岳 偉1,,陳 曦1,,曹 強(qiáng),占新春,阮新民,徐建鵬1,,郁凌華5
安徽省稻米氣候品質(zhì)評價方法
岳 偉1,2,陳 曦1,2,曹 強(qiáng)3,占新春4,阮新民4※,徐建鵬1,2,郁凌華5
(1. 安徽省農(nóng)業(yè)氣象中心,合肥 230031; 2. 安徽省大氣科學(xué)與衛(wèi)星遙感重點實驗室,合肥 230031;3. 六安市氣象局,六安 237000;4. 安徽省農(nóng)業(yè)科學(xué)院水稻研究所,合肥 230031;5. 滁州市氣象局,滁州 239000)
為科學(xué)評價區(qū)域稻米氣候品質(zhì)提供技術(shù)支撐,該研究基于2008—2018年安徽省區(qū)域性試驗稻米品質(zhì)資料及對應(yīng)站點氣象數(shù)據(jù),采用數(shù)理統(tǒng)計方法,明確了稻米品質(zhì)形成關(guān)鍵期和最佳溫度,建立了中秈和中粳稻米氣候品質(zhì)評價模型,并利用2018年分期播種試驗稻米品質(zhì)資料對模型進(jìn)行驗證。結(jié)果表明:中秈和中粳稻米品質(zhì)形成關(guān)鍵期分別為齊穗后33 d和36 d,稻米品質(zhì)形成的適宜溫度分別為24.8 ℃和23.0 ℃。將稻米氣候品質(zhì)劃分為“特優(yōu)”“優(yōu)”“良好”“一般”4個等級,對應(yīng)中秈稻米氣候品質(zhì)指數(shù)(I)范圍分別為:I≥3.40、3.09≤I<3.40、2.73≤I<3.09、I<2.73,中粳稻米氣候品質(zhì)指數(shù)范圍分別為:I≥3.36、3.08≤I<3.36、2.68≤I<3.08、I<2.68。經(jīng)驗證,與實際等級相比,模型計算得到的中秈和中粳稻米氣候品質(zhì)等級準(zhǔn)確率均為80%。該研究建立的評價模型可用于中秈和中粳稻米的氣候品質(zhì)評價工作。
農(nóng)業(yè);作物;水稻;稻米品質(zhì);溫度;評價模型
水稻是中國種植面積最廣、總產(chǎn)最高的糧食作物,在糧食生產(chǎn)和消費中一直處于主導(dǎo)地位[1]。近年來,隨著經(jīng)濟(jì)的發(fā)展和生活水平的提高,人們對稻米的需求由追求數(shù)量向追求質(zhì)量轉(zhuǎn)變?!笆濉逼陂g,中國水稻品種稻米優(yōu)質(zhì)率由2015年的27.3%快速增加到2020年的49.2%[2]。品質(zhì)的優(yōu)劣已成為決定稻米市場競爭力的重要因素,開展品質(zhì)第三方評價或認(rèn)證是提高稻米聲譽(yù)、增強(qiáng)競爭力的有效手段之一[3]。由農(nóng)業(yè)部推行的“三品一標(biāo)”認(rèn)證,在提升農(nóng)產(chǎn)品品質(zhì)、打造品牌等方面發(fā)揮了重要作用[4]。農(nóng)產(chǎn)品氣候品質(zhì)評價即綜合評定天氣氣候條件對農(nóng)產(chǎn)品品質(zhì)影響的優(yōu)劣等級[5],是近年來氣象部門開展為農(nóng)服務(wù)工作的一項新舉措,對提升農(nóng)產(chǎn)品的附加值和市場競爭力具有重要意義。
稻米品質(zhì)除了受栽培條件、遺傳特性影響外,環(huán)境條件也是影響其重要因素之一[6]。水稻灌漿期溫度偏高,會導(dǎo)致灌漿加速,籽粒中不規(guī)格淀粉粒增加,淀粉排列結(jié)構(gòu)更加無序,使得堊白粒率和堊白度顯著增加,糙米率、整精米率下降[7-8];晝夜溫差大,日照時數(shù)充足,有利于降低稻米堊白粒率和堊白度,提高稻米蛋白質(zhì)含量[9]。因此,利用氣象因子開展稻米氣候品質(zhì)評價具有實際意義,建立基于氣象條件的客觀化、定量化評價模型是開展稻米氣候品質(zhì)評價工作的基礎(chǔ)。目前國內(nèi)眾多學(xué)者對農(nóng)產(chǎn)品氣候品質(zhì)評價方法開展了深入研究。金志鳳等[5]應(yīng)用加權(quán)指數(shù)求和法,建立了浙江省茶葉氣候品質(zhì)評價模型;楊棟等[10]將Monte Carlo法和TS評分法相結(jié)合,構(gòu)建了水蜜桃氣候品質(zhì)評價模型;謝遠(yuǎn)玉等[11]采用相關(guān)普查、逐步回歸和主成分回歸分析等方法篩選影響臍橙品質(zhì)的關(guān)鍵氣象因子,建立臍橙氣候品質(zhì)指標(biāo)評價模型;李德等[12]采用主成分分析法、有序樣本最優(yōu)聚類法和逐步回歸法等統(tǒng)計方法,建立碭山酥梨氣候品質(zhì)評價模型;陳惠等[13]采用相關(guān)分析、加權(quán)指數(shù)求和法,結(jié)合文獻(xiàn)查閱、專家調(diào)研以及常規(guī)農(nóng)業(yè)氣象條件定量化等級評價標(biāo)準(zhǔn),構(gòu)建青棗氣候品質(zhì)等級評價模型。
安徽省地處長江和淮河中下游地區(qū),是全國水稻的主產(chǎn)省之一,常年種植面積250萬hm2左右,總產(chǎn)150億kg左右[14],在保障全省乃至全國的糧食安全生產(chǎn)中具有舉足輕重的作用。目前,安徽省關(guān)于農(nóng)產(chǎn)品氣候品質(zhì)評價方法的研究多集中在碭山酥梨[12]、茶葉[15]、獼猴桃[16]等,而針對稻米的氣候品質(zhì)評價方法鮮有報道。國內(nèi)部分省份雖已開展了稻米氣候品質(zhì)評價模型的研究[17-18],但評價方法以定性描述為主,缺少稻米品質(zhì)資料作為支撐,模型的科學(xué)性略顯不足。本研究利用安徽省2008—2018年區(qū)域性試驗和2018年分期播種試驗稻米品質(zhì)資料及對應(yīng)站點逐日氣象數(shù)據(jù),在前人研究的基礎(chǔ)上,確定影響稻米氣候品質(zhì)形成的主要氣象因子,分別構(gòu)建了稻米氣候品質(zhì)和氣象條件的表征參量,并建立中秈和中粳稻米氣候品質(zhì)評價模型,以期為安徽省稻米氣候品質(zhì)的定量化評價及優(yōu)質(zhì)稻米生產(chǎn)氣候資源合理利用提供參考依據(jù)。
