舒甜,胡豪暢,沈才杰,林少沂,陳曉敏
綜 述
肥厚型心肌病基因型–表型關(guān)聯(lián)研究進(jìn)展
舒甜1,2,胡豪暢1,2,沈才杰1,林少沂1,陳曉敏1,2
1. 浙江大學(xué)寧波醫(yī)院心血管內(nèi)科,寧波 315000 2. 浙江大學(xué)醫(yī)學(xué)院,杭州 310029
肥厚型心肌病(hypertrophic cardiomyopathy,HCM)是一種以左心室肥厚為突出特征的常染色體顯性遺傳病,其發(fā)病率為1/500~1/200。目前已發(fā)現(xiàn)超過(guò)30個(gè)基因的1500種突變與該疾病的發(fā)生發(fā)展相關(guān),致病基因變異連同修飾基因多態(tài)性、環(huán)境因素等影響因素發(fā)揮作用,使得疾病表型極具異質(zhì)性,臨床表現(xiàn)上從無(wú)任何癥狀到心源性猝死均可發(fā)生,病理表型主要包括心肌細(xì)胞肥大、排列紊亂及纖維化、心肌缺血等。近年來(lái),許多研究致力于探究HCM基因型對(duì)表型的影響, 并基于遺傳背景對(duì)HCM的治療方法進(jìn)行研發(fā)。本文以HCM基因型–表型的關(guān)聯(lián)為重點(diǎn),從HCM的致病基因、關(guān)聯(lián)影響因素和最新治療手段等多方面綜述了HCM的研究進(jìn)展,以期為研究HCM的發(fā)生發(fā)展及治療方向提供遺傳學(xué)方面的思路。
肥厚型心肌??;致病基因;表型;治療
肥厚型心肌病(hypertrophic cardiomyopathy,HCM)是最常見的遺傳性心臟病,也是青少年運(yùn)動(dòng)員猝死的首要原因。在過(guò)去的20年里,研究表明HCM的全球發(fā)病率為1/500,估算我國(guó)的成年HCM患者超過(guò)100萬(wàn)人[1],但隨著醫(yī)學(xué)影像技術(shù)的進(jìn)步以及人們對(duì)健康體檢的愈發(fā)重視,近來(lái)的研究顯示HCM發(fā)病率已增至1/200[2],也提示了我國(guó)HCM患者的數(shù)量遠(yuǎn)不止100萬(wàn)。部分HCM患者終生沒(méi)有任何癥狀,但也有一部分HCM患者面臨重度心力衰竭、嚴(yán)重心律失常甚至心源性猝死的境況。因此,為了盡可能地減少疾病風(fēng)險(xiǎn),早期識(shí)別HCM高危人群、把握HCM的發(fā)生發(fā)展規(guī)律至關(guān)重要。
現(xiàn)今已發(fā)現(xiàn)超過(guò)30個(gè)基因的1500種突變與HCM發(fā)病相關(guān),以編碼肌小節(jié)蛋白的基因突變?yōu)橹鱗2]。HCM的管理指南推薦對(duì)患者的致病基因進(jìn)行遺傳檢測(cè),用于做出精確診斷和早期篩查高危患者[1,2],但由于缺乏HCM基因型和表型的關(guān)聯(lián)分析,加上HCM的基因型和表型都有很大的異質(zhì)性,借助基因型來(lái)預(yù)測(cè)疾病走向的應(yīng)用十分受限。為突破這一壁壘,近年來(lái)許多研究對(duì)HCM患者或是攜帶致病基因變異的患者家屬進(jìn)行長(zhǎng)期隨訪,結(jié)合基因型對(duì)研究人群的臨床癥狀和預(yù)后進(jìn)行分析,使得HCM基因型–表型的關(guān)聯(lián)更加清晰和豐富。本文在介紹HCM致病相關(guān)基因和表型的基礎(chǔ)上,重點(diǎn)討論了HCM基因型–表型關(guān)聯(lián)以及這種關(guān)聯(lián)的影響因素,并結(jié)合遺傳背景綜述了HCM在治療手段方面的最新進(jìn)展,以期為HCM的診治提供更多遺傳學(xué)依據(jù)。
作為遺傳性疾病,目前已有8個(gè)編碼肌絲蛋白的基因被證明為HCM的致病基因,包括編碼粗肌絲蛋白的、、、和編碼細(xì)肌絲蛋白的、、、[3,4]。和是最為多見的致病基因,分別導(dǎo)致了50%和30%~35%的HCM。除了肌絲蛋白基因外,也有很多編碼非肌絲蛋白的致病基因被報(bào)道,包括編碼Z盤的基因、編碼肌聯(lián)蛋白的基因、編碼細(xì)胞骨架蛋白的基因[5,6]和編碼鈣調(diào)節(jié)處理蛋白的基因[7~13](圖1)。其中編碼細(xì)胞骨架蛋白的致病基因約占1%~2%,編碼鈣調(diào)節(jié)處理蛋白的致病基因較為罕見。
隨著基因檢測(cè)的普及,越來(lái)越多的研究對(duì)HCM患者進(jìn)行了基因檢測(cè)和數(shù)據(jù)分析。先前研究顯示不同種族的HCM患者基因突變位點(diǎn)可能不同[14]。北京阜外醫(yī)院宋雷課題組[15]通過(guò)對(duì)常見變異進(jìn)行關(guān)聯(lián)分析發(fā)現(xiàn)變異位點(diǎn)和HCM相關(guān)并特異存在于東亞人群中,這提示不同種族在遺傳背景上存在差異。因此,在研究致病基因特點(diǎn)時(shí),需考慮到種族和區(qū)域的差異。
HCM的形態(tài)學(xué)、組織學(xué)特征和臨床表型是多種因素共同作用的結(jié)果,因此HCM患者的表型特征具有多樣性。HCM的左心室肥厚可發(fā)生在心室游離壁、心尖部、乳突肌等多個(gè)位置,最為典型的是發(fā)生在室間隔基底部,易引起左心室流出道梗阻。HCM的基本組織病理學(xué)特征為心肌細(xì)胞肥大和排列紊亂,具體程度因人而異,部分患者還會(huì)出現(xiàn)不同發(fā)展程度的心肌纖維化和/或微循環(huán)障礙。
