于小帥,張俊杰,王 鵬,辛 廣,王海觀,王振國(guó),元 沅,肖志剛
擠壓制備高直鏈玉米淀粉脂工藝優(yōu)化及結(jié)構(gòu)功能特性
于小帥1,張俊杰2,王 鵬2,辛 廣1,王海觀2,王振國(guó)2,元 沅2,肖志剛1※
(1. 沈陽農(nóng)業(yè)大學(xué)食品學(xué)院,沈陽 110866;2. 沈陽師范大學(xué)糧食學(xué)院,沈陽 110034)
為提高淀粉-脂質(zhì)復(fù)合物制備效率,拓寬其在低血糖指數(shù)食品中的應(yīng)用,以高直鏈玉米淀粉和胡麻油為原料,雙螺桿擠壓為核心制備技術(shù),復(fù)合指數(shù)為評(píng)價(jià)指標(biāo),采用單因素和正交優(yōu)化試驗(yàn)獲取最佳制備工藝條件,并對(duì)復(fù)合物結(jié)構(gòu)及特性進(jìn)行測(cè)定分析。結(jié)果表明,優(yōu)化工藝參數(shù)為胡麻油與淀粉質(zhì)量比0.24、喂料水分40%、機(jī)筒溫度125 °C、螺桿轉(zhuǎn)速150 r/min,在此條件下復(fù)合物的復(fù)合指數(shù)為85.63%。通過傅里葉紅外光譜及形態(tài)學(xué)觀察,表明胡麻油與淀粉分子發(fā)生結(jié)合,說明雙螺桿擠壓制備淀粉脂是可行的;擠壓淀粉-脂質(zhì)復(fù)合物表現(xiàn)較強(qiáng)的熱穩(wěn)定性、抗消化特性和較低的黏彈性。根據(jù)以上結(jié)果可知擠壓處理促進(jìn)淀粉與脂質(zhì)分子的有效復(fù)合,進(jìn)而改變淀粉分子的結(jié)構(gòu)及理化特性, 研究結(jié)果可為淀粉-脂質(zhì)復(fù)合物在低血糖指數(shù)食品中的應(yīng)用提供參考。
擠壓;結(jié)構(gòu);功能特性;淀粉-脂質(zhì)復(fù)合物;復(fù)合指數(shù)
淀粉和脂質(zhì)是構(gòu)成食品的重要組分,對(duì)食品的質(zhì)地、風(fēng)味和營(yíng)養(yǎng)發(fā)揮著關(guān)鍵作用。淀粉和脂質(zhì)在加工過程中可形成復(fù)合物,且淀粉-脂質(zhì)復(fù)合物具有顯著的抗消化特性[1-2]。淀粉-脂質(zhì)復(fù)合物形成過程主要包括三個(gè)階段:在水熱環(huán)境下直鏈淀粉分子鏈由纏繞卷曲狀態(tài)向單螺旋結(jié)構(gòu)轉(zhuǎn)變,形成疏水空腔;在疏水作用力驅(qū)動(dòng)下,脂質(zhì)進(jìn)入直鏈淀粉疏水螺旋腔;形成左手單螺旋淀粉-脂質(zhì)復(fù)合物[3]。
脂質(zhì)和直鏈淀粉作為形成淀粉-脂質(zhì)復(fù)合物的主要成分,月桂酸[4]、硬脂酸[5]、玉米油等脂類物質(zhì)[6-8]和小麥[7]、蓮子[9-10]、大米等淀粉[11]已被用作制備淀粉-脂質(zhì)復(fù)合物,且上述研究共同表明脂質(zhì)來源和直鏈淀粉含量直接影響淀粉與脂質(zhì)的復(fù)合效果。然而,以胡麻油和高直鏈玉米淀粉為原料制備淀粉-脂質(zhì)復(fù)合物還未見報(bào)道。胡麻油含有人體必需的二十二碳六烯酸(Docosahexaenoic Acid, DHA)和二十碳五烯酸(Eicosapentaenoic Acid, EPA),且能夠降低患癌癥和心腦血管疾病的風(fēng)險(xiǎn)[8]。因此,在淀粉中加入胡麻油不僅可以改善淀粉的消化性也能增加淀粉營(yíng)養(yǎng)特性。相比于小麥和大米淀粉,高直鏈玉米淀粉中直鏈淀粉含量更高,其與脂肪酸發(fā)生復(fù)合,可提高復(fù)合物的熱穩(wěn)定性和抗消化性。此外,復(fù)合效果還受制備方法(化學(xué)法、物理法、酶法)的影響。其中,化學(xué)法生產(chǎn)效率高,但制備過程中產(chǎn)生的廢液可能會(huì)污染環(huán)境;物理法工藝簡(jiǎn)單且綠色環(huán)保,但對(duì)設(shè)備要求較高;酶法具有專一性強(qiáng)、安全性高等優(yōu)點(diǎn),但價(jià)格昂貴且引入的酶需要去除[12-13]。
擠壓作為物理改性淀粉的常用手段之一,已成功應(yīng)用于淀粉-脂質(zhì)復(fù)合物的制備。Cervantes-Ramírez等[6]借助單螺桿擠壓機(jī)制備玉米淀粉-硬脂酸復(fù)合物,結(jié)果發(fā)現(xiàn)淀粉與脂質(zhì)的復(fù)合顯著影響玉米淀粉的糊化特性、吸水指數(shù)和溶解度。Bhatnagar等[14]使用單螺桿擠壓機(jī)擠壓玉米淀粉和不同碳鏈長(zhǎng)度脂肪酸混合物,結(jié)果表明擠壓處理可促進(jìn)淀粉與短鏈脂肪酸的有效復(fù)合。Pilli等[15]利用雙螺桿擠壓機(jī)以大米淀粉和亞油酸為原料成功制備淀粉-脂質(zhì)復(fù)合物,并發(fā)現(xiàn)復(fù)合指數(shù)與喂料水分和機(jī)筒溫度具有顯著的相關(guān)性(<0.05)。基于上述研究,可以推測(cè)脂質(zhì)在剪切應(yīng)力、熱和壓力的協(xié)同誘導(dǎo)作用下與淀粉形成復(fù)合物。相比于微波、高壓均質(zhì)等僅能提供單一熱效應(yīng)或力學(xué)效應(yīng)的物理制備方法,擠壓法具有產(chǎn)量高、易于操作、集成化程度高的優(yōu)勢(shì)[13,16]。因此,本研究采用雙螺桿擠壓技術(shù),以高直鏈玉米淀粉(High Amylose Corn Starch,HACS)和胡麻油(Fax Oil,F(xiàn)O)為原料,探究胡麻油與淀粉質(zhì)量比、喂料水分、機(jī)筒溫度與螺桿轉(zhuǎn)速等因素對(duì)復(fù)合指數(shù)的影響,明確擠壓制備淀粉-脂質(zhì)復(fù)合物(HACS-FL complex)的最佳工藝條件;解析擠壓前后復(fù)合物微觀結(jié)構(gòu)和理化性質(zhì)的差異,以期擴(kuò)展高直鏈玉米淀粉在抗消化食品中的應(yīng)用,對(duì)提升高質(zhì)量玉米淀粉脂的生產(chǎn)效率具有指導(dǎo)意義。
