沈曉梅,冉 根,陳家鳳,侯俊杰,王金梅
豆皮果膠類多糖的提取及其在大豆蛋白凝膠類食品的應用
沈曉梅1,冉 根1,陳家鳳2,侯俊杰3,王金梅1※
(1. 華南理工大學食品科學與工程學院,小麥和玉米國家工程研究中心,廣州 510640;2. 廣東科貿(mào)職業(yè)學院餐旅學院,廣州 510430;3. 廣西梧州冰泉實業(yè)股份有限公司,梧州 543000)
為提高大豆副產(chǎn)物利用率,拓展豆皮果膠類多糖(Soybean Hull Pectin Polysaccharide, SHPP)在凝膠類食品的應用,該研究采用鹽輔助結合水熱處理技術提取大豆豆皮中的豆皮果膠類多糖,并對其基本理化性質(zhì)進行表征。通過以大豆蛋白為主要成分的凝膠類食品豆腐花為模型,探究不同添加量豆皮果膠類多糖(0~2.0%)與大豆蛋白的離散型相分離行為,分析其微相分離行為與宏觀流變學性質(zhì)、機械性能、持水性與感官評定的關聯(lián)性,并與商品化柑橘果膠(Citrus Pectin, CP)作對比。結果表明,該提取法所得豆皮果膠類多糖提取率為17.95%±0.21%,其半乳糖醛酸含量為42.13%±2.05%,平均粒徑為(210.3±2.9)nm,多分散性指數(shù)(Polydispersity Index, PDI)為0.466±0.037,豆皮果膠類多糖具有良好的親水性和低黏度特性,易分散于水。添加0~0.5%豆皮果膠類多糖制備豆腐花,發(fā)現(xiàn)其微觀上無相分離產(chǎn)生,具有良好的網(wǎng)絡微結構;宏觀上表現(xiàn)為外觀白嫩,黏彈性、持水性與口感均良好。添加1.0%豆皮果膠類多糖的豆腐花宏觀上出現(xiàn)明顯析水,凝膠黏彈性和持水性均顯著(<0.05)減少。繼續(xù)增加豆皮果膠類多糖至1.5%添加量則會導致相分離產(chǎn)生,蛋白凝膠網(wǎng)絡微結構變得無序,網(wǎng)狀孔隙增大,凝膠強度進一步減弱,保水性極差(46.2%±3.2%)。由此確定,豆皮果膠類多糖適宜添加量為0.5%。與經(jīng)優(yōu)化的柑橘果膠添加量為0.1%的豆腐花作比較,發(fā)現(xiàn)添加0.5%豆皮果膠類多糖的豆腐花在質(zhì)構特性以及色澤、組織狀態(tài)、滋味氣味、口感、可接受度各方面的感官評分上均優(yōu)于含柑橘果膠的豆腐花。結果表明豆皮果膠類多糖更適用于蛋白凝膠類食品。研究結果為豆皮果膠類多糖的應用開發(fā),大豆副產(chǎn)物的再利用以及全豆食品的發(fā)展提供一定推動作用。
凝膠;流變特性;大豆副產(chǎn)物;豆皮果膠類多糖;凝膠類食品;相分離;應用
由于人民生活水平的提高,食物趨向于精細化,由高碳水、高脂肪、高熱量組成的“三高”飲食導致的肥胖、糖尿病、冠心病和高血脂患者日益增多[1-2]。隨著對多糖特別是一些果膠類多糖的深入研究,發(fā)現(xiàn)它們具有抑制體重增長,控制脂肪消化,降低血糖和膽固醇,改善胃腸道功能等生理功效[3],受到各界人士廣泛關注,已被用于藥品和功能性食品中[4-5]。
大豆豆皮是豆制品加工過程中產(chǎn)生的主要副產(chǎn)物之一,含有相當豐富的豆皮果膠類多糖(Soybean Hull Pectin Polysaccharide, SHPP),它主要由同型聚半乳糖醛酸(Homogalacturonan, HGA)和鼠李糖半乳糖醛酸聚糖I(Type I Rhamnose Galacturonic Acid, RG-I)組成[6-7],在大豆豆皮中的含量高達30%[8]。盡管中國每年由豆制品產(chǎn)生的大豆豆皮副產(chǎn)物超過300萬t[9],但由于豆皮口感粗糙,不宜直接食用,目前仍主要用作飼料或發(fā)酵成肥料,造成大量豆皮果膠類多糖資源浪費。若在豆制品生產(chǎn)過程中對豆皮副產(chǎn)物加以利用,提取出其中含量豐富的豆皮果膠類多糖,不僅能獲取生理功效良好的功能性多糖資源,還能有效提高大豆副產(chǎn)物利用率,減少資源浪費,有利于全豆食品的發(fā)展。
