蘇鵬飛 徐松毅 于曉磊
摘 要:為了給窄帶通信網(wǎng)的鏈路選擇及協(xié)議的智能切換提供實(shí)時(shí)參考,設(shè)計(jì)了一種基于鯨魚(yú)優(yōu)化算法(WOA)和長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)(LSTM)的窄帶通信網(wǎng)網(wǎng)絡(luò)時(shí)延預(yù)測(cè)算法。首先對(duì)實(shí)測(cè)數(shù)據(jù)樣本進(jìn)行標(biāo)準(zhǔn)化處理,以LSTM神經(jīng)網(wǎng)絡(luò)算法的均方根誤差函數(shù)的倒數(shù)作為適應(yīng)度函數(shù);其次采用鯨魚(yú)優(yōu)化算法對(duì)LSTM神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率、隱含層神經(jīng)元個(gè)數(shù)進(jìn)行優(yōu)化,最后將全局最優(yōu)解輸出作為L(zhǎng)STM神經(jīng)網(wǎng)絡(luò)的初始參數(shù)對(duì)樣本進(jìn)行訓(xùn)練預(yù)測(cè)。結(jié)果表明,基于WOA-LSTM的網(wǎng)絡(luò)時(shí)延預(yù)測(cè)算法預(yù)測(cè)精度相較于LSTM神經(jīng)網(wǎng)絡(luò)算法和BP神經(jīng)網(wǎng)絡(luò)算法分別提高了14.87%和78.89%,WOA-LSTM達(dá)到收斂時(shí)迭代次數(shù)相較于LSTM神經(jīng)網(wǎng)絡(luò)算法減少了11.11%。所提算法新穎可靠,可更準(zhǔn)確地進(jìn)行網(wǎng)絡(luò)時(shí)延預(yù)測(cè),為窄帶通信網(wǎng)網(wǎng)絡(luò)的智能化與自動(dòng)化升級(jí)提供數(shù)據(jù)支持。
關(guān)鍵詞:計(jì)算機(jī)神經(jīng)網(wǎng)絡(luò);鯨魚(yú)優(yōu)化算法;LSTM神經(jīng)網(wǎng)絡(luò);窄帶通信網(wǎng);網(wǎng)絡(luò)時(shí)延預(yù)測(cè)
中圖分類(lèi)號(hào):TN915.1 ? 文獻(xiàn)標(biāo)識(shí)碼:A ? DOI: 10.7535/hbgykj.2022yx01002
Abstract:In order to provide real-time reference for link selection and protocol intelligent switching in narrowband communication networks,a network delay prediction algorithm based on whale optimization algorithm (WOA) and long short-term memory (LSTM) was designed.Firstly,the measured data samples were standardized,and the reciprocal of root mean square error function of LSTM neural network algorithm was used as fitness function.Secondly,the whale optimization algorithm was used to optimize the learning rate and the number of hidden layer neurons of LSTM neural network.Finally,the output of global optimal solution was used as the initial parameter of LSTM neural network to train and predict samples.The results show that compared with LSTM neural network algorithm and BP neural network algorithm,the prediction accuracies of network delay prediction algorithm based on WOA-LSTM are improved by 14.87% and 78.89% respectively,and the iteration times of WOA-LSTM are reduced by 11.11% compared with LSTM neural network algorithm when WOA-LSTM reaches convergence.The algorithm is novel and reliable,which can predict network delay more accurately and provide data support for intelligent and automatic upgrade of narrowband communication networks.