稻米品質(zhì)數(shù)據(jù)資料來源于2008—2018年安徽省水稻區(qū)域性試驗,地點為中秈和中粳典型種植區(qū)的合肥市、滁州市和鳳臺縣。中秈和中粳樣本數(shù)分別為220和165個,主要用于建立氣候品質(zhì)評價模型。2018年在安徽省廬江縣進(jìn)行中秈和中粳分期播種試驗,播期分別為5月10日、5月20日、5月30日、6月9日、6月19日,其品質(zhì)數(shù)據(jù)用于氣候品質(zhì)評價模型的驗證。稻米品質(zhì)指標(biāo)包括糙米率、精米率、整精米率、粒長、長寬比、堊白粒率、堊白度、透明度、堿消值、膠稠度、直鏈淀粉含量、蛋白質(zhì)共12項。合肥、滁州、鳳臺、廬江站點對應(yīng)年份逐日氣象資料來自于安徽省氣象信息中心,主要包括日平均氣溫(℃)、最高氣溫(℃)、最低氣溫(℃)、輻射(MJ/m2)等要素。
稻米氣候品質(zhì)評價方法研究思路如下:1)參照《食用稻品種品質(zhì) NY/T 593-2021》[19]標(biāo)準(zhǔn),確定稻米品質(zhì)評價指標(biāo)及各指標(biāo)分級標(biāo)準(zhǔn),計算稻米氣候品質(zhì)指數(shù);2)以溫度作為影響稻米氣候品質(zhì)的主要氣象要素,通過分析齊穗后不同時段平均溫度與稻米氣候品質(zhì)指數(shù)的拋物線決定系數(shù),確定稻米品質(zhì)形成關(guān)鍵期;3)建立稻米氣候品質(zhì)指數(shù)與溫度的關(guān)系函數(shù),同時考慮稻米品質(zhì)形成關(guān)鍵期輻射和氣溫日較差的影響,利用計算機(jī)數(shù)值模擬,形成基于溫度、輻射和氣溫日較差的綜合氣象條件指數(shù);4)采用回歸分析,建立基于綜合氣象條件指數(shù)的稻米氣候品質(zhì)評價模型,再根據(jù)農(nóng)產(chǎn)品氣候品質(zhì)認(rèn)證技術(shù)規(guī)范,對稻米氣候品質(zhì)指數(shù)進(jìn)行分級,采用聚類分析確定不同氣候品質(zhì)等級對應(yīng)的氣候品質(zhì)指數(shù)。
1.2.1 稻米氣候品質(zhì)指數(shù)
農(nóng)產(chǎn)品氣候品質(zhì)指由年際間氣象條件決定的初級農(nóng)產(chǎn)品品質(zhì)[20],本研究以氣候品質(zhì)指數(shù)表征中秈和中粳稻米的氣候品質(zhì)。根據(jù)《食用稻品種品質(zhì) NY/T 593-2021》[19],選擇整精米率、堊白度、透明度、堿消值、膠稠度、直鏈淀粉含量6項指標(biāo)作為中秈和中粳稻米氣候品質(zhì)的評價指標(biāo)。中秈和中粳稻米氣候品質(zhì)指數(shù)計算方法如下:
式中I為中秈和中粳稻米氣候品質(zhì)指數(shù);a為第個中秈和中粳稻米氣候品質(zhì)指標(biāo)的權(quán)重系數(shù);m為第個中秈和中粳稻米氣候品質(zhì)指標(biāo)對應(yīng)等級的賦值。
其中,中秈和中粳稻米氣候品質(zhì)指標(biāo)的權(quán)重系數(shù)參照《食用稻品種品質(zhì)NY/T 593-2002》[21],并結(jié)合專家經(jīng)驗得到(表1);中秈和中粳稻米氣候品質(zhì)指標(biāo)等級賦值參照食用稻品質(zhì)分級方法[20],將各項品質(zhì)指標(biāo)劃分為4個等級,其中一級至三級對應(yīng)優(yōu)質(zhì)稻米的一等至三等劃分標(biāo)準(zhǔn),四級對應(yīng)普通稻米劃分標(biāo)準(zhǔn),一級至四級分別賦予4~1的數(shù)值。
表1 中秈和中粳稻米氣候品質(zhì)指標(biāo)權(quán)重系數(shù)
1.2.2 綜合氣象條件指數(shù)
灌漿結(jié)實期是稻米品質(zhì)形成的關(guān)鍵期,該時段內(nèi)平均氣溫是影響稻米品質(zhì)的主要氣象因子,其次為輻射和氣溫日較差[22-24]。本研究以稻米品質(zhì)形成關(guān)鍵期的平均氣溫為主要影響因子,引入輻射系數(shù)和氣溫日較差系數(shù),形成綜合氣象條件指數(shù),計算方法如下:
Y=·(r)·(d)(2)
式中Y為綜合氣象條件指數(shù);為稻米品質(zhì)形成關(guān)鍵期平均氣溫,℃;(r)為輻射系數(shù);(d)為氣溫日較差系數(shù)。輻射系數(shù)和氣溫日較差系數(shù)采用一元線性方程表示,以綜合氣象條件指數(shù)與氣候品質(zhì)指數(shù)的決定系數(shù)作為判定依據(jù),確定其回歸系數(shù)和常數(shù)項。
1.2.3 稻米氣候品質(zhì)評價方法
基于稻米氣候品質(zhì)指數(shù)和綜合氣象條件指數(shù),采用回歸分析,分別建立中秈和中粳稻米氣候品質(zhì)評價模型。根據(jù)《農(nóng)產(chǎn)品氣候品質(zhì)認(rèn)證技術(shù)規(guī)范 QX/T593-2019》[19],將中秈和中粳稻米氣候品質(zhì)分為“特優(yōu)”“優(yōu)”“良”和“一般”4個等級,采用聚類分析,確定中秈和中粳稻米不同氣候品質(zhì)等級對應(yīng)的氣候品指數(shù)。
