彭雪,高月霞,張琳煊,高志強,任亞梅
高能電子束輻照對馬鈴薯貯藏品質(zhì)及芽眼細(xì)胞超微結(jié)構(gòu)的影響
1西北農(nóng)林科技大學(xué)食品科學(xué)與工程學(xué)院,陜西楊凌 712100;2成都文理學(xué)院,成都 610401
【】明確不同劑量高能電子束輻照對馬鈴薯發(fā)芽和貯藏品質(zhì)的影響,探究其抑制馬鈴薯發(fā)芽的機理。以‘紫花白’馬鈴薯為試材,以未經(jīng)高能電子束輻照馬鈴薯為對照,分別采用0.3、0.4和0.5 kGy高能電子束對塊莖進(jìn)行輻照處理,然后用0.03 mm牛皮紙袋包裝后敞口貯藏于(8±1)℃、相對濕度70%—75%的冷庫中,貯藏過程中每周觀察記錄各組塊莖的發(fā)芽情況,每25 d取樣測定塊莖的呼吸強度、失重率、腐爛率、硬度及淀粉、Vc、還原糖等營養(yǎng)物質(zhì)含量的變化,借助體視顯微鏡和透射電子顯微鏡觀察塊莖芽體形態(tài)和芽眼處細(xì)胞超微結(jié)構(gòu)的變化。馬鈴薯經(jīng)不同劑量高能電子束輻照后,在(8±1)℃貯藏至200 d均未發(fā)芽,休眠期顯著延長;高能電子束輻照一定程度上延緩了塊莖貯藏過程中可溶性固形物、Vc和淀粉的下降速率,促進(jìn)了塊莖中還原糖的積累,對可溶性蛋白含量無顯著影響,塊莖貯藏至200 d時具有良好的風(fēng)味、口感和色澤;抑制了塊莖呼吸強度,有利于減緩其衰老進(jìn)程;但輻照加速了塊莖重量和硬度的下降,且隨輻照劑量的增大而增強。電鏡結(jié)果顯示高能電子束輻照對塊莖芽眼處細(xì)胞超微結(jié)構(gòu)形成了損傷,細(xì)胞壁畸變、扭曲,發(fā)生質(zhì)壁分離;細(xì)胞核外形無規(guī)則變化,核內(nèi)容物降解;隨貯藏時間的延長,內(nèi)質(zhì)網(wǎng)完全降解;淀粉粒數(shù)量明顯減少,顆粒減小,但維持了線粒體結(jié)構(gòu)的完整性和穩(wěn)定性;同時輻照使塊莖幼芽直接死亡,芽體隨貯藏時間的延長而逐漸干枯。高能電子束輻照可完全使塊莖在(8±1)℃冷藏7個月不發(fā)芽,對塊莖營養(yǎng)品質(zhì)無不利影響,有利于保持其良好感官和營養(yǎng)品質(zhì);推測高能電子束輻照抑芽與塊莖呼吸強度受到抑制相關(guān),減弱了其生理活性;同時,輻照對芽眼細(xì)胞結(jié)構(gòu)形成了損傷,并直接使其幼芽死亡干枯。
馬鈴薯;高能電子束;貯藏品質(zhì);細(xì)胞超微結(jié)構(gòu)
【研究意義】馬鈴薯(L.)是我國繼小麥、玉米和水稻的“第四大主糧”[1]。近年來,陜西、云南和貴州等將其作為脫貧致富產(chǎn)業(yè)大力發(fā)展,對促進(jìn)農(nóng)民增收增益具有重要意義。馬鈴薯在采后貯藏過程中會逐漸發(fā)芽,不僅會加速塊莖中水分和營養(yǎng)物質(zhì)的消耗,導(dǎo)致其品質(zhì)劣變,還會使塊莖中-茄堿大量增加[1],是不容忽視的食品安全問題,馬鈴薯貯藏過程中的發(fā)芽現(xiàn)象一直亟待解決?!厩叭搜芯窟M(jìn)展】目前普遍采用化學(xué)試劑結(jié)合低溫的方式以延長采后馬鈴薯貯藏期,常用的化學(xué)抑芽劑有氯苯胺靈(CIPC)、萘乙酸甲酯(MEAN)、青鮮素(MH)、外源乙烯及香芹酮等[2-9],60Co γ射線輻照也被證實具有良好的抑芽效果[10-12]。但這些抑芽保鮮技術(shù)存在一些缺陷,如CIPC、MEAN和MH具有致癌、致畸作用[13-14],存在安全隱患;外源乙烯和香芹酮易揮發(fā),對貯藏裝置的密封性要求較高,因而不易操作且成本高。近年來,電子束輻照作為一種新型綠色環(huán)保技術(shù)在設(shè)備裝置和技術(shù)參數(shù)等方面取得突破性進(jìn)展。在已有研究中,Todoriki等[15]和BLESSINGTON等[16]已證實電子束輻照可有效抑制馬鈴薯和豆類等種子萌芽,得出輻照提高了馬鈴薯塊莖的抗氧化能力,輻照也不會對塊莖營養(yǎng)品質(zhì)造成不良影響,因此,電子束輻照用于馬鈴薯的抑芽保鮮具有良好前景?!