Keywords:computer neural network;whale optimization algorithm;LSTM neural network;narrowband communication network;network delay prediction
窄帶通信網(wǎng)絡(luò)是為某些特殊場(chǎng)景提供應(yīng)急通信保障的低速通信系統(tǒng)的主要構(gòu)成部分,其網(wǎng)絡(luò)時(shí)延受到網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)、氣象變化因素、網(wǎng)絡(luò)協(xié)議及路由算法等多方面因素影響,當(dāng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)、網(wǎng)絡(luò)協(xié)議及路由算法固定下來(lái)之后,時(shí)間序列成為誘導(dǎo)其變化的主要影響因子。傳統(tǒng)的窄帶通信網(wǎng)網(wǎng)絡(luò)協(xié)議單一,根據(jù)需求需要手動(dòng)進(jìn)行鏈路選擇,隨著窄帶通信網(wǎng)的網(wǎng)絡(luò)復(fù)雜度增加及多種網(wǎng)絡(luò)協(xié)議的接入,迫切需要通過(guò)對(duì)窄帶通信網(wǎng)網(wǎng)絡(luò)時(shí)延預(yù)測(cè),從而為窄帶通信網(wǎng)的鏈路選擇及網(wǎng)絡(luò)協(xié)議的切換提供參考。目前,網(wǎng)絡(luò)時(shí)延預(yù)測(cè)主要有基于數(shù)理統(tǒng)計(jì)的數(shù)學(xué)建模法,最小二乘支持向量機(jī),神經(jīng)網(wǎng)絡(luò)算法。文獻(xiàn)[1]通過(guò)對(duì)統(tǒng)計(jì)數(shù)據(jù)的回歸分析和誤差分析,提出了一種基于自回歸求和滑動(dòng)平均(ARIMA)模型,對(duì)網(wǎng)絡(luò)化控制系統(tǒng)的隨機(jī)時(shí)延進(jìn)行預(yù)測(cè),相較于ARMA模型精度有所提高;文獻(xiàn)[2]提出了一種基于粒子群算法優(yōu)化(PSO)的最小二乘法支持向量機(jī)(LS-SVM)算法,對(duì)列車(chē)通信網(wǎng)絡(luò)的網(wǎng)絡(luò)時(shí)延進(jìn)行預(yù)測(cè),但是PSO優(yōu)化的參數(shù)維度較高,會(huì)影響預(yù)測(cè)時(shí)效性;文獻(xiàn)[3]運(yùn)用BP神經(jīng)網(wǎng)絡(luò),同時(shí)運(yùn)用PSO算法對(duì)神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值進(jìn)行優(yōu)化,通過(guò)機(jī)器學(xué)習(xí)的方法對(duì)歸一化的網(wǎng)絡(luò)時(shí)延數(shù)據(jù)進(jìn)行預(yù)測(cè),但BP神經(jīng)網(wǎng)絡(luò)沒(méi)有記憶性的特點(diǎn),使得其只能通過(guò)前兩個(gè)時(shí)序的時(shí)延數(shù)據(jù)預(yù)測(cè)下一時(shí)刻的網(wǎng)絡(luò)時(shí)延,無(wú)法關(guān)聯(lián)前面更長(zhǎng)時(shí)間時(shí)序數(shù)據(jù)的特征。對(duì)此,本文選取單一對(duì)流層散射通信鏈路構(gòu)成的窄帶通信網(wǎng)絡(luò),提出了長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)(LSTM)算法,關(guān)聯(lián)長(zhǎng)短期各個(gè)時(shí)序的網(wǎng)絡(luò)時(shí)延的歷史數(shù)據(jù),通過(guò)鯨魚(yú)優(yōu)化算法(WOA)優(yōu)化LSTM神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率,隱含層神經(jīng)元個(gè)數(shù)和最大訓(xùn)練次數(shù),提高算法預(yù)測(cè)精度,對(duì)其網(wǎng)絡(luò)時(shí)延進(jìn)行預(yù)測(cè)。
1 數(shù)據(jù)采集和預(yù)處理
1.1 數(shù)據(jù)采集