本研究采用DPS 18.10統(tǒng)計軟件對數(shù)據(jù)進(jìn)行相關(guān)分析、回歸分析、聚類分析、正態(tài)分布檢驗,利用Visual Basic程序?qū)λ酒焚|(zhì)形成關(guān)鍵期的輻射和氣溫日較差系數(shù)進(jìn)行循環(huán)模擬。
為明確中秈和中粳稻米品質(zhì)形成關(guān)鍵期,利用式(1)計算各樣本氣候品質(zhì)指數(shù),再統(tǒng)計稻米齊穗后不同日數(shù)的平均氣溫,其中中秈稻米統(tǒng)計日數(shù)為齊穗后11~35 d,中粳稻米為齊穗后11~40 d。程方民等[22]研究表明,水稻灌漿結(jié)實期前30 d的氣象條件與稻米品質(zhì)的形成最為密切,假設(shè)本研究稻米品質(zhì)形成關(guān)鍵期也為水稻齊穗至齊穗后(以下簡稱:齊穗后)30 d。采用線性、指數(shù)、對數(shù)、拋物線等回歸分析方法,分別對中秈和中粳稻米氣候品質(zhì)指數(shù)與齊穗后30 d的平均溫度進(jìn)行擬合,發(fā)現(xiàn)中秈和中粳稻米品質(zhì)指數(shù)與齊穗后30 d平均溫度呈明顯的拋物線關(guān)系,因此本研究采用拋物線回歸方程擬合稻米氣候品質(zhì)指數(shù)與溫度之間的關(guān)系。將中秈和中粳稻米氣候品質(zhì)指數(shù)與齊穗后不同日數(shù)平均氣溫進(jìn)行拋物線回歸分析,并計算其決定系數(shù),其中決定系數(shù)最大值對應(yīng)的齊穗后日數(shù)即為品質(zhì)形成關(guān)鍵期。結(jié)果表明(圖1),中秈和中粳稻米氣候品質(zhì)指數(shù)分別與齊穗后33、36 d平均氣溫決定系數(shù)最大,分別為0.364、0.382均達(dá)到<0.01顯著性水平。采用拋物線回歸分析,建立稻米氣候品質(zhì)指數(shù)與齊穗后平均氣溫的回歸模型如下:
式中1和2分別為中秈和中粳稻米氣候品質(zhì)指數(shù);1和2分別中秈稻米齊穗后33 d平均氣溫和中粳稻米齊穗后36 d平均氣溫。利用配方法求出方程的最大值分別為24.8和23.0,即中秈和中粳稻米品質(zhì)形成的適宜溫度為24.8和23.0 ℃。
圖1 中秈和中粳稻米氣候品質(zhì)指數(shù)與齊穗后33 d、36 d平均氣溫的關(guān)系
2.2.1 綜合氣象條件指數(shù)計算
通過2.1節(jié)分析,稻米氣候品質(zhì)指數(shù)與齊穗后的平均氣溫呈顯著的拋物線關(guān)系,為進(jìn)一步驗證前人[22-24]關(guān)于輻射和氣溫日較差是影響稻米品質(zhì)的次要因子的結(jié)論,進(jìn)一步分析稻米氣候品質(zhì)指數(shù)與品質(zhì)形成關(guān)鍵期輻射和氣溫日較差的相關(guān)性。結(jié)果表明,中秈稻米氣候品質(zhì)指數(shù)與齊穗后33 d輻射和氣溫日較差相關(guān)系數(shù)分別為0.171、0.389,中粳稻米氣候品質(zhì)指數(shù)與齊穗后36 d輻射和氣溫日較差相關(guān)系數(shù)分別0.175、0.220均達(dá)到<0.05顯著性水平,說明關(guān)鍵期輻射和氣溫日較差對稻米品質(zhì)存在顯著影響。
由于稻米氣候品質(zhì)指數(shù)與品質(zhì)形成關(guān)鍵期平均氣溫呈拋物線關(guān)系,當(dāng)關(guān)鍵期平均氣溫小于稻米品質(zhì)形成的適宜溫度時,溫度的升高,利于稻米品質(zhì)的形成;反之,則不利于稻米品質(zhì)形成。一定范圍內(nèi)隨著輻射和氣溫日較差增加,對稻米品質(zhì)形成的影響為正效應(yīng)[22-24],所以當(dāng)關(guān)鍵期平均氣溫低于適宜溫度時,輻射和氣溫日較差不足會降低溫度對稻米品質(zhì)形成的有利效應(yīng),設(shè)置輻射系數(shù)和氣溫日較差系數(shù)介于0~1之間。當(dāng)關(guān)鍵期平均氣溫高于適宜溫度時,輻射和氣溫日較差的不足會增加溫度對稻米品質(zhì)形成的不利效應(yīng),此時設(shè)置輻射系數(shù)和氣溫日較差系數(shù)為關(guān)鍵期氣溫低于適宜溫度對應(yīng)的輻射系數(shù)和日較差系數(shù)的倒數(shù)。
輻射和氣溫日較差的函數(shù)式采用一元線性方程,利用Visual Basic語言作為計算工具,將輻射和氣溫日較差函數(shù)的回歸系數(shù)設(shè)置在0.001~0.1范圍內(nèi),常數(shù)項設(shè)置在0.5~1范圍內(nèi),分別以0.000 001和0.000 1作為步長進(jìn)行循環(huán),并計算出不同回歸系數(shù)和常數(shù)項對應(yīng)的綜合氣象條件指數(shù)。以稻米氣候品質(zhì)指數(shù)與綜合氣象條件指數(shù)拋物線回歸分析的決定系數(shù)作為判定標(biāo)準(zhǔn),其中決定系數(shù)最大值對應(yīng)的回歸系數(shù)和常數(shù)項,即為輻射和氣溫日較差函數(shù)中的回歸系數(shù)和常數(shù)項。得到中秈和中粳稻米氣候品質(zhì)形成關(guān)鍵期的輻射和氣溫日較差函數(shù)如下:
2.2.2 中秈和中粳稻米氣候品質(zhì)評價模型建立
利用式(2)和式(5)~式(8)分別計算出中秈和中粳稻米品質(zhì)形成關(guān)鍵期綜合氣象條件指數(shù)。以綜合氣象條件指數(shù)為自變量,以稻米氣候品質(zhì)指數(shù)為因變量,采用拋物線回歸分析,建立基于綜合氣象條件指數(shù)的稻米氣候品質(zhì)評價模型為