高直鏈玉米淀粉(主要成分及質(zhì)量分?jǐn)?shù)分別為直鏈淀粉69.32%,蛋白質(zhì)0.62%,脂肪0.046%,灰分0.35%,含水率7.82%),漯河恒瑞淀粉科技有限公司;胡麻油,寧夏索米亞生態(tài)農(nóng)業(yè)科技有限公司;-淀粉酶(100 U/mg,Cas: 9000-90-2)、糖化酶(10×104 U/mL,Cas: 9032-08-0),Sigma-Aldrich(上海)貿(mào)易有限公司。
雙螺桿擠壓機(jī)(DS56-Ⅲ,濟(jì)南賽信膨化機(jī)械有限公司),螺桿外徑為24 mm,螺桿長(zhǎng)徑比為25∶1,沿?cái)D壓機(jī)方向機(jī)筒可分為喂料區(qū)、混合區(qū)、蒸煮區(qū)和冷卻區(qū);CEBG型混料機(jī),南通斯鉑格機(jī)械有限公司;UV1800-型紫外分光光度計(jì),上海美普達(dá)儀器有限公司;SU3500掃描電子顯微鏡,日本 Hitachi公司;A1R型激光共聚焦顯微鏡,日本Nikon 公司;Nicolet FT-IR紅外光譜儀,美國(guó) Thermo Scientific 公司;D2PHASER型X-射線衍射儀,德國(guó)布魯克AXS有限公司;TA Q20 差示掃描量熱儀(Differential Scanning Calorimeter),美國(guó)TA公司;DHR-1流變儀,美國(guó)TA公司。
1.2.1 淀粉-脂質(zhì)復(fù)合物制備
按照試驗(yàn)設(shè)計(jì)稱取一定質(zhì)量的高直鏈玉米淀粉與不同比例的胡麻油加入混料機(jī)中在室溫(25±1)℃以100 r/min攪拌15 min混合均勻,以8 kg/h喂入擠壓機(jī),在前期大量預(yù)試驗(yàn)結(jié)果基礎(chǔ)上,分別將喂料區(qū)、混合區(qū)、冷卻區(qū)溫度設(shè)定為25、40、和40 ℃。在一定的螺桿轉(zhuǎn)速下,調(diào)節(jié)不同的機(jī)筒蒸煮區(qū)溫度和喂料水分進(jìn)行擠壓處理。將擠出物在40 ℃烘箱中干燥10 h,然后研磨過80目篩網(wǎng)(網(wǎng)孔徑:0.18 mm)后得淀粉-脂質(zhì)復(fù)合物樣品。未擠壓淀粉-胡麻油混合物設(shè)定為對(duì)照混合物。
1.2.2 復(fù)合指數(shù)測(cè)定
根據(jù)Tu等[5]的方法并做了一些修改進(jìn)行復(fù)合指數(shù)(Complex Index,CI)的測(cè)定。將淀粉-脂質(zhì)復(fù)合物(20 mg,干基)加入8 mL二甲基亞砜溶液,將懸浮液渦旋,然后在沸水浴中加熱,直到淀粉完全糊化。待溶液冷卻至室溫后,將25 mL蒸餾水加入糊化樣品中,再把樣品渦旋5 min,并以5 000 r/min離心10 min。將500L上清液與15 mL蒸餾水、2 mL碘溶液(0.002 5 mol/L I2/0.0065 mol/L KI)充分混合。在620 nm處測(cè)定吸光度,不含胡麻油的淀粉樣品作為對(duì)照組,并通過下式算得淀粉-脂質(zhì)復(fù)合指數(shù)。
復(fù)合指數(shù)(CI)=[(對(duì)照組樣品吸光度?擠壓復(fù)合物吸光度)/
對(duì)照組樣品吸光度] × 100% (1)
1.2.3 擠壓制備淀粉-脂質(zhì)復(fù)合物的單因素試驗(yàn)
在前人研究[6,15]和預(yù)試驗(yàn)基礎(chǔ)上,以保證復(fù)合物復(fù)合效果良好、便于擠壓操作為原則,選擇胡麻油與淀粉質(zhì)量比(0.06、0.12、0.18、0.24、0.30)、喂料水分(30%、35%、40%、45%、50%)、機(jī)筒溫度(65、85、105、125、145 ℃)、螺桿轉(zhuǎn)速(90、110、130、150、170 r/min)等為主要影響因素,以淀粉-脂質(zhì)復(fù)合指數(shù)為衡量指標(biāo),研究不同因素對(duì)復(fù)合效果的影響。
1.2.4 擠壓制備淀粉-脂質(zhì)復(fù)合物的正交試驗(yàn)
在單因素試驗(yàn)基礎(chǔ)上,進(jìn)行L9(34)正交實(shí)驗(yàn)設(shè)計(jì)研究上述4個(gè)因素對(duì)粉-脂質(zhì)復(fù)合指數(shù)的影響,確定擠壓處理的最佳工藝參數(shù)。表1為正交試驗(yàn)因素水平表。
表1 正交因素水平表
1.2.5 傅里葉紅外光譜
將干燥后的樣品與溴化鉀粉末按照1∶100的比例在瑪瑙研缽中均勻研磨并進(jìn)行壓片處理,置于FT-IR紅外光譜儀中進(jìn)行掃描。波長(zhǎng)范圍為400~4 000 cm-1,掃描次數(shù)32次,借助Peak Fit v4.12 軟件計(jì)算樣品在1 047 cm-1/1 022 cm-1處的吸光度比,分析樣品中淀粉分子的短程有序性[17]。