通過(guò)野外試驗(yàn),搭建了對(duì)流層散射通信鏈路組成的通信網(wǎng)絡(luò),每隔30 min在收發(fā)兩端進(jìn)行大小為64 B的數(shù)據(jù)包傳輸測(cè)試,共記錄了由300組網(wǎng)絡(luò)時(shí)延數(shù)據(jù)所組成的一維實(shí)驗(yàn)數(shù)據(jù)。
1.2 數(shù)據(jù)預(yù)處理
將采集到的數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,將數(shù)據(jù)處理成均值為0,標(biāo)準(zhǔn)差為1的標(biāo)準(zhǔn)化數(shù)據(jù)。在神經(jīng)網(wǎng)絡(luò)的反向傳播過(guò)程中,采用了梯度下降法更新權(quán)值以及偏置值,將數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理可以提升模型的收斂速度,也避免了數(shù)值輸入過(guò)大,導(dǎo)致更新過(guò)程中梯度過(guò)大從而使網(wǎng)絡(luò)的學(xué)習(xí)停止更新,設(shè)置學(xué)習(xí)率時(shí)也不必再根據(jù)輸入值的范圍進(jìn)行調(diào)整。樣本數(shù)據(jù)的標(biāo)準(zhǔn)化處理公式如下:
2.3 WOA-LSTM網(wǎng)絡(luò)時(shí)延預(yù)測(cè)模型
LSTM神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)訓(xùn)練效果以及訓(xùn)練過(guò)程中的擬合速度和初始的參數(shù)設(shè)置密切相關(guān),其中學(xué)習(xí)率和神經(jīng)網(wǎng)絡(luò)隱含層神經(jīng)元個(gè)數(shù)直接影響了神經(jīng)網(wǎng)絡(luò)的訓(xùn)練精度和收斂速度[11-13]。對(duì)于學(xué)習(xí)率的設(shè)置來(lái)說(shuō),若初始學(xué)習(xí)率設(shè)置的過(guò)大,會(huì)導(dǎo)致偏離值較大且到后期無(wú)法擬合,學(xué)習(xí)率設(shè)置的過(guò)小,收斂速度會(huì)很慢[15]。對(duì)于隱含層節(jié)點(diǎn)個(gè)數(shù)來(lái)說(shuō),設(shè)置過(guò)少會(huì)欠擬合,過(guò)多會(huì)導(dǎo)致過(guò)擬合[16]。通過(guò)鯨魚(yú)優(yōu)化算法,全局向局部搜索尋優(yōu),確定最優(yōu)學(xué)習(xí)率和隱含層神經(jīng)元個(gè)數(shù),從而進(jìn)行神經(jīng)網(wǎng)絡(luò)的訓(xùn)練。WOA-LSTM的網(wǎng)絡(luò)時(shí)延預(yù)測(cè)模型流程如圖4所示。
通過(guò)鯨魚(yú)優(yōu)化算法(WOA)來(lái)優(yōu)化長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)(LSTM),只通過(guò)LSTM神經(jīng)網(wǎng)絡(luò)進(jìn)行網(wǎng)絡(luò)訓(xùn)練前,需要由經(jīng)驗(yàn)手動(dòng)設(shè)置神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率和神經(jīng)網(wǎng)絡(luò)隱含層神經(jīng)元個(gè)數(shù),通過(guò)不斷的嘗試,得到可使神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)精度相對(duì)較高的參數(shù)搭配,但是很難得到在一定范圍內(nèi)使得神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)精度最高的最佳參數(shù)設(shè)置;引入鯨魚(yú)優(yōu)化算法,首先設(shè)置兩種參數(shù)的搜索范圍,然后經(jīng)過(guò)上述描述的鯨魚(yú)優(yōu)化算法在此范圍內(nèi)進(jìn)行隨機(jī)搜索,得到的預(yù)測(cè)誤差即損失函數(shù)TrainingLoss不斷收斂,達(dá)到精度要求時(shí),得出最優(yōu)參數(shù),進(jìn)而完成LSTM神經(jīng)網(wǎng)絡(luò)的參數(shù)初始化。