另一方面,多糖的理化特性使其在食品中起到良好的穩(wěn)定、乳化、增稠、起泡、凝膠等作用。其中,凝膠性是眾多果膠類多糖具有的基本特性。其獨特之處在于Ca2+、蔗糖或酸性環(huán)境下均可形成凝膠,故常用于凝膠類食品。然而,當果膠類多糖添加到含蛋白的凝膠類食品時,由于多糖和蛋白的熱力學不兼容(Thermodynamic Incompatibility)往往會導致相分離現(xiàn)象(Phase Separation)[10]。再者,食品中常見的可食用蛋白其等電點(Isoelectric Point, pI)普遍小于食品體系pH值,而果膠類多糖均為陰離子型多糖(Anionic Polysaccharides),這就導致了該復合體系以離散型相分離(Segregative Phase Separation)為主[11-12]。該相分離的出現(xiàn)在某種程度上會對食品口感、質(zhì)地、外觀甚至風味等[13]產(chǎn)生不良影響,使產(chǎn)品品質(zhì)變差。目前,關于蛋白/多糖復合體系相關的食品品質(zhì)調(diào)控較多是從改變加工工藝條件(如pH值、鹽離子濃度等)進行研究[14-15],但這直接改變了產(chǎn)品的基本配方。因此,開發(fā)一款價格低廉、來源廣泛、與蛋白相分離程度更小、對產(chǎn)品品質(zhì)影響較弱的果膠類多糖來制備相關蛋白凝膠類功能性食品具有重要意義。
目前,關于多糖的提取方法已有報道,其中鹽輔助結合水熱處理技術的提取方式更為綠色簡單,提取率高,適合工業(yè)化大批量生產(chǎn)。因此,本研究擬采用鹽輔助結合水熱處理技術提取大豆豆皮副產(chǎn)物中的豆皮果膠類多糖,并對其基本理化性質(zhì)進行表征,通過以大豆蛋白為主要成分的凝膠類食品豆腐花為模型,探究豆皮果膠類多糖與大豆蛋白的離散型相分離行為,分析其微相分離行為與宏觀流變學性質(zhì)、機械性能、持水性與感官評定的關聯(lián)性,并與商品化柑橘果膠(Citrus Pectin, CP)作對比,研究豆皮果膠類多糖作為功能性多糖用于蛋白凝膠類食品的應用前景,并為全豆食品的開發(fā)提供可行性參考。
大豆和大豆豆皮由廣西梧州冰泉實業(yè)股份有限公司提供。六偏磷酸鈉購于上海麥克林生化科技有限公司;D-(+)-半乳糖醛酸一水合物,咔唑購于上海阿拉丁生化科技股份有限公司;無水乙醇,檸檬酸,小蘇打,硅化油(食品消泡劑),葡萄糖酸--內(nèi)酯(Glucono--lactone,GDL),熒光素5-異硫氰酸酯(Fluorescein Isothiocyanate Isomer Ⅰ,F(xiàn)ITC),羅丹明B異硫氰酸酯(Rhodamine B Isothiocyanate,RITC)購于美國Sigma-Aldrich公司。所用試劑均為分析純或食品級。
C40紫外可見光分光光度計(Implen公司,德國);Zetasizer Nano ZS納米粒度電位儀(Malvern公司,英國);HAAKE MARS 600流變儀(Thermo公司,美國);Leica TCS SPE激光共聚焦顯微鏡(Leica公司,德國);Instron5943萬能材料試驗機(Instron公司,美國);冷凍干燥機(Christ公司,德國);CR22GII高速冷凍離心機(Hitachi公司,日本)。
1.3.1 豆皮果膠類多糖的提取
豆皮果膠類多糖的提取方法參考Liu等[16-17]并稍作修改。首先將大豆豆皮粉碎過50目篩(孔徑0.35 mm),按料液比1∶30(g/g)將豆皮粉分散于1.5%六偏磷酸鈉溶液,并用2 mol/L檸檬酸溶液調(diào)節(jié)pH值至4.0。持續(xù)攪拌30 min后進行水熱處理(120 ℃,30 min),進而離心(5 000 r/min,20 min),所得豆皮果膠類多糖上清液經(jīng)透析脫鹽(72 h)和旋蒸濃縮(60 ℃)后,凍干備用。
1.3.2 半乳糖醛酸含量的測定
采用硫酸-咔唑比色法[18]測定豆皮果膠類多糖的半乳糖醛酸含量。標準曲線為=0.01+0.003 2,2=0.997。
1.3.3 酯化度的測定
采用國標方法GB 25533-2010[19]測定豆皮果膠類多糖的酯化度。
1.3.4 粒徑、zeta-電位的測定
參考Zhang等[20]方法,用去離子水溶解并制備質(zhì)量濃度為1 mg/mL豆皮果膠類多糖溶液,并用0.5 mol/L HCl/NaOH調(diào)節(jié)所需pH值。采用Zeta Nano ZS納米粒度電位儀在25 ℃下測定粒徑、多分散性指數(shù)(Polydispersity Index, PDI)和Zeta-電位。
1.3.5 豆腐花的制備
