提高了約27.88和18.30個(gè)百分點(diǎn),喇叭管出口斷面加權(quán)偏流角提高了14.79°左右,優(yōu)化后的側(cè)向進(jìn)水結(jié)構(gòu)沒有偏斜流和大面積回流產(chǎn)生,水力性能明顯提升。

      [1] Kong Y, Kong Z, Liu Z, et al. Pumped storage power stations in China: The past, the present, and the future[J]. Renewable & Sustainable Energy Reviews, 2017, 71: 720-731.

      [2] Gustavo A, Mutasem E F. Effects of approach flow conditions on pump sump design[J]. Journal of Hydraulic Engineering, 1996, 122(9): 489-494.

      [3] 高傳昌,曾新樂,解克宇,等. 泵站進(jìn)水池超低水位下組合整流方案與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):101-108.

      Gao Chuanchang, Zeng Xinle, Xie Keyu, et al. Combined rectification scheme of pump intake sump in ultra-low water level and its verification[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 101-108. (in Chinese with English abstract)

      [4] Zhang H, Shi W D, Chen B, et al. Experimental study of flow field in interference area between impeller and guide vane of axial flow pump[J]. Journal of Hydrodynamics, Ser. B, 2015, 26(6): 894-901.

      [5] Kim C G, Kim B H, Bang B H, et al. Experimental and CFD analysis for prediction of vortex and swirl angle in the pump sump station model[A]//IOP Conference Series: Materials Science and Engineering[C]. Macau, China: 4th Global Conference on Materials Science and Engineering, 2015, 72(4): 42-44.

      [6] Fockert A D, Westende J M C V, Verhaart F I H, et al. Automatic swirl angle measurements for pump intake design[J]. Journal of Hydraulic Research/Journal de Recherches Hydraulique, 2015, 53(3): 384-393.

      [7] Sotoudeh N, Maddahian R, Cervantes M J. Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube[J]. Renewable Energy, 2015, 7(2): 547086.

      [8] Yang F, Liu C. Numerical and experimental investigations of vortex flows and vortex suppression schemes in the intake passage of pumping system[J]. Advances in Mechanical Engineering, 2015(2).

      [9] 蔣紅櫻,成立,顏紅勤,等. 不同形狀的泵站封閉式進(jìn)水池喇叭口水力性能模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(13):31-35.

      Jiang Hongying, Cheng Li, Yan Hongqin, et al. Simulation and validation of hydraulic performance of closed-style pump sump with different bell-mouth shapes[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 31-35. (in Chinese with English abstract)

      [10] Cheng B, Yu Y. CFD simulation and optimization for lateral diversion and intake pumping stations[J]. Procedia Engineering, 2012, 28: 122-127.

      [11] 資丹,王本宏,王福軍,等. 開機(jī)組合對(duì)泵站進(jìn)水系統(tǒng)泥沙濃度分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(7):59-68.

      Zi Dan, Wang Benhong, Wang Fujun, et al. Influence of start-up pump units on the sediment concentration for the intake system of a pumping station[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 59-68. (in Chinese with English abstract)

      [12] Huang X, Guo Q, Qiu B, et al. Prediction of air-entrained vortex in pump sump: Influence of turbulence models and interface-tracking methods[J]. Journal of Hydraulic Engineering, 2020, 146(4): 04020010.

      [13] 李志祥,馮建剛,錢尚拓,等. 排水泵站整流底坎參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(3):56-63.

      Li Zhixiang, Feng Jiangang, Qian Shangtuo, et al. Optimization of rectification bottom sill parameters in drainage pumping stations[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 56-63. (in Chinese with English abstract)

      [14] 徐存東,王國(guó)霞,劉輝,等. 大型泵站正向前池防淤優(yōu)化模擬研究[J]. 武漢大學(xué)學(xué)報(bào)(工學(xué)版),2018,51(7):577-588.