HCM的典型特征是心室收縮功能增強(qiáng)、舒張功能減退,或合并有心肌缺血、心律失常、心力衰竭等并發(fā)癥。臨床表型上,HCM患者可表現(xiàn)為呼吸困難、心悸、胸痛、頭暈、暈厥、心源性猝死等。需要注意的是,HCM的癥狀并不一定和心室肥厚及流出道梗阻程度相關(guān),甚至部分患者始終沒(méi)有出現(xiàn)臨床癥狀。由此可見,HCM 具有極大的臨床異質(zhì)性,分析HCM的基因型和表型的相關(guān)性對(duì)于盡早識(shí)別HCM患者、分析患者病情及改善患者預(yù)后具有重要意義。
國(guó)內(nèi)外學(xué)者對(duì)先證者及家屬進(jìn)行基因檢測(cè)和隨訪發(fā)現(xiàn),部分?jǐn)y帶致病基因變異的人群并不發(fā)病,由此對(duì)疾病外顯率展開了探究。先前幾項(xiàng)研究對(duì)未發(fā)病的攜帶者進(jìn)行了5~10年的隨訪,獲得的外顯率均不超過(guò)18%[16~20]。而最新一項(xiàng)大型研究對(duì)285位攜帶者進(jìn)行了15年的隨訪并發(fā)現(xiàn)外顯率為56%,顯著高于先前的研究[21]。和突變的發(fā)病風(fēng)險(xiǎn)最高,分別為43%和66%,而這兩種基因突變?cè)谠撗芯恐械恼急容^大,加上隨訪年限的延長(zhǎng),可能是導(dǎo)致該項(xiàng)研究中外顯率提高的原因。
圖1 心肌細(xì)胞內(nèi)各結(jié)構(gòu)上存在的致病基因
肌節(jié)是心肌收縮的基本單位,主要由粗肌絲和細(xì)肌絲組成,粗細(xì)肌絲間的相互滑動(dòng)產(chǎn)生了肌節(jié)的收縮。肌節(jié)單位之間由Z盤連接,Z盤是肌節(jié)收縮的著力點(diǎn)。肌聯(lián)蛋白連接了粗肌絲和Z盤,在心肌收縮和舒張中起到了分子彈簧的作用。細(xì)胞骨架對(duì)維持肌節(jié)結(jié)構(gòu)和功能起到重要作用,而鈣調(diào)節(jié)相關(guān)蛋白則通過(guò)收縮耦聯(lián)機(jī)制影響心肌收縮舒張功能,因此編碼粗肌絲的、、、、,編碼細(xì)肌絲的、、、、,編碼Z盤的、、、、L、、、、、、,編碼肌聯(lián)蛋白的,編碼細(xì)胞骨架、和編碼鈣調(diào)節(jié)相關(guān)蛋白的、、、均可能為HCM的致病基因。
在確診為HCM的患者中,60%的患者攜帶致病基因變異,其余40%的患者可能具有新的基因變異或?yàn)椤胺羌易逍訦CM”患者(即不具有致病基因變異,且無(wú)HCM家族史的患者)。對(duì)HCM患者的心肌標(biāo)本進(jìn)行病理分析發(fā)現(xiàn),心肌細(xì)胞排列紊亂[22]、微血管功能損傷及心肌纖維化程度在攜帶致病基因變異的患者中更為嚴(yán)重,這類患者的室間隔厚度更大,形態(tài)多表現(xiàn)為反向曲度,而未攜帶致病基因變異的患者多具有孤立性室間隔基底部肥大。此外,攜帶致病基因變異的患者更早發(fā)病,進(jìn)展為房顫、心衰甚至發(fā)生心源性猝死的風(fēng)險(xiǎn)更高[23,24]。由此不難發(fā)現(xiàn),攜帶致病基因變異的患者在病理結(jié)構(gòu)及臨床預(yù)后方面的表現(xiàn)更差。
HCM的致病變異大多發(fā)生在編碼肌小節(jié)粗細(xì)肌絲蛋白的基因中。細(xì)肌絲基因變異通常引起心尖肥厚型和向心型HCM,這兩種心室形態(tài)一般不會(huì)造成流出道梗阻,引起室壁增厚的程度也較輕。而粗肌絲基因突變引起室間隔型HCM較多,發(fā)病早,心室肥厚和流出道梗阻更嚴(yán)重,對(duì)侵入性治療的需求更大[25]。一項(xiàng)納入了7675例患者的Meta分析結(jié)果驗(yàn)證了粗肌絲基因變異會(huì)導(dǎo)致更嚴(yán)重的心肌肥厚和梗阻這一觀點(diǎn),但發(fā)現(xiàn)細(xì)肌絲基因變異更易促發(fā)心衰進(jìn)展[23]。
在粗肌絲基因中,和變異是最早被發(fā)現(xiàn)且占比最多的致病基因變異。變異主要是移碼突變,通過(guò)無(wú)義介導(dǎo)的mRNA衰變引起單倍體不足、產(chǎn)生毒性多肽,導(dǎo)致肌球蛋白結(jié)構(gòu)功能異常。致病機(jī)制較復(fù)雜,除了通過(guò)改變肌球蛋白頭上ATP酶的活性來(lái)加強(qiáng)肌球–肌動(dòng)蛋白相互作用外,還會(huì)涉及能量代謝異常、纖維化、鈣超載等多種機(jī)制。在有HCM家族史的兒童中,、變異引起早發(fā)HCM的風(fēng)險(xiǎn)最大,分別是未攜帶致病基因變異隊(duì)列的3.2、2.3倍,并易引發(fā)心血管不良事件[25]。在病理和臨床表型上,現(xiàn)在普遍認(rèn)為的“惡性”程度高于,即攜帶致病變異的HCM患者發(fā)病更早,室間隔厚度更大,心室收縮及舒張功能障礙更嚴(yán)重,引起傳導(dǎo)阻滯、房顫、室性心律失常等并發(fā)癥的風(fēng)險(xiǎn)增加[23,26,27]。我國(guó)關(guān)于、的報(bào)道相對(duì)較少,根據(jù)現(xiàn)有的少量病例報(bào)告顯示,突變和房顫、心力衰竭相關(guān)[28]。