采用傳統(tǒng)濕法磨漿方法[21-22]制備豆腐花。將大豆經(jīng)清水浸泡(12 h)后,以豆/水比為1∶3(g/g)同時加入1.75%小蘇打粉和0.1%食品消泡劑進行首次磨漿。取磨漿后豆渣并以1∶2(豆渣/水,g/g)進行二次磨漿,混合所得豆?jié){,過120目濾布,即為豆?jié){原液。根據(jù)Liu等[17]方法將豆皮果膠類多糖、柑橘果膠粉末分別溶于去離子水,水浴加熱(60 ℃)并溫和攪拌4 h使其充分水化,由此制備10%豆皮果膠類多糖溶液和5%柑橘果膠溶液。取80 g豆?jié){原液,用去離子水稀釋使其蛋白質(zhì)量分數(shù)為3%,記錄去離子水添加量(),由此設定所需的豆腐花質(zhì)量為(80+)g,并計算含豆皮果膠類多糖(0~2.0%)或柑橘果膠(0~0.5%)、白砂糖(7%)的豆腐花中各物質(zhì)的添加量。
取80 g豆?jié){原液,添加相應計算量的豆皮果膠類多糖或柑橘果膠、白砂糖,并用去離子水補充至(80+)g。加熱煮沸15 min后冷卻至室溫,稱量并補回蒸發(fā)的水分,即為豆?jié){混合液。將GDL粉末溶于去離子水,制備40% GDL溶液。添加0.35% GDL于上述豆?jié){混合液,進行巴氏殺菌處理(88 ℃,30 min),室溫放置4 h待豆腐花成型,最后置于4 ℃冰箱保存。
1.3.6 流變性質(zhì)的表征
采用HAAKE MARS 60流變儀進行豆腐花流變學性質(zhì)的測定,配件平板直徑為35 mm,設定間隙高度為1 mm。首先,根據(jù)1.3.5方法在平板探頭上進行原位制樣,并于平板邊緣覆蓋液體石蠟薄層以防止水分蒸發(fā)。在線性黏彈區(qū)域內(nèi)進行頻率掃描(0.1~10 Hz),以及應變掃描(0.1~1 000%)。此外,對1%豆皮果膠類多糖和柑橘果膠溶液進行剪切黏度測定(剪切速率為0.01~100 s-1)。測試溫度均設置為25 ℃。
1.3.7 持水性的表征
參考胡坦等[23]方法,采用離心法測量豆腐花的持水性,根據(jù)1.3.5方法,在15 mL離心管中制備豆腐花,離心處理(5 000 r/min,10 min)后去除上清液,測量相關參數(shù)并按式(1)計算豆腐花的持水性。
式中0為離心管質(zhì)量,g;1為豆腐花和離心管原質(zhì)量,g;2為離心去上清液后豆腐花和離心管質(zhì)量,g。
1.3.8 質(zhì)構性質(zhì)的表征
參考Li和Singh等[24-25]方法,采用萬能材料試驗機對豆腐花樣品進行壓縮測試,將樣品切成直徑為14.46 mm,高為10 mm的圓柱體,選用直徑25 mm探頭,設定測試速度為0.5 mm/s,凝膠壓縮程度為25%。
1.3.9 微觀結構的表征
根據(jù)Chen等[26]方法,采用FITC共價標記豆?jié){中的大豆蛋白,RITC標記豆皮果膠類多糖和柑橘果膠。按照1.3.5方法使用經(jīng)標記的材料于帶凹槽的玻片上制備豆腐花,并密封處理防止水分蒸發(fā)。所制備的豆腐花使用CLSM觀察其微觀結構。采用氬燈在488 nm波長和氦-氖燈在532 nm波長同時激發(fā),分別在495~525和560~600 nm處接收FITC和RITC熒光信號。
1.3.10 豆腐花的感官評定
參考任凱[27]的方法,選擇色澤、組織狀態(tài)、滋味氣味、口感和可接受度作為感官評定指標。測試由8名接受過感官評定課程訓練的人員組成進行評分,其中每項最高分為8,最低分為0。樣本隨機擺放。
試驗樣品測定均獨立進行3次及以上重復。通過SPSS26.0軟件進行數(shù)據(jù)的方差分析(ANOVA),采用Duncan檢驗對多組樣本間進行顯著性分析(<0.05)。
以大豆豆皮副產(chǎn)物為主要原材料,通過鹽輔助結合水熱處理技術提取豆皮果膠類多糖。經(jīng)測定,該方法多糖提取率為17.95%±0.21%,所得豆皮果膠類多糖以果膠為主,半乳糖醛酸含量42.13%±2.05%,酯化度48.45%±0.98%。由圖1可知,該豆皮果膠類多糖為陰離子多糖,pKa接近pH 2,具有良好的水溶性[28]。在水中經(jīng)充分分散后測定平均粒徑(D)為(210.3±2.9)nm,PDI為0.466±0.037。與1%柑橘果膠相比,所提取的豆皮果膠類多糖黏度更低,在100 s-1剪切速率下黏度為2.8 mPa·s,約為相同條件的柑橘果膠黏度1/3,說明其添加能更好地減弱對相關產(chǎn)品基本性質(zhì)的影響。
圖1 豆皮果膠類多糖的Zeta-電位、粒度分布和剪切黏度