1.2.6表觀形貌
1)掃描電鏡
將少量樣品粉末混勻固定在含有雙面膠帶的鋁板上,并對(duì)樣品進(jìn)行噴金處理,加速電壓15 kV下進(jìn)行測(cè)定,觀察樣品的表觀形貌(3 000×)。
2)激光共聚焦顯微鏡
根據(jù)Jia等[18]的方法有所改進(jìn),將樣品(20 mg,干基)加入5 mL熒光混合染液(異硫氰酸熒光素,0.25%;尼羅紅0.025%)并置于避光環(huán)境攪拌反應(yīng)10 h,用滴管吸取少量樣品溶液置于載玻片上,用激光共聚焦顯微鏡觀察樣品內(nèi)部結(jié)構(gòu)。異硫氰酸熒光素和尼羅紅的激發(fā)/發(fā)射波長(zhǎng)分別為488/518 nm和568/625 nm。
1.2.7 X-射線衍射
參考Qin等[19]的方法測(cè)定樣品的晶型:衍射角為4°~40°(2),掃描速度4°/min,并利用 JADE 6.0軟件計(jì)算樣品相對(duì)結(jié)晶度(Relative Crystallinity,RC)。
1.2.8熱力學(xué)特性測(cè)定
用差示掃描量熱儀(Differential Scanning Calorimeter,DSC)測(cè)定樣品的熱力學(xué)特性。準(zhǔn)確稱取2.5 mg(干基)樣品并加入7.5L蒸餾水密封于鋁盤中,在室溫下平衡12 h再進(jìn)行測(cè)定。測(cè)試條件:溫度掃描范圍25~140 ℃,升溫速率10 ℃/min。
1.2.9 流變學(xué)特性測(cè)定
根據(jù)Liu等[20]的方法并作修改。利用高壓鍋將樣品進(jìn)行糊化,然后將樣品糊置于流變儀的平板上進(jìn)行測(cè)定。測(cè)試均采用CP-50錐形板,以對(duì)數(shù)取點(diǎn)的方式從0.01~100 s-1進(jìn)行速率掃描,記錄樣品的穩(wěn)態(tài)剪切黏度。在應(yīng)變?yōu)?.5%條件下進(jìn)行掃描(線性黏彈區(qū)內(nèi)),掃描頻率為0.01~100 Hz,記錄掃描過程中儲(chǔ)能模量()和損耗模量(″)的變化。
1.2.10 體外消化特性測(cè)定
參考Englyst等[21]的方法測(cè)定樣品的體外消化率。稱取樣品(200 mg,干基)于燒杯中,加入15 mL醋酸鈉緩沖液(pH值5.2,0.2 mol/L),沸水浴中振蕩糊化20 min后,冷卻至室溫加入-淀粉酶(290 U/mL)和糖化酶(15 U/mL)混合酶溶液10 mL,于37 ℃水浴中振蕩反應(yīng),在20和120 min時(shí),分別取出1mL水解液,采用DNS法測(cè)定樣品中還原糖含量并計(jì)算總淀粉(Total Starch, TS)、快消化淀粉(Rapidly Digestible Starch, RDS)、慢消化淀粉(Slowly Digestible Starch, SDS)和抗性淀粉(Resistant Starch, RS)含量。
1.2.11 數(shù)據(jù)處理與分析
分別利用Origin 8.5和SPSS 19.0軟件進(jìn)行數(shù)據(jù)繪圖和方差分析,試驗(yàn)結(jié)果以平均值±標(biāo)準(zhǔn)差表示,不同小寫字母代表差異性顯著(<0.05)。所有試驗(yàn)均重復(fù)3次。
復(fù)合指數(shù)(CI)是表征淀粉與脂質(zhì)復(fù)合能力的關(guān)鍵參數(shù),復(fù)合指數(shù)越高表示淀粉與脂質(zhì)復(fù)合程度越高[13]。
2.1.1 胡麻油與淀粉質(zhì)量比對(duì)復(fù)合指數(shù)的影響
其他因素(喂料水分:40%、機(jī)筒溫度:105 ℃、螺桿轉(zhuǎn)速:130 r/min)保持不變,研究胡麻油與淀粉質(zhì)量比對(duì)復(fù)合指數(shù)的影響規(guī)律。由圖1a可知,復(fù)合指數(shù)在質(zhì)量比0.06~0.24內(nèi)呈增加趨勢(shì),由13.52%升高至62.69%,而當(dāng)質(zhì)量比進(jìn)一步增加至0.30時(shí),復(fù)合指數(shù)降至56.13%。這是由于在一定范圍內(nèi)油脂比例的增加有利于與淀粉與脂質(zhì)分子間氫鍵和疏水相互作用的形成,而體系中含有過多的油脂時(shí)直鏈淀粉含量不足以提供與脂質(zhì)分子的結(jié)合位點(diǎn)導(dǎo)致較低的復(fù)合指數(shù),而且過高的油脂含量不利于復(fù)合體系的貯存穩(wěn)定性。因此,較佳胡麻油與淀粉質(zhì)量比為0.24。
圖1 不同因素對(duì)復(fù)合指數(shù)的影響
2.1.2 喂料水分對(duì)復(fù)合指數(shù)的影響
其他因素(質(zhì)量比:0.18、機(jī)筒溫度:105 ℃、螺桿轉(zhuǎn)速:130 r/min)保持不變,研究喂料水分對(duì)復(fù)合指數(shù)的影響規(guī)律。由圖1b可知,在喂料水分30%~40%內(nèi),復(fù)合指數(shù)隨著隨喂料水分的增加而不斷提高(44.57%~59.06%),這可能是由于適量的水分利于淀粉顆粒的溶脹和糊化,便于脂質(zhì)分子進(jìn)入淀粉顆粒內(nèi)部發(fā)生復(fù)合反應(yīng),而當(dāng)喂料水分繼續(xù)增加至45%~50%時(shí),復(fù)合指數(shù)降至54.12%,這是由于過高的水分不利于形成淀粉與脂質(zhì)分子間的疏水相互作用,此外,過高的水分會(huì)引發(fā)較高的蒸汽壓阻礙淀粉與脂質(zhì)分子復(fù)合[15]。因此,較佳喂料水分為40%。