中秈和中粳稻米氣候品質(zhì)指數(shù)與綜合氣象條件指數(shù)的拋物線決定系數(shù)分別為0.517和0.501(圖2),均高于氣候品質(zhì)指數(shù)與平均氣溫、輻射和氣溫日較差的決定系數(shù),說明綜合氣象條件指數(shù)能更好地反映平均氣溫、輻射和日較差對稻米品質(zhì)的綜合影響。
圖2 稻米氣候品質(zhì)指數(shù)與綜合氣象條件指數(shù)關(guān)系
2.2.3 中秈和中粳稻米氣候品質(zhì)等級劃分
由式(1)計算得到不同年份中秈和中粳稻米氣候品質(zhì)指數(shù)I,采用均值聚類方法對中秈和中粳稻米氣候品質(zhì)指數(shù)進(jìn)行聚類分析,設(shè)定聚類數(shù)為4類,計算結(jié)果顯示(表3),中秈稻米氣候品質(zhì)指數(shù)聚類中心值分別為3.55、3.25、2.92和2.54,中粳聚類中心值分別為3.50、3.22、2.94和2.42。以相鄰聚類中心的平均值為界限,確定中秈和中粳稻米“特優(yōu)”“優(yōu)”“良”和“一般”4個氣候品質(zhì)等級對應(yīng)的氣候品質(zhì)指數(shù)(表4)。
表3 中秈和中粳稻米氣候品質(zhì)指數(shù)(IACQ)聚類中心值
表4 中秈和中粳稻米氣候品質(zhì)分級標(biāo)準(zhǔn)
利用2018年安徽省廬江縣中秈和中粳分期播種試驗稻米品質(zhì)資料和氣象資料,對建立的中秈和中粳稻米氣候品質(zhì)評價模型進(jìn)行驗證。其中氣候品質(zhì)指數(shù)實際值根據(jù)稻米品質(zhì)資料,利用式(1)計算得出;氣候品質(zhì)指數(shù)模擬值根據(jù)氣象資料,利用式(2)~式(10)計算得出。由表5可知,中秈和中粳稻米氣候品質(zhì)指數(shù)的實際值與模擬值誤差絕對值均值分別為0.128和0.126,中秈和中粳5個樣本中稻米氣候品質(zhì)實際等級與模擬等級完全符合的均有4個,其余1個樣本均誤差1個等級,準(zhǔn)確率均為80%。說明利用稻米生長期的氣象條件可定量化評價其氣候品質(zhì)等級,本研究建立的評價模型可用于中秈和中粳稻米的氣候品質(zhì)評價工作。
表5 中秈和中粳稻米氣候品質(zhì)模型模擬結(jié)果對比
Table 5 Comparison between the simulation results of climatic quality for mid-season indica rice and mid-season japonica rice
氣候品質(zhì)指數(shù)作為氣候品質(zhì)的表征參量,在農(nóng)產(chǎn)品氣候品質(zhì)評價方法的研究中廣泛應(yīng)用,但指標(biāo)構(gòu)建方法不盡相同,一種是基于農(nóng)產(chǎn)品品質(zhì)指標(biāo),采用加權(quán)求和法構(gòu)建氣候品質(zhì)指數(shù),如碭山酥梨氣候品質(zhì)評價模型[12];另一種是基于影響農(nóng)產(chǎn)品品質(zhì)的關(guān)鍵氣象因子,采用加權(quán)求和法構(gòu)建氣候品質(zhì)指數(shù),如茶葉[5]、青棗[13]、陜西紅富士蘋果[25]等。本研究采用前者方法,根據(jù)行業(yè)標(biāo)準(zhǔn)《食用稻品種品質(zhì) NY/T 593-2021》,綜合稻米的整精米率、堊白度、透明度、堿消值、膠稠度、直鏈淀粉含量6項品質(zhì)指標(biāo),構(gòu)建了稻米氣候品質(zhì)指數(shù)。本研究以綜合氣象條件指數(shù)表征氣象條件對稻米品質(zhì)的影響,較現(xiàn)有氣候品質(zhì)評價模型中氣象要素采用分段賦值的方法更加精確。此外,與現(xiàn)有稻米氣候品質(zhì)評價模型[17-18]相比,本研究建立了基于稻米品質(zhì)指標(biāo)的氣候品質(zhì)定量化評價模型。
本文在前人研究的基礎(chǔ)上,通過分析明確了安徽省中秈和中粳稻米品質(zhì)形成關(guān)鍵期分別為齊穗至齊穗后33和36 d,該時段主要為水稻灌漿結(jié)實期,與龔金龍等[26-27]關(guān)于稻米品質(zhì)形成關(guān)鍵期的結(jié)論較一致。程方民等[22]以齊穗后30 d作為中秈和中粳稻米品質(zhì)形成關(guān)鍵期;唐瑋瑋等[24]對重慶地區(qū)中秈遲熟品種“宜香9303”研究表明,溫度和日照時數(shù)對稻米品質(zhì)影響的關(guān)鍵期為齊穗前35 d至齊穗階段,溫度日較差影響的關(guān)鍵時期在齊穗前10 d至齊穗后15 d;抽穗前的氣象因子主要通過改變穗粒結(jié)構(gòu)而間接影響稻米品質(zhì)[28]。不同區(qū)域氣象條件對稻米品質(zhì)影響關(guān)鍵期存在差異的原因可能與種植品種、栽培管理措施、氣候條件等因素有關(guān)。本研究以固定時段作為稻米品質(zhì)形成關(guān)鍵期,但在實際生產(chǎn)中,水稻的灌漿結(jié)實期長短并不是固定值,主要和灌漿結(jié)實期的溫度有關(guān),通常溫度越低灌漿速率越慢、灌漿結(jié)實期越長,反之越短,所以模型在實際應(yīng)用中可能存在一定誤差。