2.2.1 宏觀形貌
上述試驗結果表明,本研究提取的豆皮果膠類多糖具有良好的水溶性和低黏度特性。為進一步探究該豆皮果膠類多糖在蛋白凝膠類食品中的應用潛能,以典型蛋白冷致凝膠類食品豆腐花為模型。首先,參考豆腐花的工業(yè)化生產(chǎn)工藝流程[21-22],且經(jīng)預試驗確定GDL添加量為0.35%(pH終=5.80±0.05),并巴氏消毒(88 ℃,30 min),制備與市場銷售的豆腐花商品相似的豆腐花模型。進而,通過添加不同濃度豆皮果膠類多糖,探究含該功能性果膠類多糖的豆腐花的較佳制備方法。
在此需明確的是,本研究擬制備的添加豆皮果膠類多糖的豆腐花實際上可看作是一種蛋白/多糖復合凝膠,且該pH值條件下豆?jié){主成分大豆蛋白和豆皮果膠類多糖可導致離散型相分離,可能對豆腐花的網(wǎng)絡微結構及宏觀性質(zhì)產(chǎn)生影響。
首先,對不同添加量豆皮果膠類多糖所制備的豆腐花的宏觀形貌進行觀察。如圖2所示,添加0~0.5%豆皮果膠類多糖所得豆腐花均形成良好的可自我支撐的凝膠結構。增加豆皮果膠類多糖添加量(1.0%~1.5%),豆腐花雖已成型,但出現(xiàn)了明顯的析水現(xiàn)象。繼續(xù)提高豆皮果膠類多糖添加量至2.0%會導致凝膠網(wǎng)絡崩潰,豆腐花無法成型,故后續(xù)不再進行該添加量樣品的表征。
圖2 不同豆皮果膠類多糖添加量(0~2.0%)的豆腐花的宏觀形貌
2.2.2 流變特性和微觀結構
通過小振幅流變測試和激光共聚焦顯微鏡進一步探究豆腐花的網(wǎng)絡微結構。豆腐花的頻率掃描結果如圖3a所示,整個掃描過程所有測試樣品的彈性模量()均大于黏性模量(),且>10 Pa,表明凝膠網(wǎng)絡結構形成[29-30]。而'和均隨頻率的升高呈微弱上升趨勢,黏彈模量與頻率呈線性相關,說明所形成的凝膠網(wǎng)絡是一種較弱的三維空間結構[31]。當豆皮果膠類多糖添加量在0~0.5%范圍時,和隨多糖添加量的增加均呈微弱上升趨勢。由CLSM結果(圖4a, b)看到,添加0.5%豆皮果膠類多糖的豆腐花其網(wǎng)絡微結構與空白樣品相似,大豆蛋白和豆皮果膠類多糖均勻分布于視野內(nèi),未出現(xiàn)明顯相分離現(xiàn)象。其和微弱上升是由于豆皮果膠類多糖在分子層面上起到空間占位效應,從而提高凝膠網(wǎng)絡中的蛋白濃度,一定程度上增強了凝膠的黏彈性。但由于此時蛋白和多糖未能達到微相分離程度,因此對凝膠網(wǎng)絡的影響實際上非常微弱[32-33]。進一步增加豆皮果膠類多糖添加量(1.0%~1.5%),和均呈下降趨勢,說明過量添加豆皮果膠類多糖則會干擾凝膠網(wǎng)絡的形成。當添加1.5%豆皮果膠類多糖時,和明顯減弱。觀察其微觀結構(圖4c),可以看到,此時豆皮果膠類多糖和大豆蛋白出現(xiàn)明顯相分離,蛋白聚集粗化,網(wǎng)絡結構變得紊亂無序。并且從豆皮果膠類多糖添加量2.0%時豆腐花無法成型的結果可以看出該條件下多糖已占據(jù)主導,發(fā)生相翻轉。圖3b是不同添加量豆皮果膠類多糖所制備的豆腐花的應變掃描結果。除添加1.5%豆皮果膠類多糖的樣品其振蕩屈服應變較小,其余樣品均無明顯差異。這也進一步說明了離散型相分離的發(fā)生對凝膠網(wǎng)絡結構的影響。凝膠從單一相態(tài)轉變成蛋白/多糖分相,致使網(wǎng)絡微觀結構不再均一,影響了凝膠網(wǎng)絡強度。
注:實心圓點為G′,空心圓點為G″。
注:a~c依次代表豆皮果膠類多糖添加量為0%、0.5%、1.5%的豆腐花的微觀結構;d代表柑橘果膠添加量0.5%的豆腐花的微觀結構。FITC標記的大豆蛋白為綠色,RITC標記的豆皮果膠類多糖和柑橘果膠為紅色。
2.2.3 持水性
由于豆皮果膠類多糖的添加改變了凝膠的網(wǎng)絡微結構,在宏觀上可導致凝膠持水性的變化。如圖5所示,添加0.1%~0.5%豆皮果膠類多糖所制備的豆腐花的持水性與空白樣品(93.7%±0.6%)無顯著性差異(>0.05),這是因為在此條件下豆腐花形成了相對有序的、強度較高的凝膠網(wǎng)絡微結構,水分被束縛在凝膠致密的空間網(wǎng)絡內(nèi)部,不易流失,因而持水性較好[34]。當添加更多豆皮果膠類多糖(1.0%~1.5%)時,隨著多糖含量增加,豆腐花持水性明顯下降(<0.05),豆皮果膠類多糖添加量1.5%的豆腐花持水性下降至46.2%±3.2%。這是由于過量多糖的加入導致原本有序的凝膠網(wǎng)絡結構被破壞,凝膠結構變得松散,孔隙增大,凝膠強度降低的同時截留水分子的能力也有所減弱[35-36]。
