• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      β鈦合金超彈性影響因素及其提高方法

      2022-04-03 14:46:22李強劉騰飛王毅豪胡坤
      有色金屬材料與工程 2022年1期
      關鍵詞:鈦合金

      李強 劉騰飛 王毅豪 胡坤

      摘要:β鈦合金具有良好的力學性能、高耐蝕性以及優(yōu)異的生物相容性,在生物醫(yī)用材料領域備受關注。β鈦合金的超彈性歸因于應力誘發(fā)的β→α″馬氏體相變及其逆轉(zhuǎn)變。闡述了影響β鈦合金超彈性的因素,歸納了提高合金超彈性的方法。通過添加合金元素調(diào)整相變溫度和滑移臨界應力使得應力誘發(fā)馬氏體相變更易發(fā)生,延遲β相塑性變形的發(fā)生,能夠獲得更大的相變應變和超彈性回復。通過優(yōu)化熱處理工藝和加工方法調(diào)控合金的相組成、晶粒尺寸、位錯密度和織構(gòu)等,也可提高合金的可回復應變,增強合金的超彈性。

      關鍵詞:β鈦合金;超彈性;馬氏體相變;可回復應變

      中圖分類號:TG 146.2??? 文獻標志碼:A

      Influencing factors and improving methods of superelasticity in βtitanium alloys

      LI Qiang1,2,LIU Tengfei1,WANG Yihao1, HU Kun1

      (1. School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;2. Shanghai Engineering Research Center of High-Performance Medical Device Materials,Shanghai 200093,China)

      Abstract: βtitanium alloys have attracted great attention in the field of biomedical materials due to the good mechanical properties,high corrosion resistance and excellent biocompatibility. The superelasticity of βtitanium alloys is attributed to the stress-induced β→α″martensitic transformation and its reverse transformation. The factors affecting superelasticity of βtitanium alloy were expounded,and the methods to improve superelasticity were summarized. By adding alloying elements to adjust the transformation temperature and critical stress for slip,the stress-induced martensitic transformation is easier to occur,the plastic deformation of βphase is delayed,and larger phase transformation strain and superelastic recovery can be obtained. By optimizing the heat treatment process and processing methods to adjust the phase composition,grain size,dislocation density and texture of the alloys,the recoverable strain can be also increased,and the superelasticity of alloys are enhanced.

      Keywords: p titanium alloy;superelasticity;martensitic transformation;recoverable strain

      Ti-Ni合金最大回復應變(εr)可達到8.0%,表現(xiàn)出優(yōu)異的形狀記憶效應和超彈性,被廣泛用作骨板、血管支架和牙齒矯正架等[1-2]。但Ti-Ni合金植入人體后會釋放具有致敏性和致癌性的Ni+,導致嚴重的健康問題[3-4]。β鈦合金具有較好的生物相容性、耐腐蝕性和較低的彈性模量,并且通過合理的熱處理后可以得到較好的強度和塑性的匹配,是一種可用于硬組織替代的金屬材料。同時,一些β鈦合金中存在可逆熱彈性馬氏體相變,顯示出一定的超彈性和形狀記憶效應,進一步拓寬了其在生物醫(yī)用領域的應用。開發(fā)由無毒元素組成且具有較高超彈性的β鈦合金成為了近年來醫(yī)用鈦合金的研究熱點。

      目前,已經(jīng)開發(fā)了許多在室溫下具有超彈性和形狀記憶效應的β鈦合金,如Ti-Mo[5-6]、Ti-Ta[7-8]、Ti-Zr[9]和Ti-Nb[10-11]合金。然而這些合金的超彈性回復較小,如Ti-(26,27)Nb(26和27為原子分數(shù),如無特別標注,本文涉及的鈦合金成分均為原子分數(shù))的最大εr僅為3.0%[12],遠低于Ti-Ni合金。如何進一步提高β鈦合金的超彈性是亟待解決的問題。本文分析了β鈦合金超彈性的影響因素,系統(tǒng)歸納了超彈性的提高方法。