      Xu Cundong, Wang Guoxia, Liu Hui, et al. Simulation study of preventing sedimentation in front inflow forebay at large-scale pumping station[J]. Engineering Journal of Wuhan University, 2018, 51(7): 577-588. (in Chinese with English abstract)

      [15] 葛新峰,馮源,鄭源,等. 側(cè)向進(jìn)水泵站配水孔數(shù)模優(yōu)化[J]. 水利水電技術(shù),2010,41(3):59-63.

      Ge Xinfeng, Feng Yuan, Zheng Yuan, et al. Numerical model based optimization on distribution hole of pumping station with side inlet[J]. Water Resources and Hydropower Engineering, 2010, 41(3): 59-63. (in Chinese with English abstract)

      [16] 徐捷,施偉,袁壽其,等. 基于Star CCM+的閘站上游流道方案設(shè)計(jì)與數(shù)值模擬[J]. 排灌機(jī)械工程學(xué)報(bào),2021,39(1):37-43.

      Xu Jie, Shi Wei, Yuan Shouqi, et al. Design and numerical simulation of upstream channel in sluice-pumping station based on Star-CCM+[J]. Journal of Drainage and Irrigation Machinery, 2021, 39(1): 37-43. (in Chinese with English abstract)

      [17] 徐磊,夏斌,施偉,等.中隔墩長(zhǎng)度對(duì)斜式軸伸泵裝置出水流道水力特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):74-81.

      Xu Lei, Xia Bin, Shi Wei, et al. Influence of middle pier lengths on hydraulic characteristic of outlet conduit in pump system with slanted extension shaft[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 74-81. (in Chinese with English abstract)

      [18] 資丹,王福軍,姚志峰,等. 大型泵站進(jìn)水流場(chǎng)組合式導(dǎo)流墩整流效果分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):71-77.

      Zi Dan, Wang Fujun, Yao Zhifeng, et al. Effects analysis on rectifying intake flow field for large scale pumping station with combined diversion[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 71-77. (in Chinese with English abstract)

      [19] 李顏雁,郭鵬程,孫龍剛,等. 立柱對(duì)大型泵站前池和進(jìn)水池流態(tài)影響的數(shù)值分析[J]. 排灌機(jī)械工程學(xué)報(bào),2021,39(9):929-936.

      Li Yanyan, Guo Pengcheng, Sun Longgang, et al. Numerical analysis on influence of vertical column on flow pattern in forebay and intake of large pumping station[J]. Journal of Drainage and Irrigation Machinery, 2021, 39(9): 929-936. (in Chinese with English abstract)

      [20] 營(yíng)佳瑋,俞曉東,賀蔚,等. 基于流體體積模型的泵站前池流態(tài)及組合式整流方案[J]. 排灌機(jī)械工程學(xué)報(bào),2020,38(5):476-480,493.

      Ying Jiawei, Yu Xiaodong, He Wei, et al. Volume of fluid model-based flow pattern in forebay pump sump station and combined rectification scheme[J]. Journal of Drainage and Irrigation Machinery, 2020, 38(5): 476-480, 493. (in Chinese with English abstract)

      [21] Constantinescu G S, Patel V C. Role of turbulence model in prediction of pump-bay vortices[J]. Journal of Hydraulic Engineering, 2000, 126(5): 387-391.

      [22] 何婷婷,史志鵬,張濤,等. 基于CFD的泵站開敞式進(jìn)水池后壁形狀的優(yōu)化設(shè)計(jì)[J]. 中國(guó)農(nóng)村水利水電,2013(6):85-87.

      He Tingting, Shi Zhipeng, Zhang Tao, et al. Optimization and design of the after-wall shape about open pump sump on CFD[J]. China Rural Water and Hydropower, 2013(6): 85-87. (in Chinese with English abstract)

      [23] 資丹,王福軍,姚志峰,等. 基于響應(yīng)曲面模型的泵站進(jìn)水池參數(shù)優(yōu)化方法研究[J]. 水利學(xué)報(bào),2017,48(5):594-607.