由上述分析可知,添加0~0.5%豆皮果膠類多糖時對豆腐花的凝膠網(wǎng)絡微結構、流變學行為、宏觀形貌及持水性均呈現(xiàn)協(xié)同增強或無顯著影響,未出現(xiàn)不良效應;然而,當添加1.0%~1.5%豆皮果膠類多糖時由于破壞了凝膠網(wǎng)絡的形成,導致其黏彈模量、宏觀形貌及持水性均產(chǎn)生不良影響。在不影響豆腐花微觀及宏觀性質(zhì)的基礎上盡可能提高功能性果膠類多糖含量,故選擇0.5%豆皮果膠類多糖添加量作為制備功能性豆腐花的較佳制備方案。
注:內(nèi)插圖是經(jīng)離心(5 000 r·min-1, 10 min)的含0%、0.1%、0.5%、1.0%、1.5%(從左到右)豆皮果膠類多糖的豆腐花的析水情況。上標不同字母表示在0.05水平差異顯著,下同。
選取與豆皮果膠類多糖成分相近的商品化柑橘果膠作對比,分別添加兩種多糖制備豆腐花,并以與實際應用更為密切相關的豆腐花理化性質(zhì)(包括宏觀及微觀形貌、質(zhì)構特性、持水性和感官評定)為主要表征內(nèi)容,探究豆皮果膠類多糖替代柑橘果膠在凝膠類食品中的應用潛能。
首先,對比不同添加量柑橘果膠的豆腐花的宏觀形貌和持水性,以此得到柑橘果膠的較佳添加量。由圖6和圖7可知,添加0.1%柑橘果膠所制備的豆腐花外觀與無多糖添加的空白樣品相似,均表現(xiàn)為光滑白皙、成型性良好、底部析水較少。經(jīng)5 000 r/min離心10 min,測得持水性為92.3%±0.9%,與空白樣品無顯著性差別(>0.05)。當柑橘果膠添加量為0.2%時,豆腐花底部有少量析水,持水性減弱(60.3%±0.3%)。進一步增加柑橘果膠添加量(0.3%~0.5%),所得豆腐花質(zhì)地明顯變軟,容易坍塌,且底部析出較多汁液,持水性受到嚴重影響。豆腐花持水性減弱很大程度受到蛋白/多糖微相分離的作用,柑橘果膠從微米尺度上占據(jù)了蛋白凝膠的網(wǎng)絡空間,干擾了凝膠的形成,使其網(wǎng)絡結構變得無序(圖4d)。
圖6 不同柑橘果膠添加量(0~0.5%)的豆腐花的宏觀形貌
注:內(nèi)插圖是經(jīng)離心(5 000 r·min-1, 10 min)的含0%、0.1%、0.2%、0.3%、0.4%、0.5%(從左到右)柑橘果膠的豆腐花的析水情況。
由上述結果可知,豆腐花中柑橘果膠的較佳添加量為0.1%,所得豆腐花在外觀和持水性上與無多糖添加的空白樣品無顯著性區(qū)別(>0.05)。為對比豆皮果膠類多糖與柑橘果膠對豆腐花的質(zhì)構特性與感官體驗上的影響差異,分別選取豆皮果膠類多糖(0.5%)和柑橘果膠(0.1%)較佳添加量條件下所制備的豆腐花作比較。
凝膠的質(zhì)構特性可反映豆腐花在大變形條件下的力學特性,包括硬度、彈性、回復力和內(nèi)聚力[37-38]。測定結果如表1所示,分別添加0.5%豆皮果膠類多糖和0.1%柑橘果膠的豆腐花的硬度與空白樣品((0.170±0.005)N)無顯著性差異(>0.05)。彈性方面,添加0.5%豆皮果膠類多糖的豆腐花仍與空白樣品((0.800±0.004)N)無明顯差別(>0.05)。對比之下,采用0.1%柑橘果膠制備的豆腐花的彈性明顯減弱((0.690±0.010)N),說明該條件下柑橘果膠的加入一定程度上干擾了凝膠網(wǎng)絡的形成。對于回復力和內(nèi)聚力,0.5%豆皮果膠類多糖的添加對豆腐花回復力和內(nèi)聚力的影響均較為微弱,而柑橘果膠則導致該兩種性質(zhì)參數(shù)明顯下降。由此可知,相比于柑橘果膠,豆皮果膠類多糖對凝膠網(wǎng)絡性質(zhì)的影響較小,體現(xiàn)了豆皮果膠類多糖在蛋白凝膠類食品中應用的優(yōu)勢。
表1 添加0.5%豆皮果膠類多糖、0.1%柑橘果膠及未添加多糖的豆腐花的質(zhì)構特性
注:在同類指標的比較中,不同字母代表數(shù)據(jù)間有顯著性差異(<0.05),下同。
Note: In the comparison of the same type of index, data with different letters are significantly different (<0.05), the same below.