灌漿結(jié)實期的溫度條件是影響稻米品質(zhì)的主要氣象要素,溫度過高會引起稻米胚乳淀粉粒排列不緊密,光線的多角度散射,胚乳透明度降低,堊白形成,進(jìn)而導(dǎo)致堊白度、堿消值增加,整精米率、膠稠度、透明度、直鏈淀粉含量降低[29-30];溫度偏低會造成灌漿速率慢、籽粒光合產(chǎn)物不足,淀粉及其他有機(jī)物質(zhì)積累少,進(jìn)而造成稻米品質(zhì)下降[31]。本研究通過分析確定中秈和中粳稻米品質(zhì)形成的適宜溫度分別為24.8 ℃和23.0 ℃,符合稻米品質(zhì)形成的適宜溫度范圍[32-33]。灌漿結(jié)實期光照不足會造成直鏈淀粉含量和膠稠度顯著降低,堊白度、蛋白質(zhì)含量顯著增加[34]。本研究在分析氣象因子對稻米品質(zhì)的影響時沒有考慮降水因素,其原因為在水稻生產(chǎn)過程中,水分條件受人為影響因素較大,所以實際降水量不能較好地反映水分條件對稻米氣候品質(zhì)形成的影響。
農(nóng)產(chǎn)品氣候品質(zhì)不等同于實際品質(zhì),前者是指由年際間氣象條件決定的初級農(nóng)產(chǎn)品品質(zhì),后者是指由農(nóng)產(chǎn)品的生理生化指標(biāo)、外觀指標(biāo)等表征的農(nóng)產(chǎn)品優(yōu)劣程度[19]。良好的氣象環(huán)境條件是形成優(yōu)質(zhì)稻米的基礎(chǔ),但不是必然條件,遺傳[35]、土壤[36]、栽培管理[37]等也是影響稻米品質(zhì)的重要因素,所以稻米的氣候品質(zhì)與實際品質(zhì)存在一定差異。水稻品種類型多樣,除中秈和中粳外,還有早秈、晚秈、晚粳等,本研究建立的中秈和中粳稻米氣候品質(zhì)評價方法是否在適用于其他類型的水稻,還需進(jìn)一步驗證。
為科學(xué)評價區(qū)域稻米氣候品質(zhì),本研究基于安徽省2008—2018年區(qū)域性水稻試驗稻米品質(zhì)資料和氣象數(shù)據(jù),開展了安徽省中秈和中粳稻米氣候品質(zhì)評價方法研究,所得結(jié)論如下:
1)安徽省中秈和中粳稻米品質(zhì)形成關(guān)鍵期分別為齊穗后33和36 d。平均溫度是影響稻米品質(zhì)的主要氣象因子,且與品質(zhì)呈拋物線關(guān)系,中秈和中粳稻米品質(zhì)形成的適宜溫度分別為24.8 ℃和23.0 ℃。
2)利用水稻生長期間的平均氣溫、輻射、氣溫日較差等氣象因子可以評價稻米品質(zhì)。本研究以綜合氣象條件指數(shù)作為氣象條件的表征參量,分析表明綜合氣象條件指數(shù)可以反映氣溫、輻射和氣溫日較差對稻米品質(zhì)的綜合影響。
3)利用建立的稻米氣候品質(zhì)評價模型對2018年安徽省廬江縣中秈和中粳分期播種試驗稻米氣候品質(zhì)進(jìn)行驗證,與實際等級相比,模型計算得到的中秈和中粳稻米氣候品質(zhì)等級準(zhǔn)確率均為80%。本研究建立的評價模型可用于中秈和中粳稻米的氣候品質(zhì)評價工作。
[1] 張璐,黃晶,高菊生,等. 長期綠肥與氮肥減量配施對水稻產(chǎn)量和土壤養(yǎng)分含量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(5):106-112.
Zhang Lu, Huang Jing, Gao Jusheng, et al. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 106-112. (in Chinese with English abstract)
[2] 胡賢巧,張衛(wèi)星,邵雅芳,等. 我國近20年稻米品質(zhì)優(yōu)質(zhì)率狀況分析[J]. 中國稻米,2021,27(4):84-87.
Hu Xianqiao, Zhang Weixing, Shao Yafang, et al. Analysis on high quality rate of rice in China during recent 20 years[J]. China Rice, 2021, 27(4): 84-87. (in Chinese with English abstract)
[3] 婁偉平,吳利紅,孫科春,等. 季龍井茶葉氣候品質(zhì)認(rèn)證[J]. 氣象科技,2014,42(5):945-950.
Lou Weiping, Wu Lihong, Sun Kechun, et la. Climatological quality certification scheme for spring longjing tea production[J]. Meteorological Science and Technology, 2014, 42(5): 945-950. (in Chinese with English abstract)
[4] 尹昌斌,李福奪,張英楠,等. 農(nóng)業(yè)生產(chǎn)“三品一標(biāo)”的內(nèi)涵、推進(jìn)邏輯與實現(xiàn)路徑[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2021,42(8):1-5.
Yin Changbin, Li Fuduo, Zhang Yingnan, et al. The connotation, promotion logic and realization path of the “three pin,one standardization” of agricultural production[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(8): 1-5. (in Chinese with English abstract)
[5] 金志鳳,王治海,姚益平,等. 浙江省茶葉氣候品質(zhì)等級評價[J]. 生態(tài)學(xué)雜志,2015,34(5):1456-1463.