2.1.3 機(jī)筒溫度對(duì)復(fù)合指數(shù)的影響
其他因素(質(zhì)量比:0.18、喂料水分:40%、螺桿轉(zhuǎn)速:130 r/min)保持不變,研究機(jī)筒溫度對(duì)復(fù)合指數(shù)的影響規(guī)律。由圖1c可知,復(fù)合指數(shù)在機(jī)筒溫度65~125 ℃內(nèi)呈快速增加的趨勢(shì),由44.93%增加至77.16%,這是因?yàn)闇囟鹊纳呃诘矸郯l(fā)生部分糊化,促使更多直鏈淀粉分子與脂質(zhì)分子結(jié)合;然而,機(jī)筒溫度進(jìn)一步提高導(dǎo)致復(fù)合指數(shù)有所降低,這主要是由于過高的擠壓溫度會(huì)引發(fā)淀粉分子的熱降解,不利于淀粉與脂質(zhì)分子間氫鍵作用力的形成;而且隨著擠壓溫度的升高,會(huì)提高能耗降低能量利用率。因此,較佳機(jī)筒溫度為125 ℃。
2.1.4 螺桿轉(zhuǎn)速對(duì)復(fù)合指數(shù)的影響
其他因素(質(zhì)量比:0.18、喂料水分:40%、機(jī)筒溫度:105 ℃)保持不變,研究螺桿轉(zhuǎn)速對(duì)復(fù)合指數(shù)的影響規(guī)律。由圖1d可知,復(fù)合指數(shù)隨螺桿轉(zhuǎn)速增加呈先上升后下降的趨勢(shì),在150 r/min時(shí)達(dá)到最大值62.91%,隨著螺桿轉(zhuǎn)速進(jìn)一步增加至170 r/min時(shí),復(fù)合指數(shù)下降至59.88%??赡苁且?yàn)檩^低的螺桿轉(zhuǎn)速產(chǎn)生的剪切力和摩擦力比較小,不利于直鏈淀粉分子的溶出和釋放;而當(dāng)螺桿轉(zhuǎn)速過高時(shí)強(qiáng)大的剪切力會(huì)降解直鏈淀粉分子進(jìn)而破壞直鏈淀粉的疏水螺旋腔,影響胡麻油與淀粉的復(fù)合效果。因此,較佳螺桿轉(zhuǎn)速選擇為150 r/min。
根據(jù)單因素試驗(yàn)設(shè)計(jì)正交試驗(yàn)參數(shù),由表2可知,各因素對(duì)復(fù)合指數(shù)影響的主次順序?yàn)?>>,最優(yōu)組合為2222。由于根據(jù)正交試驗(yàn)表得到的最佳組合并未包含在正交表的9個(gè)試驗(yàn)中,將最佳組合進(jìn)行對(duì)比驗(yàn)證試驗(yàn),結(jié)果顯示樣品復(fù)合指數(shù)為85.63%,大于最大復(fù)合指數(shù)的正交試驗(yàn)的6號(hào)樣(84.07%),所以最終確定最佳工藝條件為2222,即胡麻油與淀粉質(zhì)量比0.24,喂料水分40%,機(jī)筒溫度125 ℃,螺桿轉(zhuǎn)速150 r/min。
表2 正交試驗(yàn)結(jié)果分析
2.3.1 傅里葉紅外光譜分析
圖2a中3 300 cm-1為高直鏈玉米淀粉 (HACS) 羥基O-H伸縮振動(dòng)吸收峰,2 920 cm-1為淀粉分子內(nèi)部C-H伸縮振動(dòng)吸收峰[6]。對(duì)照混合物(混料機(jī)混合)和擠壓復(fù)合物在2 850 cm-1出現(xiàn)新的特征峰,對(duì)應(yīng)為脂類物質(zhì)的C-H伸縮振動(dòng)吸收峰。對(duì)照混合物1 745 cm-1出現(xiàn)C=O彎曲振動(dòng)吸收峰[10],然而,與對(duì)照混合物相比,擠壓復(fù)合物C=O吸收峰向低波數(shù)方向移動(dòng)(1 743 cm-1),說明擠壓更加有效促進(jìn)了淀粉與脂質(zhì)的復(fù)合[3]。
前人研究表明樣品在1 047和1 022 cm-1(1047/1022)的吸光度比值可用來表征淀粉分子短程有序性[17]。由表3可知,與高直鏈玉米淀粉相比,對(duì)照混合物中淀粉分子的短程有序性無顯著變化(>0.05),表明在混料機(jī)物理混合胡麻油與淀粉并未明顯改變淀粉分子內(nèi)部短程有序結(jié)構(gòu)的數(shù)量。然而,擠壓處理后復(fù)合物中淀粉分子1047/1022值顯著升高(<0.05),可能是由于擠壓產(chǎn)生的熱和機(jī)械力學(xué)效應(yīng)促進(jìn)了淀粉脂質(zhì)復(fù)合物形成V型結(jié)晶,提高淀粉分子的短程有序性[5]。
圖2 樣品傅里葉紅外光譜圖和X-射線衍射圖譜分析
表3 樣品吸光度比值和相對(duì)結(jié)晶度
注:1047/1022表示紅外光譜中1 047 cm-1和1 022 cm-1處吸光度比值;同列不同字母表示差異顯著(<0.05)。
Note:1047/1022represents the ratio of absorbance at 1 047 cm-1and 1 022 cm-1in the FT-IR spectrum; The different letters represent significant differences between the data in the same column (<0.05).