細(xì)肌絲的肌鈣蛋白C和鈣離子結(jié)合,原肌球蛋白發(fā)生位移,暴露出細(xì)肌絲上和橫橋結(jié)合的位點(diǎn)。這類致病變異鈣依賴性地增強(qiáng)了粗細(xì)肌絲的結(jié)合,引起心肌細(xì)胞過(guò)度收縮。突變是最多見的致病性細(xì)肌絲基因變異。國(guó)外研究發(fā)現(xiàn),攜帶突變的HCM患者發(fā)生心源性猝死的風(fēng)險(xiǎn)較大,但國(guó)內(nèi)一項(xiàng)研究結(jié)果卻表明,27名攜帶該基因突變的HCM患者發(fā)生心血管死亡的風(fēng)險(xiǎn)和對(duì)照組相似[29],說(shuō)明基因型–表型關(guān)聯(lián)在不同種族之間可能存在差異。突變?cè)谂R床上并不多見,與較高的外顯率及嚴(yán)重的疾病表型相關(guān)[30]。突變發(fā)病風(fēng)險(xiǎn)相對(duì)較低,缺乏足夠樣本量的預(yù)后分析。盡管上述變異都發(fā)生在細(xì)肌絲基因中,但它們引起的臨床表型并不一致。近期還有研究表明,同樣是第92位氨基酸發(fā)生了變異,和臨床癥狀和對(duì)地爾硫卓的治療反應(yīng)卻存在差異[31],說(shuō)明了同一位點(diǎn)發(fā)生突變所產(chǎn)生的HCM表型也不盡相同。
除了粗細(xì)肌絲基因外,編碼非肌小節(jié)蛋白的基因變異也對(duì)HCM的表型起重要調(diào)控作用。Z盤是心肌細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo)中心,是肌絲收縮的著力點(diǎn)。在編碼Z盤相關(guān)蛋白的基因中,攜帶變異的HCM患者病程發(fā)展迅猛,可能是需要預(yù)先植入復(fù)律器的潛在高危人群。而雜合變異攜帶者的HCM在心室肥厚程度上存在較大差異,一般表現(xiàn)為低風(fēng)險(xiǎn)形式,但也有心源性猝死的報(bào)道[32,33]。鈣調(diào)節(jié)相關(guān)蛋白基因變異會(huì)影響心肌細(xì)胞Ryanodine(RyR)受體、肌漿網(wǎng)鈣ATP酶(SERCA)的活性,在收縮期觸發(fā)肌漿網(wǎng)釋放大量鈣,減少舒張期鈣的回收。攜帶這類突變的HCM患者具有較輕的梗阻程度和低猝死風(fēng)險(xiǎn),但需著重防范心律失常的發(fā)生[33,34]。
和是編碼細(xì)胞骨架蛋白的基因。編碼絲狀蛋白C,該基因發(fā)生致病變異可使肌動(dòng)蛋白形成聚集體,損害肌節(jié)功能,導(dǎo)致HCM的發(fā)生。在發(fā)現(xiàn)該突變的9個(gè)家系中,5個(gè)家系有心源性猝死的患者,表明該基因突變可能和高風(fēng)險(xiǎn)猝死相關(guān)[6]。在心臟中表達(dá),能夠和肌動(dòng)蛋白結(jié)合,輔助心肌收縮,該基因發(fā)生突變是HCM患者心血管死亡的獨(dú)立危險(xiǎn)因素[5]。由于上述基因和表型之間的關(guān)聯(lián)大多基于小樣本量甚至個(gè)別病例報(bào)道,仍需進(jìn)行大量功能實(shí)驗(yàn)明確其致病性。
部分研究提示一些患者攜帶2~3個(gè)致病變異,且具有多突變會(huì)增加室性心律失常和心力衰竭風(fēng)險(xiǎn),臨床預(yù)后明顯不良[35]。總之,基因型對(duì)HCM患者表型具有重要作用,但這種作用仍需開展更多的基礎(chǔ)及臨床研究來(lái)加以發(fā)掘和驗(yàn)證,從而在指導(dǎo)臨床診療上發(fā)揮更大的價(jià)值。
近年來(lái),人們發(fā)現(xiàn)一些攜帶同一致病變異的家族成員在心臟結(jié)構(gòu)和臨床表型上具有極大差異,證明除了致病基因的影響外,HCM表型還受其他影響因素的調(diào)控,包括修飾基因多態(tài)性和環(huán)境因素。
RAS通路上的基因是HCM發(fā)生發(fā)展中至關(guān)重要的修飾基因。有研究表明,突變單發(fā)時(shí)預(yù)后較突變好,但合并血管緊張素轉(zhuǎn)化酶(angiotensin converting enzyme, ACE)的等位基因變異時(shí),疾病程度會(huì)加重。Meta分析顯示的等位基因是遺傳危險(xiǎn)因素[36],在具有MYBPC3突變的基礎(chǔ)上,攜帶/會(huì)導(dǎo)致發(fā)病年齡提早3~4年,室壁厚度進(jìn)一步增大。血管緊張素原(angio-tensinogen, AGT)基因多態(tài)性里,是一個(gè)關(guān)鍵位點(diǎn),納入8項(xiàng)研究的Meta分析表明隱性遺傳模型(vs+)會(huì)提高HCM發(fā)病風(fēng)險(xiǎn)[37]。另有個(gè)別研究發(fā)現(xiàn)酶()多態(tài)性也會(huì)提高HCM外顯率[38],攜帶和多態(tài)性的患者中具有左心室流出道梗阻和心衰表型的占比更大[39]。這些研究都能表明,在發(fā)生致病基因變異的基礎(chǔ)上,RAS通路修飾基因多態(tài)性對(duì)發(fā)病和嚴(yán)重程度起到了重要的修飾作用。
肌球蛋白結(jié)合蛋白H(MYBPH)和肌聯(lián)蛋白(titin)都是肌節(jié)的的組成部分,前者協(xié)同MYBPC發(fā)揮作用,調(diào)節(jié)肌節(jié)收縮;后者相當(dāng)于分子彈簧,對(duì)粗、細(xì)肌絲進(jìn)行精確的調(diào)控,在耦聯(lián)和協(xié)調(diào)心肌的舒縮運(yùn)動(dòng)中發(fā)揮著重要作用。突變會(huì)增加攜帶的HCM患者的室間隔厚度[40]。等位基因能夠通過(guò)無(wú)義介導(dǎo)mRNA使正常的肌原纖維減少,導(dǎo)致肌小節(jié)異常,最終破壞心臟收縮。我國(guó)有研究發(fā)現(xiàn),可能作為修飾基因,使HCM心血管死亡事件的發(fā)生風(fēng)險(xiǎn)增加[41]。