豆腐花宏觀形貌、持水性和質(zhì)構特性的差異必然會影響品嘗時的感官體驗。通過專業(yè)的感官評定測試能有效地反饋食品的感官綜合信息,更真實地反映豆皮果膠類多糖在蛋白凝膠類食品中應用的可行性。測試結果如表2所示,添加了0.5%豆皮果膠類多糖的豆腐花在色澤、組織狀態(tài)、滋味氣味、口感和可接受度5個方面均與空白樣品相近,無顯著性差異,感官總分為36.0±2.92(滿分為40),整體反饋良好。這說明豆腐花中添加豆皮果膠類多糖能在不影響豆腐花感官體驗的前提下實現(xiàn)補充功能性多糖的目的,證明了豆皮果膠類多糖在蛋白凝膠類食品中的應用潛能。相較之下,0.1%柑橘果膠添加量的豆腐花的感官得分較低,除了在氣味滋味上無顯著性差異,其余各方面評分均明顯低于空白樣品和豆皮果膠類多糖豆腐花。這主要由于柑橘果膠影響了豆腐花凝膠網(wǎng)絡結構的形成,進而導致其質(zhì)構特性和持水性均呈現(xiàn)顯著差異,最終使得感官評分結果較差,感官總分僅為24.8±2.73。
表2 添加0.5%豆皮果膠類多糖、0.1%柑橘果膠及未添加多糖的豆腐花的感官評定
1)本研究通過鹽輔助結合水熱處理技術,從大豆加工副產(chǎn)物大豆豆皮中提取豆皮果膠類多糖。經(jīng)測定,該豆皮果膠類多糖以果膠為主,半乳糖醛酸含量為42.13%±2.05%,平均粒徑為(210.3±2.9)nm,具有良好的水溶性和低黏度特性。1%豆皮果膠類多糖在100 s-1剪切速率下黏度為2.8 mPa·s,是相同條件的柑橘果膠黏度1/3。
2)以大豆蛋白凝膠類食品(豆腐花)為模型,探究豆皮果膠類多糖對豆腐花微觀結構與宏觀性質(zhì)的影響。經(jīng)研究發(fā)現(xiàn),豆皮果膠類多糖添加量為0~0.5%時所得豆腐花具有良好的網(wǎng)絡微結構、黏彈性、持水性與口感,而過多豆皮果膠類多糖添加(1.0%~2.0%)則導致不良影響,由此確定添加0.5%豆皮果膠類多糖為功能性豆腐花制備的較優(yōu)濃度。
3)與柑橘果膠作對比,發(fā)現(xiàn)采用經(jīng)優(yōu)化添加濃度(0.1%)的柑橘果膠所制備的豆腐花在質(zhì)構特性和感官評分低于含0.5%豆皮果膠類多糖的豆腐花。這說明了豆皮果膠類多糖更適用于蛋白凝膠類食品,可為其提供多種生理功效。
[1] Dicken, S J, Batterham, R L. The role of diet quality in mediating the association between ultra-processed food intake, obesity and health-related outcomes: A review of prospective cohort studies[J/OL]. Nutrients,2022, 14(1) : 23. https:// doi.org/10.3390/nu14010023
[2] 孫賀,于寒松,范宏亮,等.和′亞基缺失對大豆分離蛋白乳化特性的影響[J]. 農(nóng)業(yè)工程學報,2020,36(10):261-268.
Sun He, Yu Hansong, Fan Hongliang, et al. Effects of the subunit-deficiency ofand′ on emulsifying properties of soy protein isolate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 261-268. (in Chinese with English abstract)
[3] Song Q, Wang Y, Huang L, et al. Review of the relationships among polysaccharides, gut microbiota, and human health[J]. Food Research International, 2021, 140: 109858.
[4] 韓晴,李軍國,楊瑩,等. 不同分子量大豆皮多糖的基本結構及功能性質(zhì)研究[J]. 飼料工業(yè),2019,40(17):35-41.
Han Qing, Li Junguo, Yang Ying, et al. Characterization of functional properties and basic structure of polysaccharides extracted from soybean hull[J]. Feed Industry, 2019, 40(17): 35-41. (in Chinese with English abstract)
[5] 任多多,江偉,孫印石,等. 果膠的分類、功能及其在食品工業(yè)中應用的研究進展[J]. 食品工業(yè)科技,2022,43(3):438-446.
Ren Duoduo, Jiang Wei, Sun Yinshi, et al. Research progress on the classification, function and application of pectin in food industry[J]. Science and Technology of Food Industry, 2022, 43(3): 438-446. (in Chinese with English abstract)
[6] Qu D, Wang S, Zhao H, et al. Structure and interfacial adsorption behavior of soy hull polysaccharide at the oil/water interface as influenced by pH[J]. Food Hydrocolloids, 2021, 116: 106638.
[7] Yang L, Zhang H, Zhao Y, et al. Chemical structure, chain conformation and rheological properties of pectic polysaccharides from soy hulls[J]. International Journal of Biological Macromolecules. 2020, 148: 41-48.
[8] Yang L, Zhang H, Zhao Y, et al. Chemical compositions and prebiotic activity of soy hull polysaccharides in vitro [J]. Food Science and Technology Research, 2019, 25(6): 843-851.
[9] Amaro Bittencourt G, Porto de Souza Vandenberghe L, Valladares-Diestra K, et al. Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: A review [J]. Bioresource Technology, 2021, 339: 125594.
[10] Dickinson E. Particle-based stabilization of water-in-water emulsions containing mixed biopolymers[J]. Trends in Food Science & Technology, 2019, 83: 31-40.
[11] Singh P, Medronho B, Miguel M G. On the encapsulation and viability of probiotic bacteria in edible carboxymethyl cellulose-gelatin water-in-water emulsions[J]. Food Hydrocolloids, 2018, 75: 41-50.
[12] 陳家鳳. 食品級水水乳液的形成及其功能性輸送的研究[D]. 廣州:華南理工大學,2020.
Chen Jiafeng. Fabrication and Functionality Delivery of Food Grade Water-in-Water () Emulsion[D]. Guangzhou: South China University of Technology, 2020. (in Chinese with English abstract)
[13] 侯俊杰. 大豆蛋白-甜菜果膠相互作用及其對食品微結構及感官性質(zhì)影響的研究[D]. 廣州:華南理工大學,2016.
Hou Junjie. Soy Protein and Sugar Beet Pectin Interaction and Its Appilication in Manipulating the Microstructure and Sensory Perception of Food[D]. Guangzhou: South China University of Technology, 2016. (in Chinese with English abstract)
[14] Zhang S, Hsieh F H, Vardhanabhuti B. Acid-induced gelation properties of heated whey protein–pectin soluble complex (Part I): Effect of initial pH[J]. Food Hydrocolloids, 2014, 36: 76-84.