2.3.2 結(jié)晶結(jié)構(gòu)分析
樣品的X-射線衍射圖譜見圖2b,HACS在衍射角為5.7°、14.82°、17.14°、19.68°、22.26°和24.28°出現(xiàn)特征衍射峰,表現(xiàn)為典型B型晶體結(jié)構(gòu)[22],對(duì)照混合物的衍射峰與HACS衍射峰基本一致,表明混料機(jī)物理混合淀粉與胡麻油未改變淀粉的晶型。然而,擠壓復(fù)合物在衍射角為7.5°和13°出現(xiàn)新的衍射峰,表明擠壓處理促進(jìn)了淀粉與脂質(zhì)的復(fù)合進(jìn)而使得玉米淀粉晶體結(jié)構(gòu)由B型轉(zhuǎn)化為V型。此外,與HACS相比,對(duì)照混合物中淀粉的相對(duì)結(jié)晶度無顯著性差異(>0.05),表明此時(shí)加入胡麻油未顯著改變淀粉的長(zhǎng)程有序性。擠壓復(fù)合物中淀粉具有較低相對(duì)結(jié)晶度(22.04%),這是由于擠壓產(chǎn)生的水熱效應(yīng)、剪切力和摩擦力導(dǎo)致復(fù)合物中淀粉分子內(nèi)和分子間的氫鍵斷裂,部分雙螺旋結(jié)構(gòu)解體,破壞了淀粉的結(jié)晶結(jié)構(gòu),結(jié)晶區(qū)轉(zhuǎn)變?yōu)闊o定型區(qū)[23-24]。
2.3.3 微觀結(jié)構(gòu)分析
1)表面形貌
圖3是樣品的微觀結(jié)構(gòu)圖,由圖3A1可知,HACS呈現(xiàn)橢球形和細(xì)長(zhǎng)型且表面光滑,掃描電鏡結(jié)果顯示與先前報(bào)道保持一致[22]。圖3B1顯示對(duì)照混合物中淀粉顆粒發(fā)生聚集,這可能是因?yàn)樵谖锢砘旌系淖饔孟轮|(zhì)的加入引發(fā)淀粉分子粘連。由圖3C1可知,淀粉顆粒呈現(xiàn)層狀堆積且表面出現(xiàn)碎片化,這是由于擠壓處理促使淀粉與胡麻油發(fā)生復(fù)合并形成致密結(jié)構(gòu),同時(shí),高溫、高壓及高剪切力導(dǎo)致淀粉顆粒碎裂。
2)內(nèi)部結(jié)構(gòu)
激光共聚焦顯微圖中,綠色區(qū)域代表淀粉顆粒,紅色區(qū)域表示脂質(zhì)分子。由圖3A2可知,HACS呈現(xiàn)強(qiáng)烈的綠色熒光信號(hào)且未出現(xiàn)紅色區(qū)域,表明本試驗(yàn)所采用高直鏈玉米淀粉純度較高。圖3B2顯示綠色和紅色區(qū)域處于分離狀態(tài),說明淀粉和脂質(zhì)處于游離態(tài)未發(fā)生明顯的復(fù)合,圖3C2顯示擠壓復(fù)合物中綠色和紅色區(qū)域處于互相滲透狀態(tài),表明脂質(zhì)與淀粉分子發(fā)生有效復(fù)合,這與X-射線結(jié)果保持一致。
注:掃描電鏡標(biāo)尺10.0 μm;激光共聚焦標(biāo)尺50 μm;綠色區(qū)域代表淀粉顆粒,紅色區(qū)域表示脂質(zhì)分子。
2.4.1 熱力學(xué)特性分析
樣品的熱力學(xué)特性參數(shù)如表4所示,HACS峰值糊化溫度為97.24 ℃,糊化焓值為13.05 J/g,與HACS相比,對(duì)照混合物中淀粉具有較低的峰值糊化溫度,表明混料機(jī)物理混合胡麻油與淀粉會(huì)降低淀粉的熱穩(wěn)定性。然而,擠壓處理顯著提高復(fù)合物中淀粉峰值糊化溫度至118.12 ℃,可能是因?yàn)閿D壓處理促進(jìn)淀粉和胡麻油的復(fù)合,增強(qiáng)了淀粉的熱穩(wěn)定性。Putseys等[25-26]指出根據(jù)峰值糊化溫度可判斷淀粉-脂質(zhì)復(fù)合物形成的類型,即峰值糊化溫度低于100 ℃對(duì)應(yīng)I型復(fù)合物;高于105 ℃對(duì)應(yīng)II型復(fù)合物。因此,可推測(cè)擠壓處理制備的玉米淀粉-胡麻油復(fù)合物屬于II型復(fù)合物,表現(xiàn)出更佳的熱穩(wěn)定性。與HACS相比,對(duì)照混合物中淀粉具有較低的糊化焓值,表明此時(shí)胡麻油的加入降低了淀粉糊化所需要的能量。擠壓處理之后,復(fù)合物中淀粉焓值顯著升高至15.45 J/g,較高的焓值是因?yàn)閿D壓處理促進(jìn)脂質(zhì)與淀粉分子發(fā)生復(fù)合,使短鏈淀粉分子與脂質(zhì)分子重排形成新的短程有序晶體[9,13],提高了淀粉糊化所需的能量,這與形態(tài)學(xué)和短程有序結(jié)果保持一致。
表4 樣品熱力學(xué)特性和體外消化特性
注:同列不同字母表示差異顯著(<0.05)。
Note: Different letters in the same column are significant different (<0.05).