臨床研究表明編碼電壓門控L型鈣通道β2 (L-type calcium channel β2, CACNβ2)的基因突變能夠提高外顯率,加重肥厚程度[42]。在涉及鈉鈣穩(wěn)態(tài)通路蛋白的基因中,編碼電壓門控鈉通道的發(fā)生異常剪輯會(huì)促進(jìn)心律失常的發(fā)生[43]。
此外,編碼細(xì)胞色素氧化酶P450、內(nèi)皮素、一氧化氮合酶相關(guān)蛋白的基因都能起到修飾作用來(lái)促使心肌細(xì)胞肥大。已知的致病基因如,也可能作為修飾基因來(lái)調(diào)控疾病表型。今后,我們需要通過(guò)基礎(chǔ)實(shí)驗(yàn)來(lái)明確修飾基因?qū)χ虏』颞C表型產(chǎn)生影響的具體機(jī)制。
在致病基因變異作用的基礎(chǔ)上,除了修飾基因多態(tài)性,環(huán)境因素也會(huì)影響發(fā)病風(fēng)險(xiǎn)和病情程度。韓國(guó)一項(xiàng)全國(guó)性的隨訪研究將具有高脂血癥、糖尿病或高血壓定義為不健康的代謝狀態(tài),發(fā)現(xiàn)不健康代謝狀態(tài)組在隨訪期間被診斷為HCM的風(fēng)險(xiǎn)比對(duì)照組高出1.5倍。多項(xiàng)隊(duì)列研究探索了肥胖和HCM表型的關(guān)聯(lián),發(fā)現(xiàn)肥胖會(huì)影響HCM患者的心臟結(jié)構(gòu)、臨床表現(xiàn)和預(yù)后。左房?jī)?nèi)徑、左室間隔厚度及心臟重量指數(shù)隨著BMI分級(jí)的增加而增大,發(fā)生流出道梗阻可能性也增大。肥胖患者在NYHA分級(jí)、活動(dòng)耐量上表現(xiàn)更差、出現(xiàn)房顫、心衰等不良結(jié)局的風(fēng)險(xiǎn)更大[44]。合并糖尿病的HCM患者在心臟結(jié)構(gòu)及臨床癥狀上的表現(xiàn)也更為嚴(yán)重,且15年死亡率比對(duì)照組升高了7%[45]。此外,高血壓會(huì)作為危險(xiǎn)因素增加攜帶突變的HCM患者的發(fā)病風(fēng)險(xiǎn)[28]。在肌小節(jié)致病基因變異陰性的患者中,舒張壓每增加1個(gè)標(biāo)準(zhǔn)差,疾病風(fēng)險(xiǎn)增加4倍[46]。睡眠呼吸暫停綜合征(obstructive sleep apnea,OSA)能夠增加包括心衰、心肌梗死在內(nèi)的許多心血管疾病的發(fā)病率及病死率,合并OSA的HCM患者有更為明顯的心臟結(jié)構(gòu)功能損傷,出現(xiàn)房顫的風(fēng)險(xiǎn)為不合并OSA的4倍[47]。此外,吸煙飲酒等不良生活方式、抑郁等情緒因素都可能對(duì)HCM表型產(chǎn)生不利影響。
隨著環(huán)境因素的作用得到了越來(lái)越多的重視,其作用機(jī)制也成為了重要探討內(nèi)容。一方面,高糖、高脂等毒性作用會(huì)直接對(duì)肌小節(jié)蛋白產(chǎn)生損傷,另一方面,這些環(huán)境因素可能通過(guò)增加血流動(dòng)力學(xué)負(fù)荷、介導(dǎo)神經(jīng)內(nèi)分泌、炎癥、能量代謝等機(jī)制加重心臟負(fù)擔(dān),心肌過(guò)度收縮,促使心室重構(gòu)、功能損傷?;谶z傳背景,F(xiàn)umagalli等[48]在研究BMI和HCM風(fēng)險(xiǎn)的相關(guān)性時(shí),發(fā)現(xiàn)是否攜帶致病變異并不會(huì)影響這種相關(guān)性,而Harper等[46]卻發(fā)現(xiàn)舒張壓對(duì)發(fā)病風(fēng)險(xiǎn)的加重作用在致病變異陰性的人群中更加明顯。環(huán)境因素平行于致病基因變異發(fā)揮作用,抑或是能夠直接影響致病基因變異,這一問(wèn)題仍未得到確切答案,在未來(lái)需要結(jié)合更多功能驗(yàn)證實(shí)驗(yàn)及臨床研究來(lái)加以解釋。
現(xiàn)今HCM的藥物治療以 β受體阻滯劑、非二氫吡啶類鈣離子通道拮抗劑、丙吡胺、利尿劑類緩解癥狀為主。近幾年來(lái)在藥物的研究上,減少心肌耗氧代謝類的派克西林、曲美他嗪,通過(guò)抑制選擇性遲發(fā)鈉離子通道來(lái)降低細(xì)胞內(nèi)鈣離子濃度的雷諾嗪都未能有效改善HCM的癥狀。抑制RAS通路的ARB/ACEI類藥物,在病程中晚期的轉(zhuǎn)基因小鼠和HCM患者中無(wú)法取得明顯療效,但在心臟形態(tài)仍處于正常狀態(tài)的轉(zhuǎn)基因小鼠中應(yīng)用能夠抑制心肌肥大和纖維化的發(fā)生。近期纈沙坦應(yīng)用于早期HCM患者的二期臨床試驗(yàn)表明該藥物能夠改善患者的心臟結(jié)構(gòu)及功能,但該試驗(yàn)的納入人群均攜帶肌小節(jié)基因變異,早期使用ARBs的療效是否存在基因選擇性尚未可知[49]。此外,對(duì)攜帶/、/、/的HCM患者使用ACEI類藥物治療,延緩心室肥厚的效果不同,/>/>/。根據(jù)以上研究,ARB/ACEI類藥物在HCM的治療上具有前景,但療效可能受病程長(zhǎng)短及基因型的影響。