[15] Zhang S, Vardhanabhuti B. Acid-induced gelation properties of heated whey protein? pectin soluble complex (Part II): Effect of charge density of pectin[J]. Food Hydrocolloids, 2014, 39: 95-103.
[16] Liu C, Cheng F F, Wang J M, et al. Preparation and characterisation of surface‐active pectin from soya hulls by phosphate‐assisted subcritical water combined with ultrasonic treatment[J]. International Journal of Food Science & Technology, 2016, 51(1): 61-68.
[17] Liu C, Lin X L, Wan Z, et al. The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls[J]. Food & Function, 2016, 7(12): 4830-4840.
[18] Taylor K A, Buchanan-Smith J G. A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid[J]. Analytical Biochemistry, 1992, 201(1): 190-196
[19] 中華人民共和國衛(wèi)生部. 食品安全國家標準食品添加劑果膠:GB 25533-2010[S]. 北京:中國標準出版社,2010.
[20] Zhang D, Qi J R, Jiang W, et al. Extraction and characterisation of pectin polysaccharide from soybean dreg and its dispersion stability in acidified milk drink[J]. International Journal of Food Science & Technology, 2021, 56(10): 5230-5241.
[21] Murekatete Nicole. 酸誘導和鹽誘導的軟豆腐型大豆蛋白凝膠的凝膠性質(zhì)、流變性能、微結構及感官特征[D]. 無錫:江南大學,2015.
Murekatete Nicole. Gelation Behaviour, Rheology, Microstructure and Sensory Characteristics of Acid and Salt-Induced Soy Proteins Soft-Tofu Type Gels[D]. Wuxi: Jiangnan University, 2015. (in Chinese with English abstract)
[22] 陶汝青,夏寧,滕建文,等. 大豆蛋白熱變性程度對速溶豆腐花粉凝膠成型的影響[J]. 農(nóng)業(yè)工程學報,2017,33(11):299-305.
Tao Ruqing, Xia Ning, Teng Jianwen, et al. Effects of heat denaturation degree of soybean protein on gel property of instant soybean curd[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 299-305. (in Chinese with English abstract)
[23] 胡坦,張珮珮,鄭婷,等. 高場強超聲-加熱聯(lián)用增強大豆分離蛋白冷凝膠凝膠特性[J]. 農(nóng)業(yè)工程學報,2016,32(20):306-314.
Hu Tan, Zhang Peipei, Zheng Ting, et al. High intensity ultrasound-heat pretreatments improving gelation properties of cold-set soy protein isolate induced by glucono--lactone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 306-314. (in Chinese with English abstract)
[24] Li Z, Zhang L, Mao C, et al. Preparation and characterization of konjac glucomannan and gum arabic composite gel[J]. International Journal of Biological Macromolecules, 2021, 183: 2121-2130.
[25] Singh Narayan K, Gaurkhede S, Sharma V, et al. Technological and functional assessment of riboflavin enriched probiotic soycurd[J]. Fermentation, 2021, 7(2): 47.
[26] Chen J F, Guo J, Liu S H, et al. Zein particle-stabilized water-in-water emulsion as a vehicle for hydrophilic bioactive compound loading of riboflavin[J]. Journal of Agricultural and Food Chemistry, 2019, 67: 9926-9933.
[27] 任凱. 豆腐的物性評價模型構建及感官品質(zhì)優(yōu)化研究[D]. 南昌:南昌大學,2019.
Ren Kai. Establishment of Tofu Physical Property Evaluation Model and Sensory Quality Optimization[D]. Nanchang: Nanchang University, 2019. (in Chinese with English abstract)
[28] 肖志剛,王依凡,王可心, 等. 高壓均質(zhì)-冷凍干燥技術制備大豆分離蛋白微粒及其功能特性[J]. 農(nóng)業(yè)工程學報,2021,37(13):306-313.
Xiao Zhigang, Wang Yifan, Wang Kexin, et al. Preparation and functional properties of soy protein isolate particles by high pressure homogenization-freeze drying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 306-313. (in Chinese with English abstract)
[29] 金郁蔥. 大豆蛋白凝膠結構和質(zhì)構的控制研究[D]. 廣州:華南理工大學,2013.
Jin Yucong. Control Study of Soy Protein Gel Texture and Structure[D]. Guangzhou: South China University of Technology, 2013. (in Chinese with English abstract)
[30] 江連洲,楊宗瑞,任雙鶴,等. 空化射流對大豆分離蛋白結構及乳化特性的影響[J]. 農(nóng)業(yè)工程學報,2021,37(3):302-311.
Jiang Lianzhou, Yang Zongrui, Ren Shuanghe, et al. Effects of cavitation jet on structure and emulsifying properties of soy protein isolate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 302-311. (in Chinese with English abstract)
[31] 閔維,楊曉泉. 不同分子量葡聚糖對大豆分離蛋白冷致混合凝膠的流變性質(zhì)和質(zhì)構性質(zhì)的影響[J]. 食品工業(yè)科技,2010,31(5):72-75.
Min Wei, Yang Xiaoquan. Effects of molecular weight of dextran on the rheological behavior and texture properties of soy protein isolate cold-set gels[J]. Science and Technology of Food Industry, 2010, 31(5): 72-75. (in Chinese with English abstract)
[32] Patole S, Cheng L, Yang Z. Impact of incorporations of various polysaccharides on rheological and microstructural characteristics of heat-induced quinoa protein isolate gels[J]. Food Biophysics, 2022, 17(3): 314-323.