本文采用平均絕對(duì)百分比誤差(MAPE)作為鯨魚(yú)算法的損失函數(shù)。當(dāng)損失值達(dá)到事先設(shè)置的下限時(shí),得到優(yōu)化參數(shù)值。損失函數(shù)TrainingLoss的定義式如下:
TrainLoss=MAPE(h,y)=1n∑ni=1|h(i)-y(i)y(i)|,
式中:h(i)是預(yù)測(cè)結(jié)果中的第i個(gè)預(yù)測(cè)值;y(i)是數(shù)據(jù)樣本中第i個(gè)真實(shí)值;n為預(yù)測(cè)樣本數(shù)。預(yù)測(cè)值越是精確,得到的損失值越小。
預(yù)測(cè)流程如下。
步驟1:以1.1節(jié)和1.2節(jié)所述方法對(duì)數(shù)據(jù)進(jìn)行處理,并以前一時(shí)間步數(shù)據(jù)預(yù)測(cè)后一時(shí)間步的數(shù)據(jù)格式輸入到WOA-LSTM模型中;
步驟2:初始化LSTM模型參數(shù)學(xué)習(xí)率和神經(jīng)網(wǎng)絡(luò)隱含層神經(jīng)元個(gè)數(shù);
步驟3:鯨魚(yú)算法種群初始化。將(n,ε)這兩個(gè)變量組成的一組值作為待優(yōu)化參數(shù)輸入到鯨魚(yú)算法中,n代表神經(jīng)網(wǎng)絡(luò)隱含層神經(jīng)元個(gè)數(shù),ε代表學(xué)習(xí)率;
步驟4:將初始化后的值作為歷史最優(yōu)值對(duì)LSTM的參數(shù)賦值并訓(xùn)練;
步驟5:將使用傳統(tǒng)LSTM訓(xùn)練得到的TrainingLoss設(shè)置為系統(tǒng)要求的終止值,并求取經(jīng)過(guò)鯨魚(yú)算法優(yōu)化后的模型損失值;
步驟6:若經(jīng)過(guò)鯨魚(yú)算法優(yōu)化后的模型損失值小于TrainingLoss,則滿(mǎn)足要求,利用訓(xùn)練好的模型迭代輸出網(wǎng)絡(luò)時(shí)延預(yù)測(cè)值;
步驟7:若損失值無(wú)法小于TrainingLoss或者迭代次數(shù)未到最大,則更新參數(shù)并且重新進(jìn)行訓(xùn)練。
3 仿真分析
3.1 實(shí)驗(yàn)設(shè)置
為了充分驗(yàn)證所提出的WOA-LSTM模型在網(wǎng)絡(luò)時(shí)延預(yù)測(cè)上的有效性,設(shè)計(jì)了WOA-LSTM和LSTM神經(jīng)網(wǎng)絡(luò)以及BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)的對(duì)比實(shí)驗(yàn),通過(guò)鯨魚(yú)優(yōu)化算法來(lái)優(yōu)化LSTM模型的最佳學(xué)習(xí)率和隱藏層單元數(shù),WOA算法在迭代過(guò)程中不斷地調(diào)整初始化LSTM模型參數(shù),直到調(diào)整到誤差值較小的LSTM神經(jīng)網(wǎng)絡(luò)模型。同時(shí),引入BP神經(jīng)網(wǎng)絡(luò)對(duì)時(shí)延數(shù)據(jù)進(jìn)行訓(xùn)練,并預(yù)測(cè)網(wǎng)絡(luò)時(shí)延,與LSTM神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果進(jìn)行對(duì)比。
3.2 LSTM的仿真
將300組時(shí)延數(shù)據(jù)劃分為2組,取250組時(shí)延數(shù)據(jù)作為L(zhǎng)STM的訓(xùn)練樣本,50組數(shù)據(jù)作為L(zhǎng)STM的測(cè)試樣本,應(yīng)不超過(guò)訓(xùn)練樣本數(shù)200,故先將LSTM神經(jīng)網(wǎng)絡(luò)隱含層節(jié)點(diǎn)數(shù)n設(shè)為100,初始學(xué)習(xí)率ε設(shè)置為0.005,迭代次數(shù)為500,同時(shí)設(shè)置了LearnRateDropPeriod為250,LearnRateDropFactor為0.5,令學(xué)習(xí)率在250次迭代時(shí)下降到初始學(xué)習(xí)率的1/2,從而加快LSTM神經(jīng)網(wǎng)絡(luò)擬合速度,這是處理神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)訓(xùn)練時(shí)的常用手段。首先采用200組訓(xùn)練數(shù)據(jù)進(jìn)行LSTM模型訓(xùn)練,在訓(xùn)練好的模型上迭代輸出后50步的網(wǎng)絡(luò)時(shí)延數(shù)值。LSTM對(duì)網(wǎng)絡(luò)時(shí)延的預(yù)測(cè)如圖5所示,LSTM訓(xùn)練迭代次數(shù)與誤差的關(guān)系如圖6所示。