HCM中大多數(shù)致病變異通過(guò)增強(qiáng)肌球蛋白ATP酶活性、加快張力增長(zhǎng)速度、增多橫橋形成、增快滑行速度等機(jī)制,導(dǎo)致肌動(dòng)蛋白–肌球蛋白交互作用加強(qiáng),引起心肌過(guò)度收縮和不全舒張。近期對(duì)肌球蛋白構(gòu)象進(jìn)行研究發(fā)現(xiàn),HCM的肌球蛋白構(gòu)象比例失衡,即處于超松弛構(gòu)象比例增大,無(wú)序構(gòu)象比例減少[50]。以此發(fā)病機(jī)制作為治療靶點(diǎn),最新研發(fā)出的Mavacamten可降低肌球蛋白重鏈上的ATP酶活性,可逆地抑制心肌肌球蛋白和肌動(dòng)蛋白結(jié)合,從而抑制心肌的過(guò)度收縮。動(dòng)物研究表明口服Mavacamten治療可以抑制甚至逆轉(zhuǎn)心肌肥厚,在疾病早期(心肌過(guò)度肥厚出現(xiàn)前)開始治療還能抑制心肌纖維化的發(fā)生。臨床上,Mavacamten已完成了用于梗阻性HCM的三期臨床試驗(yàn),在試驗(yàn)中有效改善了梗阻性HCM患者的臨床癥狀、心臟結(jié)構(gòu)功能和生活質(zhì)量。其中部分患者接受了基因檢測(cè),攜帶致病/可能致病基因變異和意義不明變異的患者中達(dá)到主要終點(diǎn)(pVO2和NYHA分級(jí)得到顯著改善)的占比高于致病變異陰性的患者[51~53],說(shuō)明該藥或許更能改善攜帶致病變異的患者的癥狀,因此,藥物的療效是否受到基因型的影響也是未來(lái)廣泛應(yīng)用于臨床前必不可少的議題。此外,Mavacamten的長(zhǎng)期療效、安全性及和其他治療方式的對(duì)照研究也正在開展(NCT03723655、NCT04349072)。
對(duì)于藥物難以控制的具有明顯癥狀的梗阻性HCM患者,室間隔外科切除術(shù)(septal myectomy,SM)和室間隔酒精消融術(shù)(alcohol septal ablation,ASA)是主要的侵入性治療方式,兩者療效與安全性的影響因素包括術(shù)前室間隔厚度及壓差、傳導(dǎo)束支結(jié)構(gòu)、醫(yī)療中心及術(shù)者水平等,ASA的療效與安全性還和間隔支解剖結(jié)構(gòu)及注射酒精量聯(lián)系密切。關(guān)于遺傳背景對(duì)術(shù)式的影響,現(xiàn)有研究表明攜帶致病基因變異與否在SM和ASA的療效及安全性方面均未造成顯著差異[54,55]。Liwen術(shù)式是在超聲引導(dǎo)下,經(jīng)皮膚、肋間、心外膜、心尖心肌內(nèi)精準(zhǔn)穿刺直接送達(dá)室間隔肥厚部位并進(jìn)行射頻消融的新興微創(chuàng)術(shù)式,不依賴血管解剖結(jié)構(gòu),且利于避免損傷傳導(dǎo)束支,在中短期內(nèi)能夠有效改善流出道梗阻和癥狀[56]。今后,該術(shù)式的療效和安全性需要更長(zhǎng)期的研究去證明,和其他術(shù)式之間的隨機(jī)對(duì)照研究亟需展開。同時(shí),以上研究結(jié)果是否受遺傳因素影響,也會(huì)成為未來(lái)必不可少的探討內(nèi)容。
除了藥物和侵入性方式,基因治療在遺傳病的治療手段中逐漸嶄露頭角。在過(guò)去的十年里,基因編輯、基因替換、外顯子跳躍、等位基因特異性沉默、RNA反式剪接等技術(shù)在HCM動(dòng)物模型或是人類誘導(dǎo)多潛能干細(xì)胞實(shí)驗(yàn)中展現(xiàn)了治療潛力,但受限于不足的修復(fù)效率、脫靶現(xiàn)象等問(wèn)題,這些治療方法到臨床應(yīng)用仍有距離。不久前我國(guó)蘭峰團(tuán)隊(duì)獨(dú)立研發(fā)了具有擴(kuò)展PAM區(qū)的ABEmax-NG系統(tǒng),使用堿基編輯技術(shù)糾正了HCM小鼠胚胎中的致病性()突變,消除了HCM表型[57]。該項(xiàng)新技術(shù)在不引入基因插入或缺失的情況下顯示出高于70%的修復(fù)率,安全性和有效性都得到了驗(yàn)證,展現(xiàn)出了廣闊的臨床應(yīng)用前景。
國(guó)內(nèi)外學(xué)者通過(guò)不懈努力,在各大治療手段領(lǐng)域中突破壁壘、接連取得重大創(chuàng)新成果,為HCM患者的預(yù)后改善帶來(lái)曙光。
隨著科技的進(jìn)步,人們對(duì)于HCM的了解逐漸深入,包括更多致病基因、遺傳模式被發(fā)現(xiàn)。HCM可能不全是一種單基因遺傳病,其發(fā)病及病程發(fā)展受致病基因變異、修飾基因、環(huán)境因素等多種因素共同影響,導(dǎo)致了它的表型異質(zhì)性,探索基因型–表型關(guān)聯(lián)及其他因素對(duì)疾病的影響益于更加全面深刻地認(rèn)識(shí)這種疾病,把握疾病自然史,從而施加合理及時(shí)的治療干預(yù)來(lái)改善預(yù)后。但目前為止,基因型–表型聯(lián)系尚未得到確切答案,遺傳背景在HCM的診治過(guò)程中只能起到參考作用,還需大量研究來(lái)實(shí)現(xiàn)基因指導(dǎo)臨床決策。在治療領(lǐng)域,人們不斷創(chuàng)新術(shù)式,根據(jù)疾病相關(guān)基因和機(jī)制來(lái)研發(fā)新型藥物及基因治療手段,使得在該項(xiàng)領(lǐng)域的步伐持續(xù)向前邁進(jìn)。在初步確認(rèn)療效和安全性的基礎(chǔ)上,遺傳背景是否會(huì)影響治療效果將是未來(lái)藥物試驗(yàn)的重要課題之一。相信今后HCM的遺傳背景能夠?yàn)镠CM的診治提供更多思路與價(jià)值。
[1] 中華醫(yī)學(xué)會(huì)心血管病學(xué)分會(huì)中國(guó)成人肥厚型心肌病診斷與治療指南編寫組, 中華心血管病雜志編輯委員會(huì). 中國(guó)成人肥厚型心肌病診斷與治療指南. 中華心血管病雜志, 2017, 45(12): 1015–1032.