[33] Yang X, Li A, Li D, et al. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels: A review[J]. Trends in Food Science & Technology, 2021, 109: 197-210.
[34] 陳振家,施小迪,杜昱蒙,等. 不同熱處理大豆分離蛋白凝膠凍藏特性[J]. 農(nóng)業(yè)工程學報,2016,32(11):283-289.
Chen Zhenjia, Shi Xiaodi, Du Yumeng, et al. Gel properties of soybean isolate protein with different heat treatments during frozen storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 283-289. (in Chinese with English abstract)
[35] Zhuang X, Wang L, Jiang X, et al. Insight into the mechanism of myofibrillar protein gel influenced by konjac glucomannan: Moisture stability and phase separation behavior[J]. Food Chemistry, 2021, 339: 127941.
[36] Cortez-Trejo M C, Gaytán-Martínez M, Reyes-Vega M L, et al. Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity[J]. Trends in Food Science & Technology, 2021, 116: 303-317.
[37] Chen Y P, Chung H Y. Development of a lexicon for commercial plain sufu (fermented soybean curd)[J]. Journal of Sensory Studies, 2016, 31(1): 22-33.
[38] Jook H, Cavender G A. Investigation of tofu products coagulated with trimagnesium citrate as a novel alternative to nigari and gypsum: Comparison of physical properties and consumer preference[J]. LWT-Food Science and Technology, 2020, 118: 108819.
Extraction of soybean hull pectin polysaccharide (SHPP) and its applications in soy protein-based gel foods
Shen Xiaomei1, Ran Gen1, Chen Jiafeng2, Hou Junjie3, Wang Jinmei1※
(1.,&,,510640,; 2.,,510430,; 3..,,543000,)
Pectin polysaccharides can be closely related to various physiological functions, particularly for the resistance to obesity, diabetes, and cardiovascular diseases. Therefore, pectin polysaccharides can be often used in gel foods, due to their excellent gelation property, water solubility, and low viscosity. Among them, there is up to 30% of soybean hull pectin polysaccharide (SHPP) in the soybean hull byproducts, more than three million tons of which are produced every year in China. This study aims to improve the utilization efficiency of soybean byproducts for the better application of SHPP in gel foods. A salt-assisted hydrothermal method was also applied to extract the SHPP from soybean hulls. Physicochemical properties of SHPP were characterized, including the extraction yield, composition, size distribution, and viscosity. Then, the soybean curd (one of the soy protein-based gel foods) was applied as a case study. Segregative phase separation was investigated under various concentrations (0-2.0%) of SHPP in these mixed systems. A correlation analysis was implemented on the microphase behavior and the macro-properties (e.g., rheological behavior, mechanical properties, water holding capacity, and sensory evaluation). Besides, the commonly-used commercial citrus pectin (CP) was used as a control in foods. The results showed that the extraction yield of SHPP was up to 17.95% ± 0.21%. The obtained SHPP mainly consisted of pectin, with a galacturonic acid content of 42.13% ± 2.05%. The mean size of SHPP dispersion was determined as (210.3±2.9) nm and the polydispersity index (PDI) was 0.466 ± 0.037. The extracted SHPP was better dispersed in water, due to the hydrophilic property and low shear viscosity. There was no microphase separation, when the 0-0.5% SHPP was added to prepare the soybean curd. The obtained soybean curds were pretty white in a better appearance, particularly with the viscoelastic network and excellent water holding capacity. Furthermore, the leaking water was visible around the soybean curd, as the SHPP concentration increased up to 1.0%. A significant (<0.05) reduction was found in the viscoelasticity and water-holding capacity. The outstanding phase separation was observed when the addition of SHPP was up to 1.5%. There was a disordered microstructure with the enlarged pore of the network in the soybean curd, resulting in weak gel strength and low water holding capacity (46.2%±3.2%). Therefore, the optimal addition concentration of SHPP was 0.5% for the preparation of the soybean curd. A comparison was also made on the soybean curd that was prepared with the optimal CP concentration of 0.1%. The better texture properties and sensory scores were achieved in the color, texture, flavor, taste, and acceptability of the soybean curd prepared with 0.5% SHPP, compared with the 0.1% CP. Therefore, the SHPP can be expected to serve as a bioactive substance with various physiological functions in protein-based gel foods. The finding is conducive to the recycling of soybean byproducts in the whole bean food.
gels; rheological properties; soybean byproduct; soybean hull pectin polysaccharide; gel food; phase separation; application
10.11975/j.issn.1002-6819.2022.19.032
TS214.2
A
1002-6819(2022)-19-0295-08
沈曉梅,冉根,陳家鳳,等. 豆皮果膠類多糖的提取及其在大豆蛋白凝膠類食品的應用[J]. 農(nóng)業(yè)工程學報,2022,38(19):295-302.doi:10.11975/j.issn.1002-6819.2022.19.032 http://www.tcsae.org
Shen Xiaomei, Ran Gen, Chen Jiafeng, et al. Extraction of soybean hull pectin polysaccharide (SHPP) and its applications in soy protein-based gel foods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 295-302. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.032 http://www.tcsae.org
2022-09-15
2022-09-30
河南工業(yè)大學小麥和玉米深加工國家工程研究中心開放課題(NL2021001)
沈曉梅,研究方向蛋白質(zhì)加工與利用。Email:xiaomeishen@foxmail.com
王金梅,博士,副教授,研究方向蛋白質(zhì)加工與利用。Email:fejmwang@scut.edu.cn