2.4.2流變學(xué)特性分析
1)表觀黏度分析
由圖4a可知,所有樣品的表觀黏度隨著剪切速率的增加而降低,表現(xiàn)出典型的剪切稀化行為。通過對(duì)比可知,對(duì)照混合物體系內(nèi)淀粉的表觀黏度低于HACS的黏度,這是因?yàn)橹|(zhì)分子的引入抑制了淀粉分子糊化時(shí)淀粉鏈段的纏結(jié),弱化了體系纏結(jié)區(qū)[27]。擠壓處理進(jìn)一步降低了復(fù)合物中淀粉的表觀黏度,這是由于擠壓處理造成直鏈和支鏈淀粉分子的降解和分子鏈的斷裂,減少了淀粉分子鏈之間的纏結(jié)[28-29];同時(shí),擠壓引發(fā)的淀粉與脂質(zhì)分子的復(fù)合會(huì)形成空間位阻效應(yīng)抑制淀粉分子的溶脹,表現(xiàn)為淀粉表觀黏度的近一步降低。
2)頻率掃描分析
圖4b為HACS和淀粉-脂質(zhì)復(fù)合物體系的動(dòng)態(tài)模量變化曲線。由圖可知,在整個(gè)頻率范圍內(nèi),所有樣品的儲(chǔ)能模量()均高于損耗模量(),且具有明顯的頻率依賴性,表明此時(shí)淀粉分子之間形成三維網(wǎng)絡(luò)結(jié)構(gòu),呈現(xiàn)出弱凝膠黏彈性行為[30]。對(duì)照混合物的淀粉凝膠與HACS凝膠相比,和無明顯變化,說明此時(shí)加入胡麻油對(duì)淀粉糊的黏彈性無顯著影響。經(jīng)過擠壓處理后淀粉-胡麻油復(fù)合物體系中淀粉凝膠的和大幅降低,表明擠壓復(fù)合物中淀粉凝膠黏彈性減小。這可能是因?yàn)閿D壓處理產(chǎn)生的剪切力和高溫效應(yīng)破壞淀粉網(wǎng)狀結(jié)構(gòu)的連續(xù)性,此外,胡麻油與淀粉分子間的結(jié)合會(huì)使淀粉分子間產(chǎn)生額外的空間位阻,阻礙淀粉凝膠網(wǎng)絡(luò)的生成[31-32]。與對(duì)照混合物淀粉凝膠和相比,擠壓處理對(duì)的變化大于,表明擠壓促進(jìn)淀粉與胡麻油復(fù)合后對(duì)淀粉凝膠的彈性部分有更顯著影響。
2.4.3 消化特性分析
為了擴(kuò)展擠壓淀粉-胡麻油淀粉復(fù)合物在抗消化食品中的應(yīng)用,評(píng)估了樣品的體外消化率。如表4所示,與HACS相比,對(duì)照混合物中快消化淀粉(RDS)、慢消化淀粉(SDS)和抗性淀粉(RS)含量無顯著性差異(>0.05),說明混料機(jī)物理混合胡麻油與淀粉未改變高直鏈玉米淀粉的消化特性。擠壓復(fù)合物中RDS、SDS和RS含量分別為12.95%、6.93%和80.12%,表明在擠壓環(huán)境下添加胡麻油顯著降低了RDS和SDS含量卻提高了玉米淀粉中RS含量,從而增強(qiáng)了玉米淀粉的抗消化特性。先前的研究證實(shí)II 型結(jié)晶復(fù)合物能夠提高淀粉抵抗-淀粉酶和糖化酶的能力[33],這與本文的結(jié)果保持一致。擠壓復(fù)合物中淀粉的抗消化性得到提高的原因可能是擠壓處理促進(jìn)了淀粉與胡麻油的復(fù)合,復(fù)合物的形成能夠有效阻礙酶與淀粉的接觸與結(jié)合,另一方面,由掃描電鏡可知復(fù)合物中淀粉呈現(xiàn)致密結(jié)構(gòu),會(huì)限制酶對(duì)淀粉的水解。
注:G′為儲(chǔ)能模量;G″為損耗模量。
1)通過單因素和正交優(yōu)化試驗(yàn)得出高直鏈玉米淀粉-胡麻油復(fù)合物的最佳制備工藝參數(shù)為:胡麻油與淀粉質(zhì)量比為0.24、喂料水分40%、機(jī)筒溫度125 ℃、螺桿轉(zhuǎn)速150 r/min。最優(yōu)條件下,復(fù)合物的復(fù)合指數(shù)為85.63%。
2)紅外分析結(jié)果中2 850和1 743 cm-1新特征吸收峰的出現(xiàn),證實(shí)淀粉與胡麻油發(fā)生有效復(fù)合,且復(fù)合之后淀粉的短程有序性有所增加;形態(tài)學(xué)結(jié)構(gòu)表明擠壓促進(jìn)了胡麻油與淀粉分子復(fù)合并引發(fā)淀粉層狀堆疊聚集;與高直鏈玉米淀粉相比,混料機(jī)混合胡麻油與淀粉未改變淀粉的晶型,但擠壓復(fù)合物中淀粉相對(duì)結(jié)晶度顯著降低(<0.05)且內(nèi)部呈現(xiàn)V型晶體結(jié)構(gòu)。
3)擠壓處理形成了II型淀粉-脂質(zhì)復(fù)合物,且具有更好的熱穩(wěn)定性;穩(wěn)定致密的結(jié)構(gòu)抑制酶可及性,進(jìn)而降低淀粉的體外消化率。
[1] Tang M, Copeland L. Analysis of complexes between lipids and wheat starch[J]. Carbohydrate Polymers, 2007, 67(1): 80-85.