Jin Zhifeng, Wang Zhihai, Yao Yiping, et al. Evaluation of tea climate quality grade in Zhejiang[J]. Chinese Journal of Ecology, 2015, 34(5): 1456-1463. (in Chinese with English abstract)
[6] 方志強(qiáng),陸展華,王石光,等. 稻米品質(zhì)性狀研究進(jìn)展與應(yīng)用[J]. 廣東農(nóng)業(yè)科學(xué),2020,47(5):11-20.
Fang Zhiqiang, Lu Zhanhua, Wang Shiguang, et al. Research advances and applications of rice grain quality traits[J]. Guangdong Agricultural Sciences, 2020, 47(5): 11-20. (in Chinese with English abstract)
[7] 王在滿,羅錫文,陳雄飛,等. 水稻機(jī)械化穴播技術(shù)對稻米品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(16):16-21.
Wang Zaiman, Luo Xiwen, Chen Xiongfei, et al. Effects of precision rice hill-drop drilling on rice quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 16-21. (in Chinese with English abstract)
[8] 鄧艾興,劉猷紅,孟英,等. 田間增溫1.5 ℃對高緯度粳稻產(chǎn)量和品質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué),2022,55(1):51-60.
Deng Aixing, Liu Youhong, Meng Ying, et al. Effects of 1.5 ℃ field warming on rice yield and quality in high latitude planting area[J]. Scientia Agricultura Sinica Acta, 2022, 55(1): 51-60. (in Chinese with English abstract)
[9] 熊洪,唐玉明,任道群,等. 不同土壤類型、不同氣候條件與稻米品質(zhì)的關(guān)系研究[J]. 西南農(nóng)學(xué)學(xué)報,2004,17(4):445-449.
Xiong Hong, Tang Yuming, Ren Daoqun, et al. Studies on relationships between different soil types and climate condition and grain yield and quality of rice[J]. Southwest China Journal of Agricultural Sciences, 2004, 17(4): 445-449. (in Chinese with English abstract)
[10] 楊棟,金志鳳,丁燁毅,等. 水蜜桃氣候品質(zhì)評價方法與應(yīng)用[J]. 生態(tài)學(xué)雜志,2018,37(8):2532-2540.
Yang Dong, Jin Zhifeng, Ding Yeyi, et al. Method and application of climate quality evaluation for juicy peach[J]. Chinese Journal of Ecology, 2018, 37(8): 2532-2540. (in Chinese with English abstract)
[11] 謝遠(yuǎn)玉,王培娟,朱凌金,等. 基于氣象因子的贛南臍橙氣候品質(zhì)指標(biāo)評價模型[J]. 生態(tài)學(xué)雜志,2019,38(7):2265-2274.
Xie Yuanyu, Wang Peijuan, Zhu Lingjin, et al. Climate quality evaluation model for navel orange in Ganzhou[J]. Chinese Journal of Ecology, 2019, 38(7): 2265-2274. (in Chinese with English abstract)
[12] 李德,高超,孫義,等. 黃河故道碭山酥梨氣候品質(zhì)評價模型研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2018,46(10):108-116.
Li De, Gao Chao, Sun Yi, et al. Evalution model of climate quality for Dangshansu pear in the old Yellow River[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(10): 108-116. (in Chinese with English abstract)
[13] 陳惠,林晶,楊凱,等. 青棗氣候品質(zhì)等級評價模型構(gòu)建及應(yīng)用[J]. 應(yīng)用氣象學(xué)報,2021,32(4):443-455.
Chen Hui, Lin Jing, Yang Kai, et al. Construciong and application of climate quality evaluation model for indian jujube[J]. Journal of Applied Meteorological Scinene, 2021, 32(4): 443-455. (in Chinese with English abstract)
[14] 安徽省統(tǒng)計局,國家統(tǒng)計局安徽調(diào)查總隊. 安徽省統(tǒng)計年鑒[M]. 北京:中國統(tǒng)計出版社,2021.
[15] 劉瑞娜,陳金華,曹雯,等. 基于氣候指數(shù)的安徽省茶葉氣候品質(zhì)評價[J]. 生態(tài)學(xué)雜志,2019,38(2):612-618.
Liu Ruina, Chen Jinhua, Cao Wen, et al. Evaluation of tea climate quality based on climate index in Anhui Province[J]. Chinese Journal of Ecology, 2019, 38(2): 612-618. (in Chinese with English abstract)
[16] 陳曦,岳偉,徐建鵬,等. 獼猴桃主栽品種氣候品質(zhì)評價模型構(gòu)建[J]. 生態(tài)學(xué)雜志,2021,40(12):4119-4127.
Chen Xi, Yue Wei, Xu Jianpeng, et al. Evaluation model building for climatic quality of main kiwifruit cultivars[J]. Chinese Journal of Ecology, 2021, 40(12): 4119-4127. (in Chinese with English abstract)
[17] 戈曉峰,薛豐昌,姬菲菲,等. 水稻氣候品質(zhì)定量化認(rèn)證模型構(gòu)建:以寧夏吳忠市灌區(qū)水稻為例[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(21):110-115.
Ge Xiaofeng, Xue Fengchang, Ji Feifei, et al. Construction of quantitative certification model of rice climatic quality-a case study of rice in irrigation area of Wuzhong City, Ningxia[J]. Jiangsu Agricultural Sciences, 2020, 48(21): 110-115. (in Chinese with English abstract)
[18] 賈秋蘭,劉金平,李宏宇,等. 曹妃甸水稻氣候品質(zhì)的評價[J]. 貴州農(nóng)業(yè)科學(xué),2018,46(2):14-16.
Jia Qiulan, Liu Jinping, Li Hongyu, et al.Evaluation of rice climatic quality in Caofeidian region[J]. Guizhou Agricultural Sciences, 2018, 46(2): 14-16. (in Chinese with English abstract)
[19] NY/T593-2021,食用稻品種品質(zhì)[S]. 北京:中國標(biāo)準(zhǔn)出版社,2021.