      1??? β鈦合金的超彈性

      1.1??? 可逆的應力誘發(fā)馬氏體相變

      β鈦合金的超彈性通常產(chǎn)生于可逆的應力誘發(fā)馬氏體相變,即加載發(fā)生應變時體心立方晶格結(jié)構(gòu)的β相轉(zhuǎn)變?yōu)樾狈骄Ц窠Y(jié)構(gòu)的α″相;卸載時發(fā)生逆轉(zhuǎn)變,α″相轉(zhuǎn)變?yōu)棣孪?,應變回復。超彈性β鈦合金中,體心立方結(jié)構(gòu)的β相被稱為“奧氏體”,斜方結(jié)構(gòu)的α″相被稱為“馬氏體”;馬氏體相變開始溫度、馬氏體相變終了溫度、奧氏體相變開始溫度和奧氏體相變終了溫度分別用Ms、Mf、As和Af來表示,Af通常比Ms高幾開爾文至幾十開爾文。對具有應力誘發(fā)馬氏體相變的β鈦合金進行加載-卸載的過程如圖1所示[13]。首先發(fā)生的是β相的彈性變形,當載荷達到誘發(fā)馬氏體相變所需的臨界應力(σSIM)時,β相以切變的形式向α″相進行轉(zhuǎn)變。隨著載荷的增加,馬氏體相變(β→α″)持續(xù)進行,直至達到馬氏體相變終了(或結(jié)束)所需的應力,隨后發(fā)生α″相的彈性變形。當載荷進一步增大超過了β相滑移所需的臨界應力(σCSS)時,發(fā)生β相的塑性變形。進行卸載時,除發(fā)生α″相和β相的彈性回復外,α″→β相變也會帶來應變回復。合金表現(xiàn)出超彈性或是形狀記憶效應取決于其相變溫度和測試溫度的關系。當Af略低于測試溫度時,加載時應力誘發(fā)產(chǎn)生的α″相會在卸載過程發(fā)生α″→β相變,應力誘發(fā)相變對應的應變能夠完全回復,此時合金表現(xiàn)出超彈性。當測試溫度處于As和Af之間時,卸載時一部分α″相轉(zhuǎn)變成β相,部分應力誘發(fā)相變對應的應變發(fā)生回復,合金表現(xiàn)出一定的超彈性;若將合金進一步加熱至Af之上,剩余的α″相轉(zhuǎn)變成β相,相變應變完全回復,合金表現(xiàn)出一定的形狀記憶效應。當測試溫度低于As時,應力誘發(fā)的馬氏體相變應變在測試溫度下不會自動回復,合金不具有超彈性;但將合金加熱至Af之上時,相變應變完全回復,合金表現(xiàn)為形狀記憶效應。

      1.2??? 影響β鈦合金超彈性的因素

      β鈦合金中β相的穩(wěn)定性、σCSS、σSIM和織構(gòu)等共同影響著合金的超彈性。

      若合金中β相的穩(wěn)定性較低,在淬火時即發(fā)生β→α″相變,則能夠產(chǎn)生應力誘發(fā)馬氏體相變的β相減少,合金的超彈性較低。若合金中β相的穩(wěn)定性過高,Ms過低,則σSIM通常高于σCSS,加載過程中,β相的塑性變形先于應力誘發(fā)馬氏體相變發(fā)生,合金幾乎沒有超彈性。通過合金化的方法調(diào)控合金中β相的穩(wěn)定性,使其處于適當?shù)膩喎€(wěn)定狀態(tài),在淬火后合金為單一亞穩(wěn)定β相;當Ms低于測試溫度10~20K時,σSIM較小,應力誘發(fā)馬氏體相變較容易發(fā)生,在測試溫度下能夠得到較好的超彈性[14-15]。即一方面,減少或完全抑制淬火時由于β相不穩(wěn)定而發(fā)生的β→α″相變;另一方面,降低σSIM,使應力誘發(fā)馬氏體相變更易產(chǎn)生,合金的σCSS/σSIM值升高,其超彈性也得到提高[16]。