      Zi Dan, Wang Fujun, Yao Zhifeng, et al. Research on optimization method of pump sump parameters based on response surface model[J]. Journal of Hydraulic Engineering, 2017, 48(5): 594-607. (in Chinese with English abstract)

      [24] Gao X, Tian Y, Sun B. Multi-objecive optimization design of bidirectional flow passage components using RSM and NSGA: A case study of inlet/outlet diffusion segement in pumped storage power station[J]. Renewable Energy, 2018, 115: 999-1013.

      [25] 徐穎. 基于響應(yīng)面法的側(cè)向進(jìn)水泵站前池整流措施研究[D]. 揚(yáng)州:揚(yáng)州大學(xué),2021.

      Xu Ying. Research on Rectification Measures for Forebay Side-inlet Pumping Station based on Response Surface Method[D]. Yangzhou: Yangzhou University, 2021.

      [26] Tsan-Hsing S, WilliaW L, Aamir S. A new-eddy viscosity model for high Reynolds number turbulent flows: Model development and validation[J]. Computers & Fluids, 1995, 24(3): 227-238.

      [27] 張校文,劉超,榮迎春,等.多機(jī)組泵站正向進(jìn)水陣列式隔板整流模擬及試驗(yàn)驗(yàn)證[J].排灌機(jī)械工程學(xué)報(bào),2022, 40(4):378-384.

      Zhang Xiaoyou, Liu Chao, Rong Yingchun, et al. Numerical simulation and experimental verification of forward feed array diaphragm rectifier for multi-unit pumping station[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(4): 378-384. (in Chinese with English abstract)

      [28] 劉志泉,成立,卜舸,等. 泵站正向進(jìn)水前池“V”形導(dǎo)流墩整流數(shù)值模擬[J].中國(guó)農(nóng)村水利水電,2022,(3):183-188.

      Liu Zhiquan, Cheng Li, Bu Ge, et al. Numerical simulation of V-shaped diversion pier for improving the flow pattern in forward inlet forebay of the pumping station[J]. China Rural Water and Hydropower, 2022, (3):183-188. (in Chinese with English abstract)

      Optimizing the geometric parameters for the lateral inflow forebay of the pump sump

      Li Ming1, Wang Yong1,2※, Xiong Wei1, Wang Xiaolin1, Liu Houlin1

      (1.,,212013,;2.215104)

      Lateral inflow forebay is inevitably utilized to connect the diversion and inlet passage in water transport engineering, because of geographical and construction constraints. However, the flow in the lateral inlet forebay is very easy to generate undesirable flow patterns (such as the flow separation and backflow) leading to vibration and low operating efficiency. In this study, the geometric parameters were optimized for the lateral inlet forebay of the pump sump using Computational Fluid Dynamics (CFD) and Response Surface Method (RSM), in order to improve the flow pattern for the high efficiency of the pump unit. Firstly, the parametric design was realized for the lateral inflow forebay of the pump sump using the 3D modeling software NX 10.0. There were the specified parameters associated with the Workbench, such as the diffusion angle, slope, and turning angleof the lateral inlet forebay. Secondly, the typical Box-Behnke Design (BBD) was selected to determine the three factors and three levels test. 17 groups of test schemes were obtained to simulate the flow field of the lateral inlet structure under the Fluent platform. Thirdly, the optimization target was selected as the uniformity of velocity distribution at the horn tube outlet section. The second-order polynomial regression equation was utilized to establish the regression equation of velocity distribution uniformity at the horn tube outlet section and geometric parameters, namely the diffusion angle, slope, and turning angleof the lateral inlet forebay. Subsequently, the significance of the regression equation was evaluated by the analysis of variance. As such, the regression equation reflected the relationship between the response values and factors. The maximum uniformity of velocity distribution at the outlet section was selected as the response target to determine the optimal parameter combination. Finally, the internal flow characteristics of the optimal lateral inlet structure were compared with the original model, including the uniformity of velocity distribution and the velocity-weighted average drift angle. Results indicate that there was a significant influence of the diffusion angle, slope, and turning angleon the velocity distribution uniformity at the horn tube outlet section. Among them, the most significant was the turning angle, whereas, the less significant was the slope. Furthermore, there was no significance of the slope, and the turning angleon the coupling effect of velocity distribution uniformity at the outlet section. By contrast, the diffusion angle and turning angle posed the most significance on the coupled uniformity of velocity distribution at the outlet section, in terms of the interaction between the diffusion angleand slope. Moreover, there was the greatest influence of the interaction between the diffusion angleand the turning angle. But, the least influence was found in the interaction between the diffusion angleand the slope. An optimal uniformity of the velocity distribution was achieved at the horn tube outlet section under the lateral inlet forebay with the diffusion angleof 10°-13°, the slopeof 8°-9°, and the turning angleof 74°-75°. Compared with the original model, the cross-sectional velocity distribution uniformity of the optimized lateral inlet structure under design water level increased by 23.41 percentage points at least, and the velocity-weighted average drift angle increased by 13.95°, similarly, under low water level, the cross-sectional velocity distribution uniformity of the optimized lateral inlet structure increased by 18.30 percentage points at least, and the velocity-weighted average drift angle increased by 14.79°. More importantly, there was no deflected flow and large-area reflux in the channel. These findings can provide the positive significance to promote an optimal design of the lateral inlet structure of the pump sump.