[2] Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines., 2020, 76(25): e159–e240.
[3] Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, Minikel EV, Consortium EA, MacArthur DG, Farrall M, Cook SA, Watkins H. Reassessment of Mendelian gene pathogenicity using 7, 855 cardiomyopathy cases and 60, 706 reference samples., 2017, 19(2): 192–203.
[4] Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, Shen J, McLaughlin HM, Clark EH, Babb LJ, Cox SW, DePalma SR, Ho CY, Seidman JG, Seidman CE, Rehm HL. Results of clinical genetic testing of 2, 912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity., 2015, 17(11): 880–888.
[5] Ochoa JP, Sabater-Molina M, Garcia-Pinilla JM, Mogensen J, Restrepo-Córdoba A, Palomino-Doza J, Villacorta E, Martinez-Moreno M, Ramos-Maqueda J, Zorio E, Pe?a-Pe?a ML, García-Granja PE, Rodríguez-Palomares JF, Cárdenas-Reyes IJ, de la Torre-Carpente MM, Bautista- Pavés A, Akhtar MM, Cicerchia MN, Bilbao-Quesada R, Mogollón-Jimenez MV, Salazar-Mendiguchía J, Mesa Latorre JM, Arnaez B, Olavarri-Miguel I, Fuentes-Ca?amero ME, Lamounier Jr A, , Pérez Ruiz JM, Climent-Payá V, Pérez-Sanchez I, Trujillo-Quintero JP, Lopes LR, Repáraz-Andrade A, Marín-Iglesias R, Rodriguez-Vilela A, Sandín-Fuentes M, Garrote JA, Cortel-Fuster A, Lopez-Garrido M, Fontalba-Romero A, Ripoll-Vera T, Llano-Rivas I, Fernandez-Fernandez X, Isidoro-García M, Garcia- Giustiniani D, Barriales-Villa R, Ortiz-Genga M, García- Pavía P, Elliott PM, Gimeno JR, Monserrat L. Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy., 2018, 72(20): 2457–2467.
[6] Valdés-Mas R, Gutiérrez-Fernández A, Gómez J, Coto E, Astudillo A, Puente DA, Reguero JR, álvarez V, Morís C, León D, Martín M, Puente XS, López-Otín C. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy., 2014, 5: 5326.
[7] Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly., 2002, 105(4): 446–451.
[8] Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene., 1999, 262(2): 411–417.
[9] Chiu C, Bagnall RD, Ingles J, Yeates L, Kennerson M, Donald JA, Jormakka M, Lind JM, Semsarian C. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis., 2010, 55(11): 1127–1135.
[10] Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF, Fürst DO, Vornwald A, von Hodenberg E, Nürnberg P, Scheffold T, Dietz R, Osterziel KJ. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy., 2003, 107(10): 1390–1395.
[11] Vasile VC, Ommen SR, Edwards WD, Ackerman MJ. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy., 2006, 345(3): 998–1003.
[12] Friedrich FW, Wilding BR, Reischmann S, Crocini C, Lang P, Charron P, Müller OJ, McGrath MJ, Vollert I, Hansen A, Linke WA, Hengstenberg C, Bonne G, Morner S, Wichter T, Madeira H, Arbustini E, Eschenhagen T, Mitchell CA, Isnard R, Carrier L. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy., 2012, 21(14): 3237–3254.
[13] Osio A, Tan L, Chen SN, Lombardi R, Nagueh SF, Shete S, Roberts R, Willerson JT, Marian AJ. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy., 2007, 100(6): 766–768.
[14] Eberly LA, Day SM, Ashley EA, Jacoby DL, Jefferies JL, Colan SD, Rossano JW, Semsarian C, Pereira AC, Olivotto I, Ingles J, Seidman CE, Channaoui N, Cirino AL, Han L, Ho CY, Lakdawala NK. Association of race with disease expression and clinical outcomes among patients with hypertrophic cardiomyopathy., 2020, 5(1): 83–91.
[15] Wu GX, Liu LW, Zhou ZY, Liu J, Wang B, Ruan JY, Yang QL, Kanchwala M, Dai PG, Zhang CN, Wang D, Kang LM, Wang S, Y Hui RT, Zou YB, Xing C, Song L, Wang JZ. East Asian-specific common variant in TNNI3 predisposes to hypertrophic cardiomyopathy., 2020, 142(21): 2086–2089.
[16] Vermeer AMC, Clur SB, Blom NA, Wilde AAM, Christiaans I. Penetrance of hypertrophic cardiomyopathy in children who are mutation positive., 2017, 188: 91–95.
[17] Maurizi N, Michels M, Rowin EJ, Semsarian C, Girolami F, Tomberli B, Cecchi F, Maron MS, Olivotto I, Maron BJ. Clinical course and significance of hypertrophic cardiomyopathy without left ventricular hypertrophy., 2019, 139(6): 830–833.
[18] Jensen MK, Havndrup O, Christiansen M, Andersen PS, Diness B, Axelsson A, Skovby F, K?ber L, Bundgaard H. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing., 2013, 127(1): 48–54.
[19] Captur G, Moon JC. Evolution of hypertrophic cardiomyopathy in sarcomere mutation carriers., 2016, 102(22): 1779–1781.
[20] van Velzen HG, Schinkel AFL, Baart SJ, Oldenburg RA, Frohn-Mulder IME, van Slegtenhorst MA, Michels M. Outcomes of contemporary family screening in hypertrophic cardiomyopathy., 2018, 11(4): e001896.
[21] Lorenzini M, Norrish G, Field E, Ochoa JP, Cicerchia M, Akhtar MM, Syrris P, Lopes LR, Kaski JP, Elliott PM. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers., 2020, 76(5): 550–559.