3.3 WOA-LSTM的仿真
采用鯨魚(yú)算法優(yōu)化后的LSTM對(duì)網(wǎng)絡(luò)時(shí)延進(jìn)行預(yù)測(cè),采用MAPE作為鯨魚(yú)算法的損失函數(shù),采用WOA算法優(yōu)化LSTM的學(xué)習(xí)率和神經(jīng)網(wǎng)絡(luò)隱含層神經(jīng)元個(gè)數(shù),鯨魚(yú)算法初始化種群選為10,迭代次數(shù)為500次,初始化參數(shù)(n,ε)的取值范圍是[100,200]和[0.001,0.01]。采用200組數(shù)據(jù)進(jìn)行WOA-LSTM訓(xùn)練,確定最優(yōu)的隱含層神經(jīng)元個(gè)數(shù)n和學(xué)習(xí)率ε,利用訓(xùn)練好的WOA-LSTM預(yù)測(cè)后50個(gè)時(shí)間步長(zhǎng)的網(wǎng)絡(luò)時(shí)延數(shù)值。WOA-LSTM對(duì)時(shí)延的預(yù)測(cè)如圖7所示,WOA-LSTM訓(xùn)練迭代次數(shù)與誤差的關(guān)系如圖8所示。
3.4 BP神經(jīng)網(wǎng)絡(luò)的仿真
同樣選用前250組時(shí)延數(shù)據(jù)作為訓(xùn)練樣本,輸入層神經(jīng)元個(gè)數(shù)為1個(gè),輸出層為1個(gè),即用上一時(shí)間步的值預(yù)測(cè)下一時(shí)間步的數(shù)值,50組作為測(cè)試樣本,前向傳輸預(yù)測(cè)結(jié)果,后向反饋損失函數(shù)的誤差不斷調(diào)整權(quán)值和閾值,從而將網(wǎng)絡(luò)結(jié)構(gòu)穩(wěn)定完成預(yù)測(cè)。由經(jīng)驗(yàn)公式η=m+n+l,m,n分別為輸入輸出層節(jié)點(diǎn)個(gè)數(shù),l取(0~9)之間隨機(jī)整數(shù),則BP神經(jīng)網(wǎng)絡(luò)隱含層神經(jīng)元個(gè)數(shù)取10。學(xué)習(xí)率與LSTM神經(jīng)網(wǎng)絡(luò)保持一致取0.005,同樣地,訓(xùn)練時(shí)最大迭代次數(shù)設(shè)置為500。BP神經(jīng)網(wǎng)絡(luò)對(duì)時(shí)延的預(yù)測(cè)如圖9所示,BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練迭代次數(shù)與誤差的關(guān)系如圖10所示。
如表1所示,LSTM和WOA-LSTM預(yù)測(cè)數(shù)據(jù)的均方根誤差RMSE分別為2.529和2.152 9,說(shuō)明WOA優(yōu)化的LSTM在一定程度上提高了網(wǎng)絡(luò)時(shí)延預(yù)測(cè)誤差。其次,從圖6和圖8可知,LSTM預(yù)測(cè)模型誤差在第450次迭代的時(shí)候才發(fā)生收斂,WOA-LSTM神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型得到最優(yōu)隱含層神經(jīng)元個(gè)數(shù)128和最優(yōu)學(xué)習(xí)率0.003 3,此時(shí)神經(jīng)網(wǎng)絡(luò)經(jīng)訓(xùn)練之后,在300次的時(shí)候已經(jīng)開(kāi)始慢慢收斂,在400次附近迭代的時(shí)候,預(yù)測(cè)誤差基本上無(wú)太大變化。如圖10所示,BP神經(jīng)網(wǎng)絡(luò)均方根誤差為10.200 3,LSTM神經(jīng)網(wǎng)絡(luò)作為時(shí)間相關(guān)性較強(qiáng)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),相比BP神經(jīng)網(wǎng)絡(luò)在時(shí)延預(yù)測(cè)方面準(zhǔn)確性更高,而經(jīng)過(guò)鯨魚(yú)優(yōu)化算法(WOA)優(yōu)化的LSTM神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果的誤差得到了進(jìn)一步減小,但如圖10所示,BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)與運(yùn)算方式更加簡(jiǎn)單,誤差達(dá)到收斂時(shí)的迭代次數(shù)很少。