      超彈性β鈦合金中,織構(gòu)是影響回復應變的另一個重要因素。研究表明,β-α″相變的應變具有各向異性,且沿<110>β晶向最大。當<110>β晶向、合金軋制方向和拉伸方向三者平行時,σSIM最小,相變應變最大,超彈性回復率處于較高水平[17-18]。因此,可以通過增強{001}β<110>β織構(gòu)來提高β鈦合金的超彈性。

      2??? 提高β鈦合金超彈性的方法

      2.1??? 添加合金元素

      在Ti基合金中添加合金元素,一方面,可以調(diào)整合金的Ms(元素對Af和Ms的影響效果一致),使得應力誘發(fā)馬氏體相變及其逆轉(zhuǎn)變更易發(fā)生;另一方面,添加合金元素產(chǎn)生的固溶強化效應能提高合金的σCSS,延緩β相的塑性變形,使合金獲得更大的εr,從而增強其超彈性。

      Zr是鈦合金常用的添加元素。用Zr替代部分Nb可以增加口Ti-Nb合金的εr[19]。相比于Ti-Nb合金3.0%的εr,Ti-22Nb-6Zr合金在室溫下的εr達到4.3%。這是因為Zr影響了β相和α″相的晶格參數(shù),增加了晶格畸變。Ti-Nb合金中每添加1.0%的Mo能夠降低合金的Ms約30K,Mo的固溶強化也提高了合金的σCSS,并且使應力-應變曲線中應力回滯變窄,合金的超彈性得到提高[20]。Ti-Nb合金中每1.0%Ta的加入降低合金的Ms約30 K,Ti-22Nb- (4~6)Ta中較低的σSIM和較高的σCSS也使得合金具有超過3.0%的εr[21]。

      盡管Sn是中性元素,但Sn的添加能夠大幅降低合金的Ms。添加1.0% Sn可使Ti-Ta、Ti-Nb和Ti- Mo合金的Ms分別降低100 K[22]、150 K[23]和149 K[24]。隨著Sn含量的變化,Ti-20Zr-9Nb-xSn(x=2~5)合金的加載-卸載曲線如圖2所示[25]。當Sn含量為2.0%和2.5%時,其Af約為563 K和543 K,合金處于極不穩(wěn)定狀態(tài),淬火后α″相占主導地位;淬火α″相發(fā)生再取向的應力超過σCSS,塑性變形先于淬火馬氏體的再取向發(fā)生,合金沒有表現(xiàn)出超彈性回復;將其加熱至Af之上,形狀記憶效應也較差。當Sn含量為3.0%和3.5%時,合金卸載后的殘余應變大部分可以通過加熱至Af之上時得到回復,其形狀記憶效應明顯提升。但由于二者的As高于室溫,應力誘發(fā)產(chǎn)生的馬氏體在室溫下處于穩(wěn)定狀態(tài),卸載后不會發(fā)生α″→β相變,幾乎沒有表現(xiàn)出超彈性。隨著Sn含量的進一步增加,合金的相變溫度繼續(xù)下降。當Sn含量為4.0%和4.5%,測試溫度位于As和Af之間時,合金的形狀記憶效應占主導地位,并表現(xiàn)出一定的超彈性。當Sn含量為5.0%時,合金的Af降低至室溫之下,加載過程中產(chǎn)生的應力誘發(fā)α″相不穩(wěn)定,卸載后發(fā)生α″→β相變,表現(xiàn)出較好的超彈性。

      除了添加合金元素外,間隙元素O和N的添加也可以調(diào)整合金的Ms,同時其固溶強化效應可顯著提高σCSS,進而提高合金的超彈性[26]。Tahara的研究表明,每1.0% N的加入使Ti-20Nb-4Zr-2Ta合金的Ms降低約200 K,在Ti-20Nb-4Zr-2Ta合金中加入0.6% N,最大εr由3.0%增加到3.8%[27]。Kim等[28]的研究表明,每1.0% O的加入可以降低Ti-Nb合金的Ms 約160 K,Ti-22Nb-0.5O合金的εr達到了4.0%。