[2] Wang S J, Wang J R, Yu J L, et al. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis[J]. Food Chemistry, 2016, 190: 285-292.
[3] 孫圣麟. 脂肪酸類型與淀粉來源對(duì)復(fù)合物結(jié)構(gòu)和消化性能影響的研究[D]. 廣州:華南理工大學(xué),2021.
Sun Shenglin. Effects of Fatty Acid Types and Starch Sources on Structures and Digestibility of Their Complexes[D]. Guangzhou: South China of Technology, 2021. (in Chinese with English Abstract)
[4] Zhang B, Huang Q, Luo F X, et al. Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid[J]. Food Hydrocolloids, 2012, 28: 174-181.
[5] Tu D K, Ou Y J, Zheng Y X, et al. Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes[J]. International Journal of Biological Macromolecules, 2021, 177: 447-454.
[6] Cervantes-Ramírez J E, Cabrera-Ramirez A H, Morales- Sánchez E, et al, Amylose-lipid complex formation from extruded maize starch mixed with fatty acids[J]. Carbohydrate Polymers, 2020, 246: 116555.
[7] Meng S, Ma Y, Sun D W, et al. Properties of starch-palmitic acid complexes prepared by high pressure homogenization[J]. Journal of Cereal Science, 2014, 59: 25-32.
[8] Diwan B, Gupta P. Synthesis of MCFA and PUFA rich oils by enzymatic structuring of flax oil with single cell oils[J]. LWT-Food Science and Technology, 2020, 133: 109928.
[9] Zheng Y X, Ou Y J, Zhang Y, et al. Physicochemical properties and in vitro digestibility of lotus seed starch-lecithin complexes prepared by dynamic high pressure homogenization[J]. International Journal of Biological Macromolecules, 2020, 156: 196-203.
[10] Kang, X M, Jia S Q, Gao W, et al. The formation of starch-lipid complexes by microwave heating[J]. Food Chemistry, 2022, 382: 132319.
[11] Cui J, Zheng B, Liu Y F, et al. Insights into the effect of structural alternations on the digestibility of rice starch-fatty acid complexes prepared by high-pressure homogenization[J]. LWT-Food Science and Technology, 2021, 136: 110294.
[12] Wang S J, Copeland L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review[J]. Food & Function, 2013, 4(11): 1564-1580.
[13] Wang S J, Chen C, Cai J J, et al. Starch-lipid and starch-lipid-protein complexes: A comprehensive review[J]. Comprehensive Reviews in Food science and Food Safety, 2020, 19: 1056-1079.
[14] Bhatnagar S, Milford A H. Amylose-lipid complex formation during single-screw extrusion of various corn starches[J]. Cereal Chemistry, 1994, 71(6): 582-587.
[15] Pilli D T, Derossi A, Talja R A, et al. Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology[J]. Innovative Food Science and Emerging Technologies, 2011, 12: 610-616.
[16] 葉向庫,申德超. 低溫?cái)D出-多酶協(xié)同降解玉米中淀粉的機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):291-299.
Ye Xiangku, Shen Dechao. Mechanism of starch degradation of corn grist degermed by extruded at low-temperature and multienzyme synergistic degradation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 291-299. (in Chinese with English abstract)
[17] Tian X L, Wang Z, Wang X X, et al. Mechanochemical effects on the structural properties of wheat starch during vibration ball milling of wheat endosperm[J]. International Journal of Biological Macromolecules, 2022, 206: 306-312.
[18] Jia X Z, Sun S W, Chen B Y, et al. Understanding the crystal structure of lotus seed amylose-long-chain fatty acid complexes prepared by high hydrostatic pressure[J]. Food Research International, 2018, 111: 334-341.
[19] Qin R B, Yu J L, Li Y F, et al. Structural changes of starch-lipid complexes during postprocessing and their effect onenzymatic digestibility[J]. Journal of Agricultural and Food Chemistry, 2019, 67, 1530-1536.
[20] Liu J, Yu X S, Wang Y D, et al. A cleaner approach for corn starch production by ultrasound-assisted laboratory scale wet-milling[J]. Food Science and Technology Research, 2020, 26(4): 469-478.
[21] Englyst H N, Kingman S M, Cummings J H. Classi?cation and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition, 1992, 46: 33-50.
[22] Liu J, Wang Y D, Fang G H, et al. Effect of ultrasound- assisted Isolation on yield and properties of high-amylose starch from amylomaize[J]. Starch-Starke, 2019, 71: 1800292.
[23] 莊海寧,馮濤,金征宇,等. 擠壓加工參數(shù)對(duì)重組米生產(chǎn)過程及產(chǎn)品膨脹度的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(9):349-356.
Zhuang Haining, Feng Tao, Jin Zhengyu, et al. Effect of extrusion parameters on production process and expansion ratio of reformed rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 349-356. (in Chinese with English abstract)
[24] 戚明明,彭慧慧,宋佳琳,等. 擠壓和酶解擠壓對(duì)豌豆淀粉體外消化率、蛋白質(zhì)結(jié)構(gòu)和流變特性的影響[J]. 食品科學(xué),2022,43(1):76-82.
Qi Mingming, Peng Huihui, Song Jialin, et al. Effects of extrusion and enzymatic hydrolysis on thestarch digestibility, protein structure and rheological properties of pea flour[J]. Food Science, 2022, 43(1): 76-82. (in Chinese with English abstract)
[25] Putseys J A, Derde L J, Lambers L, et al. Production of tailor made short chain amylose–lipid complexes using varying reaction conditions[J]. Carbohydrate Polymers,2009,78: 854-861.
[26] Putseys J A, Lamberts L, Delcour J A, Amylose-inclusion complexes: Formation, identity and physico-chemical properties[J]. Journal of Cereal Science,2010, 51: 238-247.