      pump station; optimization; numerical simulation; lateral inlet forebay; flow pattern; geometric parameter

      10.11975/j.issn.1002-6819.2022.19.008

      TV675

      A

      1002-6819(2022)-19-0069-09

      李明,王勇,熊偉,等. 泵站側(cè)向進(jìn)水前池幾何參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(19):69-77.doi:10.11975/j.issn.1002-6819.2022.19.008 http://www.tcsae.org

      Li Ming, Wang Yong, Xiong Wei, et al. Optimizing the geometric parameters for the lateral inflow forebay of the pump sump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 69-77. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.008 http://www.tcsae.org

      2022-08-01

      2022-09-28

      國(guó)家自然科學(xué)基金資助項(xiàng)目(51979126)

      李明,研究方向?yàn)樗栈夹g(shù)及其應(yīng)用。Email:2293372963@qq.com

      王勇,博士,研究員,博士生導(dǎo)師,研究方向?yàn)樗C(jī)械空化機(jī)理及特性。Email:wylq@ujs.cn

      猜你喜歡
      前池流態(tài)均勻度
      低播量下雜交稻產(chǎn)量形成對(duì)種植均勻度的響應(yīng)
      作物研究(2023年2期)2023-05-28 13:44:14
      泵站非常規(guī)進(jìn)水前池的優(yōu)化設(shè)計(jì)
      側(cè)邊機(jī)組故障對(duì)泵站前池流態(tài)的影響
      均勻度控制不佳可致肉種雞晚產(chǎn)
      水泵進(jìn)水前池及流道的三維數(shù)值模擬研究
      中小型水電站壓力前池安全運(yùn)行探討
      改進(jìn)邊界條件的非恒定流模型在城市河流橡膠壩流態(tài)模擬中的應(yīng)用
      錦綸長(zhǎng)絲染色均勻度判色新方法
      動(dòng)態(tài)流態(tài)冰蓄冷系統(tǒng)在千級(jí)凈化廠房的應(yīng)用
      基于TM遙感影像的河口流態(tài)信息半定量化研究
      铜川市| 临沧市| 莫力| 阳朔县| 清原| 酒泉市| 兴城市| 营山县| 阜康市| 柏乡县| 洪泽县| 建昌县| 万源市| 项城市| 专栏| 米易县| 西乡县| 永丰县| 青浦区| 肃北| 北海市| 咸阳市| 门头沟区| 屏南县| 东山县| 建平县| 邻水| 望奎县| 洛阳市| 三亚市| 鄂托克前旗| 庆安县| 楚雄市| 丘北县| 沁源县| 灵丘县| 日照市| 永定县| 民权县| 苏尼特右旗| 江陵县|