4 結(jié) 語(yǔ)
以對(duì)流層散射通信鏈路組成的窄帶通信網(wǎng)網(wǎng)絡(luò)時(shí)延數(shù)據(jù)為基礎(chǔ),采用WOA-LSTM算法對(duì)時(shí)延數(shù)據(jù)進(jìn)行預(yù)測(cè),更好地為通信網(wǎng)絡(luò)鏈路選擇及網(wǎng)絡(luò)協(xié)議切換提供數(shù)據(jù)支持。
1)LSTM神經(jīng)網(wǎng)絡(luò)在預(yù)測(cè)通信網(wǎng)時(shí)延數(shù)據(jù)這種時(shí)間序列的數(shù)據(jù)時(shí),相較于BP神經(jīng)網(wǎng)絡(luò)更具優(yōu)勢(shì)。
2)利用WOA優(yōu)化參數(shù)后的LSTM神經(jīng)網(wǎng)絡(luò)相比于LSTM神經(jīng)網(wǎng)絡(luò)能夠更好地預(yù)測(cè)窄帶通信網(wǎng)的時(shí)延,預(yù)測(cè)精度提高了14.87%,誤差精度達(dá)到收斂時(shí)算法迭代次數(shù)更少,預(yù)測(cè)精度更高。
3)基于WOA-LSTM網(wǎng)絡(luò)時(shí)延預(yù)測(cè)算法預(yù)測(cè)精度相較于LSTM和BP神經(jīng)網(wǎng)絡(luò)算法更好,WOA-LSTM算法達(dá)到收斂時(shí)迭代次數(shù)相較于LSTM神經(jīng)網(wǎng)絡(luò)算法更少。
因此,本文提出的基于WOA-LSTM神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)時(shí)延預(yù)測(cè)算法,具有較高的預(yù)測(cè)精度。但此預(yù)測(cè)算法的迭代速度有待進(jìn)一步優(yōu)化,且只適用于本文所采集的數(shù)據(jù)類(lèi)型,下一步將通過(guò)WOA-LSTM神經(jīng)網(wǎng)絡(luò)對(duì)其他通信手段組成的窄帶通信網(wǎng)網(wǎng)絡(luò)時(shí)延數(shù)據(jù)進(jìn)行預(yù)測(cè),從而探索此算法的適用范圍。
參考文獻(xiàn)/References:
[1] 徐旺,葛愿,王炎.基于ARIMA的NCS隨機(jī)時(shí)延預(yù)測(cè)[J].安徽工程大學(xué)學(xué)報(bào),2016,31(4):72-76.
XU Wang,GE Yuan,WANG Yan.Predicting NCS stochastic delay based on ARIMA[J].Journal of Anhui Polytechnic University,2016,31(4):72-76.
[2] 汪知宇,張彤.基于改進(jìn)LS-SVM算法的列車(chē)通信網(wǎng)絡(luò)時(shí)延預(yù)測(cè)方法[J].城市軌道交通研究,2021,24(1):101-106.
WANG Zhiyu,ZHANG Tong.Time delay prediction method for train communication network based on improved LS-SVM algorithm[J].Urban Mass Transit,2021,24(1):101-106.
[3] 時(shí)維國(guó),雷何芬.基于PSO-BP神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)時(shí)延預(yù)測(cè)算法[J].自動(dòng)化與儀表,2020,35(7):1-5.
SHI Weiguo,LEI Hefen .Algorithm prediction of network delay using BP neural network based on particle swarm optimization[J].Automation & Instrumentation,2020,35(7):1-5.