      2.2??? 熱機械處理

      熱機械處理是一種有效控制β鈦合金的微觀結(jié)構(gòu)(相組成、晶粒尺寸、位錯密度和晶體織構(gòu))、力學性能(彈性模量、強度和延展性)和功能特性(εr和應力)的方法[29-30]。超彈性β鈦合金典型的熱機械處理工藝是冷軋以及冷軋后退火。在Ti-Nb系和Ti-Zr系超彈性合金中,β?α″的相變應變強烈依賴于晶體取向。因此,不同的熱機械處理工藝會影響合金中織構(gòu)的類型和水平,進而影響合金的超彈性。

      Pavón等[31]的研究表明,隨著退火溫度從773 K升高到1 173 K,Ti-24Zr-10Nb-2Sn合金β(110)和β(211)的衍射峰降低,而β(200)的衍射峰升高,如圖3所示。研究結(jié)果說明{001}β<110>β再結(jié)晶織構(gòu)逐漸增強。加載-卸載測試結(jié)果如圖4所示。由圖4可知,當退火溫度為773 K時,合金沒有表現(xiàn)出超彈性,這是由于773 K退火后合金中存在的α相降低了Ms,抑制了應力誘發(fā)馬氏體的發(fā)生;隨退火溫度的升高,合金的εr逐漸增加,當退火溫度為1 173 K時,合金的εr達到了7.0%。εr的增加主要歸因于{001}β<110>β再結(jié)晶織構(gòu)的增強。如前文所述,強的{001}β<110>β織構(gòu)使得應力誘發(fā)馬氏體相變更易發(fā)生,獲得更大的εr,合金的超彈性獲得提高。此外,在相同的退火溫度下,β(200)衍射峰隨著退火時間的延長而升高,且退火溫度越高,獲得強β(200)衍射峰所需的時間越短[14];即增加保溫時間和提高退火溫度均能夠增強{001}β<110>β織構(gòu),從而提高合金的超彈性。

      Ijiz等[32]在對(Ti-Zr)-1.5Mo-3.0Sn合金研究中得到了相同結(jié)果,εr隨退火溫度的增加從873 K時的3.8%,增加到1 073 K時的7.0%。通過反極圖分析,εr的增加是因為合金中的{001}β<110>β再結(jié)晶織構(gòu)隨退火溫度的升高而增強。

      通過控制退火溫度還可以調(diào)整合金中析出相、晶粒尺寸和位錯密度,進而改善超彈性。Zhang等[33]將Ti-7.5Nb-4.0Mo-2.0Sn合金冷軋并在973 K退火,發(fā)現(xiàn)合金中存在細小的β相亞晶粒、α相和高密度位錯,其σCSS較高,表現(xiàn)出較好的超彈性,εr達到7.5%。當退火溫度升高到1 073~1 273 K,α相消失,合金發(fā)生了再結(jié)晶,β相晶粒粗化,位錯密度下降,σCSS降低;加載過程中β相塑性變形較早發(fā)生且出現(xiàn)了變形孿晶;變形孿晶的存在限制了應力誘發(fā)馬氏體相變。因此,該合金1 073~1 273 K退火后的超彈性低于973 K退火后的超彈性。

      2.3??? 時效處理

      將固溶后的β鈦合金進行時效處理,通過控制時效溫度和保溫時間,可以控制ω相的生成與形態(tài);利用ω相的沉淀強化作用,能夠提高合金的σCSS,增強合金的超彈性。

      Li等[34]將Ti-40Zr-8Nb-2Sn合金固溶并在573 K時效60 min,生成了納米尺寸的ω相,其沉淀強化作用使合金的σCSS由512 MPa提高到644 MPa;超彈性回復應變(εse)由4.2%提高到4.9%,εr由5.5%提高到7.1%。Maeshima等[15]對比了Ti-5Mo-5Sn合金時效態(tài)(實線)和固溶態(tài)(虛線)在205~363 K下的加載-卸載的回復行為,結(jié)果如圖5所示。由圖5可知:在各測試溫度下,時效態(tài)的回復應變均高于固溶態(tài),顯示出更好的超彈性;其中,在223 K下進行加載-卸載后,時效態(tài)樣品幾乎沒有殘余應變。