[20] QX/T593-2019,農(nóng)產(chǎn)品氣候品質(zhì)認(rèn)證技術(shù)規(guī)范[S]. 北京:中國標(biāo)準(zhǔn)出版社,2019.
[21] NY/T593-2002,食用稻品種品質(zhì)[S]. 北京:中國標(biāo)準(zhǔn)出版社,2002.
[22] 程方民,劉正輝,張嵩午. 稻米品質(zhì)形成的氣候生態(tài)條件評價及我國地域分布規(guī)律[J]. 生態(tài)學(xué)報,2002,22(5):636-642.
Cheng Fangmin, Liu Zhenghui, Zhang Songwu. The evaluation of climatic-ecology condition for the rice quality formation and its distribution laws in China[J]. Acta Ecologica Sinica, 2002, 22(5): 636-642. (in Chinese with English abstract)
[23] 程方民,鐘連進(jìn). 不同氣候生態(tài)條件下稻米品質(zhì)性狀的變異及主要影響因子分析[J]. 中國水稻科學(xué),2001,15(3):187-191.
Cheng Fangmin, Zhong Lianjin. Variation of rice quality traits under different climate conditions and its main affected factors[J]. Chinese Journal of Rice Science, 2001, 15(3): 187-191. (in Chinese with English abstract)
[24] 唐瑋瑋,彭國照,高陽華,等. 重慶氣候與稻米營養(yǎng)品質(zhì)的關(guān)系研究[J]. 西南大學(xué)學(xué)報(自然科學(xué)版),2002,30(12):65-69.
Tang Weiwei, Peng Guozhao, Gao Yanghua, et al. A study on the relationship between the nutritional quality of rice and climate in Chingqing[J]. Journal of Southwest University (Natural Science Edition), 2002, 30(12): 65-69. (in Chinese with English abstract)
[25] 劉璐,王景紅,張樹譽(yù),等. 陜西紅富士蘋果氣候品質(zhì)指標(biāo)及認(rèn)證技術(shù)[J]. 中國農(nóng)業(yè)氣象,2018,39(9):611-617.
Liu Lu, Wang Jinghong, Zhang Shuyu, et al. Climate quality index and climate quality certification model of red fuji apple in Shaanxi Province[J]. Chinese Journal of Agrometeorology, 2018, 39(9): 611-617. (in Chinese with English abstract)
[26] 龔金龍,張洪程,胡雅杰,等. 灌漿結(jié)實期溫度對水稻產(chǎn)量和品質(zhì)形成的影響[J]. 生態(tài)學(xué)雜志,2013,32:482-491.
Gong Jinlong, Zhang Hongcheng, Hu Yajie, et al. Effects of air temperature during rice grain-filling period on the formation of rice grain yield and its quality[J]. Chinese Journal of Ecology, 2013, 32: 482-491. (in Chinese with English abstract)
[27] 劉夢潔,楊怡欣,陳樂,等. 江西不同生態(tài)區(qū)優(yōu)質(zhì)晚秈稻產(chǎn)量、品質(zhì)變化特征[J]. 中國稻米,2022,28(2):60-65.
Liu Mengjie, Yang Yixin, Chen Le, et al. Variation characteristics of yield and quality of high quality late indica rice in different ecological regions of Jiangxi Province[J]. China Rice, 2022, 28(2): 60-65. (in Chinese with English abstract)
[28] 徐富賢,周興兵,劉茂,等. 川南冬水田雜交中稻品種與氣候互作對稻米品質(zhì)的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2018,26(8):1137-1148.
Xu Fuxian, Zhou Xingbing, Liu Mao, et al. Interaction effects of mid-season hybrid rice varieties and meteorological factors on rice quality in South Sichuan winter paddy fields[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1137-1148. (in Chinese with English abstract)
[29] 張桂蓮,廖斌,李博,等. 花后高溫對稻米品質(zhì)及胚乳淀粉粒結(jié)構(gòu)的影響[J]. 中國農(nóng)學(xué)通報,2016,32(9):10-14.
Zhang Guilian, Miao Bin, Li Bo, et al. Effect of high temperature after anthesis on rice quality and starch granule structure of endosperm[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 10-14. (in Chinese with English abstract)
[30] 張桂蓮,廖斌,湯平,等. 灌漿結(jié)實期高溫對水稻劍葉生理特性和稻米品質(zhì)的影響[J]. 中國農(nóng)業(yè)氣象,2014,35(6):650-655.
Zhang Guilian, Miao Bin, Tang Ping, et al. Effects of high temperature stress during grain-filling period on physiological characteristics in flag leaves and grain quality of rice[J]. Chinese Journal of Agrometeorology, 2014, 35(6): 650-655. (in Chinese with English abstract)
[31] 張誠信,郭保衛(wèi),唐健,等.灌漿結(jié)實期低溫弱光復(fù)合脅迫對稻米品質(zhì)的影響[J]. 作物學(xué)報,2019,45(8):1208-1220.
Zhang Chengxin, Guo Baowei, Tang Jian, et al.Combined effects of low temperature and weak light at grain-filling stage on rice grain quality[J]. Acta Agronomica Sinica, 2019, 45(8): 1208-1220. (in Chinese with English abstract)
[32] 程方民,朱碧巖. 氣象生態(tài)因子對稻米品質(zhì)影響的研究進(jìn)展[J]. 中國農(nóng)業(yè)氣象,1998,19(5):39-45.
Cheng Fangmin, Zhu Biyan. Present research on theeffect of meteoroecological factors on rice quality[J]. Agricultural Meteorology, 1998, 19(5): 39-45. (in Chinese with English abstract)
[33] 周年兵. 沿淮下游地區(qū)溫光要素對優(yōu)質(zhì)水稻產(chǎn)量、品質(zhì)及氮素吸收利用的影響[D]. 揚州:揚州大學(xué),2021.