[22] Cui H, Schaff HV, Lentz Carvalho J, Nishimura RA, Geske JB, Dearani JA, Lahr BD, Lee AT, Bos JM, Ackerman MJ, Ommen SR, Maleszewski JJ. Myocardial histopathology in patients with obstructive hypertrophic cardiomyopathy., 2021, 77(17): 2159–2170.
[23] Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J, Proctor T, Ehlermann P, Jensen K, Katus HA, Meder B. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals., 2018, 107(1): 30–41.
[24] Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, Cirino AL, Fox JC, Lakdawala NK, Ware JS, Caleshu CA, Helms AS, Colan SD, Girolami F, Cecchi F, Seidman CE, Sajeev G, Signorovitch J, Green EM, Olivotto I. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe)., 2018, 138(14): 1387–1398.
[25] Lafreniere-Roula M, Bolkier Y, Zahavich L, Mathew J, George K, Wilson J, Stephenson EA, Benson LN, Manlhiot C, Mital S. Family screening for hypertrophic cardiomyopathy: Is it time to change practice guidelines?, 2019, 40(45): 3672–3681.
[26] Lee SP, Ashley EA, Homburger J, Caleshu C, Green EM, Jacoby D, Colan SD, Arteaga-Fernández E, Day SM, Girolami F, Olivotto I, Michels M, Ho CY, Perez MV, Investigators SH. Incident atrial fibrillation is associated with MYH7 sarcomeric gene variation in hypertrophic cardiomyopathy., 2018, 11(9): e005191.
[27] Velicki L, Jakovljevic DG, Preveden A, Golubovic M, Bjelobrk M, Ilic A, Stojsic S, Barlocco F, Tafelmeier M, Okwose N, Tesic M, Brennan P, Popovic D, Ristic A, MacGowan GA, Filipovic N, Maier LS, Olivotto I. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy., 2020, 20(1): 516.
[28] De Bortoli M, Vio R, Basso C, Calore M, Minervini G, Angelini A, Melacini P, Vitiello L, Vazza G, Thiene G, Tosatto S, Corrado D, Iliceto S, Rampazzo A, Calore C. Novel missense variant in MYL2 gene associated with hypertrophic cardiomyopathy showing high incidence of restrictive physiology., 2020, 13(2): e002824.
[29] Liu W, Wei ZK, Zhang YF, Liu Y, Bai RC, Ma CY, Yang J, Sun DD. Identification of three novel pathogenic mutations in sarcomere genes associated with familial hypertrophic cardiomyopathy based on multi-omics study., 2021, 520: 43–52.
[30] Tran Vu MT, Nguyen TV, Huynh NV, Nguyen Thai HT, Pham Nguyen V, Ho Huynh TD. Presence of hypertrophic cardiomyopathy related gene mutations and clinical manifestations in Vietnamese patients with hypertrophic cardiomyopathy., 2019, 83(9): 1908–1916.
[31] Lehman SJ, Tal-Grinspan L, Lynn ML, Strom J, Benitez GE, Anderson ME, Tardiff JC. Chronic calmodulin-kinase II activation drives disease progression in mutation- specific hypertrophic cardiomyopathy., 2019, 139(12): 1517–1529.
[32] Janin A, Bessière F, Chauveau S, Chevalier P, Millat G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy., 2018, 676: 110–116.
[33] Salazar-Mendiguchía J, Barriales-Villa R, Lopes LR, Ochoa JP, Rodríguez-Vilela A, Palomino-Doza J, Larra?aga-Moreira JM, Cicerchia M, Cárdenas-Reyes I, García-Giustiniani D, Br?gger N, Fernández G, García S, Santiago L, Vélez P, Ortiz-Genga M, Elliott PM, Monserrat L. The p. (Cys150Tyr) variant in CSRP3 is associated with late-onset hypertrophic cardiomyopathy in heterozygous individuals., 2020, 63(12): 104079.
[34] Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins., 2012, 12(5): 507–518.
[35] Wang JZ, Wang YL, Zou YB, Sun K, Wang ZM, Ding H, Yuan JQ, Wei W, Hou Q, Wang H, Liu X, Zhang HJ, Ji Y, Zhou XL, Sharma RK, Wang DW, Ahmad F, Hui RT, Song L. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy., 2014, 16(9): 950–957.
[36] Yuan Y, Meng L, Zhou Y, Lu N. Genetic polymorphism of angiotensin-converting enzyme and hypertrophic cardiomyopathy risk: a systematic review and meta- analysis., 2017, 96(48): e8639.
[37] Zhen Z, Gao L, Wang Q, Chen X, Na J, Xu XW, Yuan Y. Angiotensinogen M235T polymorphism and susceptibility to hypertrophic cardiomyopathy in Asian population: a meta analysis., 2020, 21(4): 1470320320978100.
[38] Rani B, Kumar A, Bahl A, Sharma R, Prasad R, Khullar M. Renin-angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes., 2017, 427(1–2): 1–11.
[39] Wang S, Wang J, Zou Y, Wang J, Wang H, Hui R. Angiotensinogen gene variations and LV outflow obstruction in hypertrophic cardiomyopathy., 2014, 39(2): 258–263.
[40] Mouton JM, van der Merwe L, Goosen A, Revera M, Brink PA, Moolman-Smook JC, Kinnear C. MYBPH acts as modifier of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) patients., 2016, 135(5): 477–483.
[41] Zhang C, Zhang HJ, Wu GX, Luo XL, Zhang CN, Zou YB, Wang H, Hui RT, Wang JZ, Song L. Titin-truncating variants increase the risk of cardiovascular death in patients with hypertrophic cardiomyopathy., 2017, 33(10): 1292–1297.
[42] Zhang XL, Xie J, Zhu SH, Chen YH, Wang L, Xu B. Next-generation sequencing identifies pathogenic and modifier mutations in a consanguineous Chinese family with hypertrophic cardiomyopathy., 2017, 96(24): e7010.
[43] Noyes AM, Zhou AY, Gao G, Gu LZ, Day S, Andrew Wasserstrom J, Dudley SC. Abnormal sodium channel mRNA splicing in hypertrophic cardiomyopathy., 2017, 249: 282–286.
[44] Larsen CM, Ball CA, Hebl VB, Ong KC, Siontis KC, Olson TP, Ackerman MJ, Ommen SR, Allison TG, Geske JB. Effect of body mass index on exercise capacity in patients with hypertrophic cardiomyopathy., 2018, 121(1): 100–106.