      2.4??? 短時熱處理

      短時熱處理是將冷軋后的合金快速升溫,短時保溫,快速冷卻的一種熱處理方式。相比于普通的固溶處理,短時熱處理過程中晶粒長大和析出相生長時間極短,容易獲得超細晶粒和納米尺寸析出相,二者皆可提高合金的σCSS,使合金的超彈性獲得提升。

      Sun等[35]將Ti-20Nb-6Zr合金在873 K短時保溫6 min后淬火,β晶粒僅約為1μm,同時有納米尺寸的α和ω相的析出,其εr達到3.2%;而將該合金在1 173 K保溫30 min后淬火,β晶粒平均尺寸達到10~20 μm,εr僅為1.2%。Yang等[36]對比不同熱

      處理后Ti-24Nb-4Zr-8Sn合金的超彈性行為發(fā)現(xiàn),經(jīng)1 173 K固溶30 min的樣品的晶粒尺寸在50~60μm,其εr為2.0%;經(jīng)973 K保溫3 min的樣品的晶粒尺寸小于10μm,其εr為2.7%。

      Gao等[37]將Ti-20Zr-12Nb-2Sn合金在833 K保溫2 min后,獲得晶粒尺寸為0.4μm左右的試樣;該合金833 K保溫30 min后的樣品的晶粒尺寸為1.6μm左右。其循環(huán)加載-卸載曲線如圖6所示。由圖6可知:短時熱處理樣品卸載后出現(xiàn)殘余塑性變形時對應的加載應力和應變分別為800 MPa和4.5%;而普通固溶處理的樣品卸載后出現(xiàn)殘余塑性變形時對應的加載應力和應變分別為585 MPa和3.0%;即短時熱處理后合金的σCSS和超彈性均得到提升。

      2.5??? 纖維冶金技術

      纖維冶金技術是指將電弧熔煉得到的合金鑄錠再次通過電弧熔煉使其在水冷銅坩堝中熔化,隨后傾斜銅坩堝使熔融態(tài)的合金溢出到快速旋轉(zhuǎn)的鉬冷卻輪上,在鉬冷卻輪邊緣連續(xù)產(chǎn)生快速凝固的合金纖維。將得到的合金纖維編織并放到特定的模具中進行燒結(jié)處理,可得到具有一定孔隙率的支架。

      替代松質(zhì)骨植入物通常需要接近人松質(zhì)骨孔隙率(70%~90%)的支架結(jié)構(gòu),同時合金纖維本身應由無毒和不致敏成分組成,其彈性模量與松質(zhì)骨接近且具有一定的超彈性[38]。圖7為燒結(jié)合金纖維制備高孔隙率支架的工藝步驟示意圖[39]。運用纖維冶金技術制備β鈦合金纖維,并進一步燒結(jié)制備多孔支架,是β鈦合金的臨床應用的一個重要途徑。在制造合金纖維時,快速凝固使得合金纖維內(nèi)部產(chǎn)生了高密度位錯和較細的晶粒,晶粒的細化阻礙了位錯運動,提高了σCSS,因此,合金纖維比常規(guī)方法制備的合金具有更好的超彈性。

      Li等[40]將運用纖維冶金技術得到的Ti-40Zr-8Nb- 2Sn合金纖維在153~298 K下進行加載-卸載拉伸測試,發(fā)現(xiàn)合金纖維均表現(xiàn)出優(yōu)良的超彈性,尤其是在233 K下,該合金纖維的應變回復率超過了95.0%。用此方法制造的合金纖維的σCSS為390 MPa,高于常規(guī)鑄造制備的Ti-22Nb-6Zr合金(315 MPa)[41]和Ti-24Zr-8Nb-2Sn合金(170 MPa)[31]的。