[27] Chen B Y, Guo Z B, Zeng S X, et al. Paste structure and rheological properties of lotus seed starch-glycerin monostearate complexes formed by high-pressure homogenization[J]. Food Research International, 2018, 103: 380-389.
[28] Wang N, Wu L R, Zhang F S, et al. Modifying the rheological properties, in vitro digestion, and structure of rice starch by extrusion assisted addition with bamboo shoot dietary fiber[J]. Food Chemistry, 2022, 375: 131900.
[29] 劉艷香,譚斌,劉明,等. 添加劑對(duì)高水分?jǐn)D壓組織化蛋白理化性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):294-302.
Liu Yanxiang, Tan Bin, Liu Ming, et al. Effects of food additives on physicochemical properties of high moisture extrusion textured composite protein[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 294-302. (in Chinese with English abstract)
[30] Liu C M, Liang R H, Dai T T et al. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch[J]. Food Hydrocolloids, 2016, 57: 55-61.
[31] 王健一,湯俊杰,江祥富,等. 微波法制備蓮子淀粉-綠原酸復(fù)合物及其流變特性分析[J]. 食品科學(xué),2021,42(23):129-136.
Wang Jianyi, Tang Junjie, Jiang Xiangfu, et al. Preparation of lotus seed starch-chlorogenic acid complexes by microwave irradiation and its rheological properties[J]. Food Science, 2021, 42(23): 129-136. (in Chinese with English abstract)
[32] 段慶松,段玉敏,肖志剛,等. 擠壓穩(wěn)定化處理對(duì)米糠各組分蛋白結(jié)構(gòu)及功能性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):283-290.
Duan Qingsong, Duan Yumin, Xiao Zhigang, et al. Effects of extrusion stabilization on protein structure and functional properties of rice bran components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 294-302. (in Chinese with English abstract)
[33] Golay A, Koellreutter B, Bloise D, et al. The effect of muesli or cornflakes at breakfast on carbohydrate metabolism in type 2 diabetic patients[J]. Diabetes Research and Clinical Practice, 1992, 15(2): 135-141.
Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion
Yu Xiaoshuai1, Zhang Junjie2, Wang Peng2, Xin Guang1, Wang Haiguan2, Wang Zhenguo2,Yuan Yuan2, Xiao Zhigang1※
(1.110866,; 2.110034,)
Low glycemic index (GI) food can be very necessary to alleviate the ever-increasing prevalence of diabetes, particularly for the high-quality living standards and health care services. Among them, the starch-lipid complexes can serve as a new type of resistant starch for excellent anti-digestive properties in recent years. High amylose corn starch (HACS) is considered an ideal raw material for the preparation of starch-lipid complexes, due mainly to the high amylose content. Meantime, the twin-screw extrusion has been successfully applied to fabricate the starch-lipid complexes. It is a high demand to enhance the preparation efficiency of starch-lipid complexes for scale production in anti-digestive food. The purpose of this study was to optimize the extrusion process for better structure and physicochemical properties of HACS-lipid complexes using single-factor and orthogonal experiments. Among them, the complex index (CI) was selected as the indicator. The high-amylose corn starch and flax oil were used as the material to prepare the complexes using twin-screw extrusion. The process parameters were adjusted separately, including the mass ratio, feed moisture, barrel temperature, and screw speed. The extruded complex was dried at 40 ℃ in an oven for 10 h, and then ground and passed through an 80-mesh sieve. The highest CI reached 85.63%, when the optimal parameters were 0.24 of flax oil-to-starch ratio, 40% of feed moisture, 125 °C of barrel temperature, and 150 r/min of screw speed. Fourier transform infrared spectroscopy (FTIR) pattern found the new peaks at 2 850 and 1 743 cm-1in the extruded starch-lipid complex, corresponding to the C-H and C=O vibration absorption peak of lipid molecules in the complex. Moreover, the C=O vibration absorption peak of the extruded complex was shifted to the lower wavenumber, compared with the control. It infers that the lipid molecules combined with the starch were at the actions of shearing, friction force, and heat moisture during extrusion. Specifically, the extrusion first broke the hydrogen bonds of starch molecules to expose the hydrophobic helical cavity, where the lipid molecules were entered under hydrophobic interaction. The morphologies showed that the complexation induced the stacking and aggregation of starch granules. The-type crystalline-ray diffraction (XRD) pattern was found in the extruded complex, indicating the feasible preparation of the complexes after twin-screw extrusion. Compared with the control and HACS, there was a higher gelatinization enthalpy in the extruded complex, indicating that more energy was required to gelatinize the complex. By contrast, the extruded complex demonstrated a lower apparent viscosity, storage modulus, and loss modulus, compared with the control. Additionally, there was the highest total amount of slowly digestible starch (SDS) and resistant starch (RS) in the extruded complex among all samples, indicating the better anti-digestible properties of the complex. It can be concluded that the extrusion can promote the effective complexation between the starch and fax oil, thus altering the structure and physicochemical properties of corn starch. Therefore, the starch-lipid complex prepared by twin-screw extrusion can be expected to serve as a potential material for low GI food production.
extrusion; structure; functional properties; starch-lipid complexes; complex index
10.11975/j.issn.1002-6819.2022.19.030
TS236.9
A
1002-6819(2022)-19-0277-08
于小帥,張俊杰,王鵬,等. 擠壓制備高直鏈玉米淀粉脂工藝優(yōu)化及結(jié)構(gòu)功能特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(19):277-284.doi:10.11975/j.issn.1002-6819.2022.19.030 http://www.tcsae.org
Yu Xiaoshuai, Zhang Junjie, Wang Peng, et al. Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 277-284. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.030 http://www.tcsae.org
2022-04-29
2022-07-06
國(guó)家自然科學(xué)基金面上項(xiàng)目(32072139)
于小帥,博士生,研究方向?yàn)榧Z食油脂及植物蛋白工程。Email:yuxiaoshuaistu@163.com
肖志剛,博士,教授,研究方向?yàn)榧Z食油脂及植物蛋白工程。Email:zhigang_xiao@126.com