[45] Wasserstrum Y, Barriales-Villa R, Fernández-Fernández X, Adler Y, Lotan D, Peled Y, Klempfner R, Kuperstein R, Shlomo N, Sabbag A, Freimark D, Monserrat L, Arad M. The impact of diabetes mellitus on the clinical phenotype of hypertrophic cardiomyopathy., 2019, 40(21): 1671–1677.
[46] Harper AR, Goel A, Grace C, Thomson KL, Petersen SE, Xu X, Waring A, Ormondroyd E, Kramer CM, Ho CY, Neubauer S, Tadros R, Ware JS, Bezzina CR, Farrall M, Watkins H. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity., 2021, 53(2): 135–142.
[47] Xu HB, Wang J, Yuan JS, Hu FH, Yang WX, Guo C, Luo XL, Liu R, Cui JG, Gao XJ, Chun YS, Qiao SB. Implication of apnea-hypopnea index, a measure of obstructive sleep apnea severity, for atrial fibrillation in patients with hypertrophic cardiomyopathy., 2020, 9(8): e015013.
[48] Fumagalli C, Maurizi N, Day SM, Ashley EA, Michels M, Colan SD, Jacoby D, Marchionni N, Vincent-Tompkins J, Ho CY, Olivotto I, Investigators S. Association of obesity with adverse long-term outcomes in hypertrophic cardiomyopathy., 2020, 5(1): 65–72.
[49] Ho CY, Day SM, Axelsson A, Russell MW, Zahka K, Lever HM, Pereira AC, Colan SD, Margossian R, Murphy AM, Canter C, Bach RG, Wheeler MT, Rossano JW, Owens AT, Bundgaard H, Benson L, Mestroni L, Taylor MRG, Patel AR, Wilmot I, Thrush P, Vargas JD, Soslow JH, Becker JR, Seidman CE, Lakdawala NK, Cirino AL, Investigators V, Burns KM, McMurray JJV, MacRae CA, Solomon SD, Orav EJ, Braunwald E. Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial., 2021, 27(10): 1818–1824.
[50] Toepfer CN, Garfinkel AC, Venturini G, Wakimoto H, Repetti G, Alamo L, Sharma A, Agarwal R, Ewoldt JF, Cloonan P, Letendre J, Lun M, Olivotto I, Colan S, Ashley E, Jacoby D, Michels M, Redwood CS, Watkins HC, Day SM, Staples JF, Padrón R, Chopra A, Ho CY, Chen CS, Pereira AC, Seidman JG, Seidman CE. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy., 2020, 141(10): 828–842.
[51] Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE. A small- molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice., 2016, 351(6273): 617–621.
[52] Spertus JA, Fine JT, Elliott P, Ho CY, Olivotto I, Saberi S, Li WY, Dolan C, Reaney M, Sehnert AJ, Jacoby D. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo- controlled, phase 3 trial., 2021, 397(10293): 2467–2475.
[53] Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, Saberi S, Lakdawala NK, Wheeler MT, Owens A, Kubanek M, Wojakowski W, Jensen MK, Gimeno-Blanes J, Afshar K, Myers J, Hegde SM, Solomon SD, Sehnert AJ, Zhang D, Li WY, Bhattacharya M, Edelberg JM, Waldman CB, Lester SJ, Wang A, Ho CY, Jacoby D, investigators E-Hs. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial., 2020, 396(10253): 759–769.
[54] Chauvette V, Accad AJ, Georges G, Bouhout I, Garceau P, L'Allier P, Bouchard D. Septal myectomy in the era of genetic testing., 2021, 36(4): 1282–1288.
[55] Bonaventura J, Norambuena P, Votypka P, Hnátová H, Adlová R, Macek Jr M, Veselka J. Patients with hypertrophic obstructive cardiomyopathy after alcohol septal ablation have favorable long-term outcome irrespective of their genetic background., 2020, 10(2): 193–200.
[56] Liu LW, Li J, Zuo L, Zhang JZ, Zhou MY, Xu B, Hahn RT, Leon MB, Hsi DH, Ge JB, Zhou XD, Zhang J, Ge SP, Xiong LZ. Percutaneous intramyocardial septal radiofrequency ablation for hypertrophic obstructive cardiomyopathy., 2018, 72(16): 1898–1909.
[57] Ma SH, Jiang WJ, Liu XJ, Lu WJ, Qi T, Wei JJ, Wu FJ, Chang Y, Zhang SY, Song YB, Bai R, Wang JB, Lee AS, Zhang HJ, Wang YM, Lan F. Efficient correction of a hypertrophic cardiomyopathy mutation by ABEmax-NG., 2021, 129(10): 895–908.
Research progress of the correlation between genotype and phenotype in hypertrophic cardiomyopathy
Tian Shu1,2, Haochang Hu1,2, Caijie Shen1, Shaoyi Lin1, Xiaomin Chen1,2
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease characterized by left ventricular hypertrophywith prevalence of 1/500–1/200. Up to now, 1500 mutations in more than 30 genes have been found to be related to the disease. Pathogenic gene mutations together with polymorphisms of modifying genes and environmental factors play various roles in the disease processes, resulting in phenotypic heterogeneity of the disease, ranging from no symptoms to sudden cardiac death. The pathological phenotypes of HCM mainly include cardiomyocyte hypertrophy, disordered array, fibrosis, myocardial ischemia, and others. In recent years, many research efforts have been devoted to exploring the influence of HCM genotype on phenotype, and development of treatment methods based on genetics. This article focuses on the correction between HCM genotype and phenotype and summarizes the research progresses onHCM in terms of pathogenic genes, pathogenesis, associated modification factors and treatment methods, thereby providing insights on the future research and development on the genetics of HCM.
hypertrophic cardiomyopathy; pathogenic genes; phenotype; treatment
2021-11-07;
2021-12-27;
2022-01-10
舒甜,在讀碩士研究生,專業(yè)方向:心血管內(nèi)科。E-mail: shutian08@163.com
陳曉敏,碩士,主任醫(yī)師,研究方向:心血管內(nèi)科。E-mail: chxmin@hotmail.com
10.16288/j.yczz.21-324
(責(zé)任編委: 張巖)