[4] 法比奧,艾倫.神經(jīng)網(wǎng)絡(luò)算法與實(shí)現(xiàn)[M].北京:人民郵電出版社,2017.
[5] 張冬雯,趙琪,許云峰,等.基于長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)模型的空氣質(zhì)量預(yù)測(cè)[J].河北科技大學(xué)學(xué)報(bào),2020,41(1):66-75.
ZHANG Dongwen,ZHAO Qi,XU Yunfeng,et al.Air quality prediction based on neural network model of long short-term memory[J].Journal of Hebei University of Science and Technology,2020,41(1):66-75.
[6] 李勃.基于LSTM法的高速公路邊坡穩(wěn)定性研究[J].河北工業(yè)科技,2021,38(2):142-147.
LI Bo.Research on highway slope stability based on LSTM method[J].Hebei Journal of Industrial Science and Technology,2021,38(2):142-147.
[7] 張萍,肖為周,沈錚璽.基于長(zhǎng)短期記憶網(wǎng)絡(luò)的軌道交通短期OD客流量預(yù)測(cè)[J].河北工業(yè)科技,2021,38(5):351-356.
ZHANG Ping,XIAO Weizhou,SHEN Zhengxi.Forecast of short-term origin-destination passenger flow of rail Transit based on long short-term memory network[J].Hebei Journal of Industrial Science and Technology,2021,38(5):351-356.
[8] SAID A B,ERRADI A,ALY H A,et al.Predicting COVID-19 cases using bidirectional LSTM on multivariate time series[J].Environmental Science and Pollution Research International,2021,28(40):56043-56052.
[9] GUO Aixia,BEHESHTI R,KHAN Y M,et al.Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models[J].BMC Medical Informatics and Decision Making,2021,21(1):5.
[10] 張蕾,孫尚紅,王月.基于深度學(xué)習(xí)LSTM模型的匯率預(yù)測(cè)[J].統(tǒng)計(jì)與決策,2021,37(13):158-162.
ZHANG Lei,SUN Shanghong,WANG Yue.Exchange rate prediction based on deep learning LSTM model[J].Statistics and Decision,2021,37(13):158-162.
[11] 丁文絹.基于股票預(yù)測(cè)的ARIMA模型、LSTM模型比較[J].工業(yè)控制計(jì)算機(jī),2021,34(7):109-112.
DING Wenjuan.Comparison of ARIMA model and LSTM model based on stock forecast[J].Industrial Control Computer,2021,34(7):109-112.
[12] 田聰.基于改進(jìn)型EMD-LSTM的高頻金融時(shí)間序列預(yù)測(cè)[D].南昌:江西財(cái)經(jīng)大學(xué),2021.
TIAN Cong.High-Frequency Financial Time Series Prediction Based on Improved EMD-LSTM[D].Nanchang:Jiangxi University of Finance and Economics,2021.
[13] 鄭羅春.基于LSTM網(wǎng)絡(luò)模型的高速公路軟基長(zhǎng)期沉降預(yù)測(cè)[J].湖南交通科技,2021,47(2):94-97.
ZHENG Luochun.Long-term settlement prediction of expressway soft foundation based on LSTM network model[J].Hunan Communication Science and Technology,2021,47(2):94-97.
[14] MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.
[15] 江旭東.基于EEMD-WOA-LSTM的電力負(fù)荷能耗預(yù)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D].天津:天津理工大學(xué),2021.
JIANG Xudong.Design and Implementation of Power Load Energy Consumption Forecasting System Based on EEMD-WOA-LSTM[D].Tianjin:Tianjin University of Technology,2021.
[16] 李卓漫,王海瑞.基于PSO優(yōu)化LSTM的滾動(dòng)軸承剩余壽命預(yù)測(cè)[J].化工自動(dòng)化及儀表,2021,48(4):353-357.
LI Zhuoman,WANG Hairui .Predicting the remaining service Life of rolling bearings based on PSO-LSTM network model[J].Control and Instruments in Chemical Industry,2021,48(4):353-357.