      孔隙率對多孔支架的超彈性也有影響。當Ti- 18Zr-12.5Nb-2Sn合金支架的孔隙率由70%增加到80%,其εr由3.2%增加到3.7%[39]。在用電子束熔煉制成的多孔Ti-24Nb-4Zr-8Sn合金中也出現(xiàn)了εr隨孔隙率的增加而增加的趨勢[42]。其原因是孔隙率的增加會使得合金燒結(jié)節(jié)點處的拉伸應力與抗壓應力的比值增加[43],這對提高合金超彈性也是有益的。

      3??? 結(jié)論

      為了增強β鈦合金以應力誘發(fā)馬氏體相變及其逆相變?yōu)榛A的超彈性,一方面是調(diào)整合金的Ms和Af,使得測試溫度下應力誘發(fā)馬氏體相變更易發(fā)生且其逆轉(zhuǎn)變能夠完全進行;另一方面是提高合金的σCSS,阻礙β相塑性變形的發(fā)生。通過選取適當適量的無毒元素作為β鈦合金的添加元素,同時選取適當加工方法和熱處理工藝來控制相的析出、晶粒尺寸、位錯密度和織構(gòu)等可以達到提高β鈦合金超彈性的目的。

      隨著科技的進步以及人們對于生命健康的高度重視,β鈦合金在生物醫(yī)用領域呈現(xiàn)了高度發(fā)展的趨勢,這也對β鈦合金的性能提出了更高的要求。通過進一步優(yōu)化合金成分和熱處理工藝,探索新的加工方法,有望進一步提高合金的綜合性能。可以預見,具有良好生物相容性、優(yōu)良力學性能和穩(wěn)定超彈性的β鈦合金在生物醫(yī)學領域有著廣泛的應用前景。

      參考文獻:

      [1] RAVARI B K,F(xiàn)ARJAMI S,NISHIDA M. Effects of Ni concentration and aging conditions on multistage martensitic transformation in aged Ni-rich Ti-Ni alloys[J]. Acta Materialia,2014,69: 17-29.

      [2]周劍杰,馬鳳倉,劉平,等.熱處理對鎳鈦合金表面性能的影響[J].有色金屬材料與工程,2019,40(6): 6-13.

      [3] BIESIEKIERSKI A,WANG J,GEPREEL A H,et al. A new look at biomedical Ti-based shape memory alloys[J]. Acta Biomaterialia,2012,8(5): 1661-1669.

      [4] ES-SOUNI M,ES-SOUNI M,F(xiàn)ISCHER-BRANDIES H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications[J]. Analytical and Bioanalytical Chemistry,2005,381(3): 557-567.

      [5] LIN D J,CHUANG C C,LIN J,et al. Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur[J]. Biomaterials,2007,28(16): 2582-2589.

      [6] ZHAO X F,NIINOMI M,NAKAI M,et al. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomaterialia,2012,8(5): 1990-1997.

      [7] BUENCONSEJO P,KIM H Y,MIYAZAKI S. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys[J]. Acta Materialia,2009,57(8): 2509-2515.

      [8] BERTRAND E,CASTANY P,GLORIANT T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy[J]. Acta Materialia,2013,61(2): 511-518.

      [9] CORREA D,VICENTE F B,DONATO T,et al. The effect of the solute on the structure,selected mechanical properties,and biocompatibility of Ti-Zr system alloys for dental applications[J]. Materials Science and Engineering:C,2014,34: 354-359.

      [10] LAI M,GAO Y,YUAN B,et al. Remarkable superelasticity of sintered Ti-Nb alloys by Ms adjustment via oxygen regulation[J]. Materials & Design,2015,87: 466-472.

      [11] HUSSEIN A H,GEPREEL M A H,GOUDA M K,et al. Biocompatibility of new Ti-Nb-Ta base alloys[J]. Materials Science and Engineering:C,2016,61: 574-578.

      [12] KIM H Y,IKEHARA Y,KIM J I,et al. Martensitic transformation,shape memory effect and superelasticity of Ti-Nb binary alloys[J]. Acta Materialia,2006,54(9): 2419-2429.

      [13] RAMEZANNEJAD A,XU W,XIAO W L,et al. New insights into nickel-free superelastic titanium alloys for biomedical applications[J]. Current Opinion in Solid State and Materials Science,2019,23(6): 100783.