Zhou Nianbing. Effects of Temperature and Light Factors on Yield, Quality and Nitrogen Uptake and Utilization of High-quality Rice in the Lower Reaches of Huai River Basin[D]. Yangzhou: Yangzhou University, 2021. (in Chinese with English abstract)
[34] 劉奇華,周學(xué)標(biāo),楊連群,等.灌漿結(jié)實期短日照對稻米品質(zhì)的影響[J]. 江蘇農(nóng)業(yè)學(xué)報,2009,25(4):721-725.
Liu Qihua,Zhou Xuebiao,Yang Lianqun, et al. Effects of short day-light length at grain filling stage on grain quality[J]. Jiangshu Journal of Agricultural Sciences, 2009, 25(4): 721-725. (in Chinese with English abstract)
[35] 趙春芳,岳紅亮,黃雙杰,等. 南粳系列水稻品種的食昧品質(zhì)與稻米理化特性[J]. 中國農(nóng)業(yè)科學(xué),2019,52(5):909-920.
Zhao Chunfang, Yue Hongliang, Huang Shuangjie, et al. Eating quality and physicochemical properties in Nanjing Rice varieties[J]. Scientia Agricultura Sinica, 2019, 52(5): 909-920. (in Chinese with English abstract)
[36] 文典,江棋,鄧騰灝博,等. 土壤調(diào)理劑對稻米中鎘含量及其品質(zhì)的影響[J]. 生態(tài)環(huán)境學(xué)報,2021,30(2):400-404.
Wen Dian, Jiang Qi, Deng Tenghaobo, et al. Effects of soil amendment on rice cadmium uptake and quality[J]. Ecology and Environment Sciences, 2021, 30(2): 400-404. (in Chinese with English abstract)
[37] 陳麗明,王文霞,熊若愚,等. 同步開溝起壟精量穴直播對南方雙季秈稻產(chǎn)量和稻米品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(1):28-35.
Chen Liming, Wang Wenxia, Xiong Ruoyu, et al. Effects of simultaneous furrow ridging and precision hill-direct-seeding on grain yield and quality of double-cropping indica rice in South China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 28-35. (in Chinese with English abstract)
Evaluating the climatic quality of rice in Anhui Province of China
Yue Wei1,2, Chen Xi1,2, Cao Qiang3, Zhan Xinchun4, Ruan Xinmin4※, Xu Jianpeng1,2, Yu Linghua5
(1.,230031,; 2.,230031,; 3.,237000,; 4.,,230031,; 5.,239000,)
Environment conditions have been the most important influencing factors on the rice quality. It is a high demand to determine the positive or negative influences of the climate and weather on the rice quality, in order to effectively improve the added value and market competitiveness of rice. In this study, an evaluation model of rice climatic quality was established to provide the theoretical basis and technical support for the evaluation of the climatic influences on in Anhui Province of China. The key period and optimum temperature were clarified for the formation of rice climatic quality. Then, the rice climatic quality and comprehensive meteorological condition index were constructed using the rice quality data from the regional trials of three sites in the Hefei, Chuzhou, and Fengtai City in Anhui Province of China. Taking the mid-season indica and japonica rice as research objects, the daily meteorological observation data was collected from 2008 to 2018. The weighted summation and computer numerical simulation were carried out to preprocess the rough data. Finally, an evaluation model was established for the climatic quality of rice using regression analysis. The optimal model was then validated using the rice quality data from the sowing experiment by the stages in 2008. The results showed that the six indexes of climatic quality were achieved, including the percentage of head rice, chalkiness, transparency, alkali spreading value, gel consistency, and amylose content. The comprehensive index of meteorological conditions was obtained after the numerical simulation of three elements (average temperature, radiation, and diurnal temperature range). The key periods and optimum temperatures of climatic quality formation were 33 and 36 days after the date of full heading stage, while 24.8℃ and 23.0℃ for the mid-season indica rice and mid-season japonica rice, respectively. Four grades were divided into the “Extra excellent”, “Excellent”, “Good”, and “General” for the climatic quality of the mid-season indica and japonica rice. Therefore, the climatic quality index larger than 3.40 was matched with the “Extra excellent” grade of indica rice. The “Excellent” grade was matched between 3.09 and 3.40, while the “Good” grade was in the range between 2.73 and 3.09. At last, the climatic quality index smaller than 2.73 was matched with the “General” grade of indica rice. Similarly, the climatic quality index for the japonica larger than 3.36 was matched with the “Extra excellent” grade. Specifically, the ranges between 3.08 and 3.36, 2.68 and 3.08, and smaller than 2.68 were matched with the “Excellent”, “Good”, and “General” grades, respectively. The model validation showed that the 80% accuracy of climatic quality was achieved in the mid-season indica and japonica rice. The climatic quality grade was mainly one grade lower than the actual one. The difference between the climatic and the actual quality of rice was attributed to the different evaluation indices and impact factors. Therefore, the climatic quality of rice can be expected to serve as an excellent indicator of the actual quality. In summary, the climatic quality of rice can be evaluated by meteorological factors, such as the average temperature, radiation, and diurnal temperature range during the rice growth period. The improved evaluation model can also be used to evaluate the climatic quality of mid-season indica and japonica rice.
agriculture; crops; paddy; rice quality;temperature; evaluation model
10.11975/j.issn.1002-6819.2022.19.012
S162.1
A
1002-6819(2022)-19-0102-08
岳偉,陳曦,曹強(qiáng),等. 安徽省稻米氣候品質(zhì)評價方法[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(19):102-109.doi:10.11975/j.issn.1002-6819.2022.19.012 http://www.tcsae.org
Yue Wei, Chen Xi, Cao Qiang, et al. Evaluating the climatic quality of rice in Anhui Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 102-109. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.012 http://www.tcsae.org
2022-05-11
2022-09-16
安徽省科技重大專項(2021D06050002);科技助力經(jīng)濟(jì)2020重點專項(KJZLJJ202002);國家重點研發(fā)計劃項目(2017YFD0301304)
岳偉,碩士,高級工程師,研究方向為農(nóng)產(chǎn)品氣候品質(zhì)評價技術(shù)。Email:yuewei925@163.com
阮新民,博士,研究員,研究方向為水稻遺傳育種。Email:ruan_xm@126.com