      [14] MAESHIMA T,USHIMARU S,YAMAUCHI K,et al. Effect of heat treatment on shape memory effect and superelasticity in Ti-Mo-Sn alloys[J]. Materials Science and Engineering:A,2006,438-440: 844-847.

      [15] WU J,LI H,YUAN B,et al. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0 -6)Zr biomedical alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,75: 574-580.

      [16] PAVON L L,CUELLAR E L,HERNANDEZ S V,et al. Effect of heat treatment condition on microstructure and superelastic properties of Ti24Zr10Nb2Sn[J]. Journal of Alloys and Compounds,2019,782: 893-898.

      [17] KIM H Y,F(xiàn)U J,TOBE H,et al. Crystal structure,transformation strain,and superelastic property of Ti-Nb- Zr and Ti-Nb-Ta alloys[J]. Shape Memory and Superelasticity,2015,1(2): 107-116.

      [18] FU J,KIM H Y,MIYAZAKI S. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,65: 716-723.

      [19] KIM J I,KIM H Y,INAMURA T,et al. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at. %)biomedical alloys[J]. Materials Science and Engineering:A,2005,403(1/2): 334-339.

      [20] AL-ZAIN Y,KIM H Y,HOSODA H,et al. Shape memory properties of Ti-Nb-Mo biomedical alloys[J]. Acta Materialia,2010,58(12): 4212-4223.

      [21] KIM H Y,HASHIMOTO S,KIM J I,et al. Effect of Ta addition on shape memory behavior of Ti-22Nb alloy[J].

      Materials Science and Engineering:A,2006,417(1/2): 120-128.

      [22] KIM H Y,F(xiàn)UKUSHIMA T,BUENCONSEJO P,et al. Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys[J]. Materials Science and Engineering:A,2011,528(24): 7238-7246.

      [23] ENDOH K,TAHARA M,INAMURA T,et al. Effect of Zr addition on martensitic transformation in TiMoSn alloy[J]. Advanced Materials Research,2014,922: 137-142.

      [24] ENDOH K,TAHARA M,INAMURA T,et al. Effect of Sn and Zr addition on the martensitic transformation behavior of Ti-Mo shape memory alloys[J]. Journal of Alloys and Compounds,2017,695: 76-82.

      [25] LI S L,UR REHMAN I,LIM J H,et al. Effect of Sn content on microstructure,texture evolution,transformation behavior and superelastic properties of Ti-20Zr-9Nb-(2-5)Sn (at. %)shape memory alloys[J]. Materials Science and Engineering:A,2021,827: 141994.

      [26] RAMAROLAHY A,CASTANY P,PRIMA F,et al. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,9: 83-90.

      [27] TAHARA M,KIM H Y HOSODA H,et al. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys[J]. Materials Science and Engineering:A,2010,527(26): 6844-6852.

      [28] KIM J I,KIM H Y,HOSODA H,et al. Shape Memory Behavior of Ti-22Nb-(0.5-2.0)O (at%)Biomedical Alloys[J]. Materials Transactions,2005,46(4): 852-857.

      [29] NUNES A R V,BORBOREMA S,ARAUJO L S,et al. Influence of thermo-mechanical processing on structure and mechanical properties of a new metastable βTi- 29Nb-2Mo-6Zr alloy with low Young's modulus[J]. Journal of Alloys and Compounds,2020,820: 153078.

      [30] PROKOSHKIN S,BRAILOVSKI V,DUBINSKIY S,et al. Manufacturing,structure control,and functional testing of Ti-Nb-based SMA for medical application[J]. Shape Memory and Superelasticity,2016,2(2): 130-144.

      [31] PAVON L L,KIM H Y,HOSODA H,et al. Effect of Nb content and heat treatment temperature on superelastic properties of Ti-24Zr-(8-12)Nb-2Sn alloys[J]. Scripta Materialia,2015,95: 46-49.

      [32] IJAZ M F,KIM H Y,HOSODA H,et al. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys[J]. Materials Science and Engineering:C,2015,48: 11-20.

      [33] ZHANG D C,TAN C G,TANG D M,et al. Effect of thermomechanical treatment on the superelasticity of Ti- 7.5Nb-4Mo-2Sn biomedical alloy[J]. Materials Science and Engineering:C,2014,44: 76-86.

      [34] LI S L,CHOI M S,NAM T H. Role of fine nano-scaled isothermal omega phase on the mechanical and superelastic properties of a high Zr-containing Ti-Zr-Nb- Sn shape memory alloy[J]. Materials Science and Engineering:A,2020,782: 139278.

      [35] SUN F,NOWAK S,GLORIANT T,et al. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy[J]. Scripta Materialia,2010,63(11): 1053-1056.

      [36] YANG Y,CASTANY P,CORNEN M,et al. Texture investigation of the superelastic Ti-24Nb-4Zr-8Sn alloy[J]. Journal of Alloys and Compounds,2014,591: 85-90.

      [37] GAO J J,THIBON I,CASTANY P,et al. Effect of grain size on the recovery strain in a new Ti-20Zr-12Nb-2Sn superelastic alloy[J]. Materials Science and Engineering:A,2020,793: 139878.

      [38] WANG Z H,WANG C Y,CHEN L,et al. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review[J]. Journal of Alloys and Compounds,2017,717: 271-285.

      [39] LI S,KIM Y W,CHOI M S,et al. Highly porous Ni-free Ti-based scaffolds with large recoverable strain for biomedical applications[J]. Intermetallics,2020,116: 106657.

      [40] LI S,KIM Y W,CHOI M S,et al. Achieving high porosity and large recovery strain in Ni-free high Zr- containing Ti-Zr-based shape memory alloy scaffolds by fiber metallurgy[J]. Intermetallics,2021,128: 107015.

      [41] KIM J I,KIM H Y,INAMURA T,et al. Effect of annealing temperature on microstructure and shape memory characteristics of Ti-22Nb-6Zr (at%)biomedical alloy[J]. Materials Transactions,2006,47(3): 505-512.

      [42] LIU Y J,WANG H L,LI S J,et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting[J]. Acta Materialia,2017,126: 58-66.

      [43] ZHANG S Q,LI S J,JIA M T,et al. Low-cycle fatigue properties of a titanium alloy exhibiting nonlinear elastic deformation behavior[J]. Acta Materialia,2011,59(11): 4690-4699.

      猜你喜歡
      鈦合金
      GJB 2896A-2020《鈦及鈦合金熔模精密鑄件規(guī)范》解讀
      基于模糊神經(jīng)網(wǎng)絡的TC4鈦合金銑削力建模與仿真分析
      鈦合金材料高效切削工藝性能研究
      活力(2019年17期)2019-11-26 00:42:22
      不同冷卻潤滑條件下TB6鈦合金高速銑削切屑形態(tài)研究
      “神的金屬”鈦合金SHINE YOUR LIFE
      中國自行車(2018年8期)2018-09-26 06:53:32
      鈦合金板鍛造的工藝實踐
      四川冶金(2017年6期)2017-09-21 00:52:30
      鈦合金結(jié)構(gòu)件變進給工藝分析
      醫(yī)用鈦合金的研究與應用
      TC4鈦合金TIG焊接頭組織對性能的影響
      焊接(2016年7期)2016-02-27 13:05:03
      TC17鈦合金超大規(guī)格棒材的制備
      长汀县| 吉水县| 乐亭县| 开封市| 新干县| 无为县| 德昌县| 临漳县| 清远市| 疏附县| 石楼县| 博兴县| 凯里市| 潢川县| 怀集县| 九寨沟县| 那坡县| 堆龙德庆县| 申扎县| 龙口市| 迁西县| 池州市| 平谷区| 石阡县| 肇州县| 金阳县| 图们市| 霍州市| 龙陵县| 陵川县| 萨迦县| 肥乡县| 吕梁市| 泾阳县| 阿拉尔市| 仙桃市| 互助| 巴彦淖尔市| 年辖:市辖区| 宜春市| 盖州市|