颈狙芯壳腥朦c】目前尚未有關(guān)于高能電子束輻照對馬鈴薯細(xì)胞結(jié)構(gòu)影響的報道。有研究得出[17-19],輻照對核桃胚芽、種子、根莖等的抑芽機制與被照射物的細(xì)胞受到不同程度損傷有關(guān)。此外,馬鈴薯芽眼處塊莖及其細(xì)胞的狀態(tài)會影響芽的萌發(fā)及種植后期的生長質(zhì)量,明確輻照對馬鈴薯芽眼的影響對其種植業(yè)的發(fā)展具有重要作用。【擬解決的關(guān)鍵問題】通過探究不同劑量高能電子束輻照對馬鈴薯貯藏品質(zhì)及芽眼處細(xì)胞超微結(jié)構(gòu)的影響,明確高能電子束輻照抑制馬鈴薯發(fā)芽的部分機理,為輻照保鮮馬鈴薯提供理論依據(jù)和技術(shù)參考。
‘紫花白’馬鈴薯,2020年6月23日采于陜西鎮(zhèn)巴縣小洋鎮(zhèn)毛埡村,采后挑選無損傷、無腐爛、無病蟲害、大小均勻的塊莖運回西北農(nóng)林科技大學(xué)果蔬貯藏與加工實驗室,于(21±1)℃避光、通風(fēng)環(huán)境中散放7 d,愈傷后輻照處理。
Telaire7001紅外線CO2分析儀;TA.XT Plus物性測定儀,英國SMS公司;LECIA M165 FC體視顯微鏡,德國Lecia公司;TECNAI G2 SPIRIT BIO透射顯微鏡,美國FEI公司。
1.3.1 輻照處理 馬鈴薯的輻照處理在陜西省咸陽市方圓高科實業(yè)有限公司進(jìn)行,電子加速器為ESS-010-03行波直線型電子加速器,額定能量10 MeV、功率27 kW、束流2 mA、掃描寬度800 cm,劑量不均勻率<10%。參照60Coγ射線用于抑制馬鈴薯發(fā)芽的劑量及預(yù)試驗結(jié)果,將馬鈴薯平均分為4組,每組約30 kg,取其中一組不輻照作為對照(0 kGy),其余3組分別用0.3、0.4和0.5 kGy高能電子束靜態(tài)照射1次,劑量率為45.5 Gy/min。輻照后運回實驗室,將每個處理馬鈴薯塊莖平均分成3份,裝入0.03 mm厚牛皮紙袋(長65 cm、寬45 cm),敞口貯藏于(8±1)℃、70%—75%相對濕度的冷庫。貯藏過程中,每25 d統(tǒng)計塊莖發(fā)芽、腐爛和重量損失等情況,并取樣測定塊莖呼吸強度、硬度和營養(yǎng)物質(zhì)含量等的變化,其中對照組塊莖開始發(fā)芽后,取發(fā)芽塊莖進(jìn)行指標(biāo)測定,貯藏至150 d時終止取樣。
1.3.2 測定指標(biāo)及方法
(1)呼吸強度:每個處理45粒馬鈴薯固定用于呼吸強度的測定。用紅外線CO2分析儀測定,計算見公式:
RI=(A1-A0)×(V1-V2)×1.96/(m×1×1000)
式中,RI為呼吸強度(mg?kg-1?h-1);A1和A0分別為20和80 min時測定儀讀數(shù);V1和V2分別為密封罐體積和馬鈴薯體積(L);m為馬鈴薯質(zhì)量(kg)。
(2)發(fā)芽率:以塊莖出現(xiàn)肉眼可見芽體(≥2 mm)計,發(fā)芽率(%)=發(fā)芽塊莖數(shù)/總塊莖數(shù)×100。
(3)失重率:每個處理45粒馬鈴薯固定用于失重率的測定。失重率(%)=(初始重量-測定時重量)/初始重量×100。
(4)腐爛率:腐爛率(%)=腐爛塊莖數(shù)/總塊莖數(shù)×100。
(5)硬度:采用穿刺模式。取塊莖切成20 mm3方塊,測定時在方塊上均勻取3個點用P2探頭刺穿,伸縮量10 mm,測前和測試速率均2 mm?s-1,觸發(fā)力5 g,每個處理每次隨機取5粒塊莖。
(6)營養(yǎng)物質(zhì)含量:VC含量用2, 6-二氯酚靛酚法測定[20];可溶性蛋白含量用考馬斯亮藍(lán)G-250法測定[21];淀粉含量用酸水解法測定[21];還原糖含量用3, 5-二硝基水楊酸法測定[20]。
(7)芽體形態(tài):將馬鈴薯洗凈,用體視顯微鏡直接觀察塊莖芽眼。
(8)電鏡觀測樣的制備:分別取貯藏至25和100 d的馬鈴薯用于芽眼細(xì)胞超微結(jié)構(gòu)的觀察。馬鈴薯洗凈去皮,取以芽眼為中心半徑5 mm、深5 mm左右的組織,用雙面刀片修成1 mm3小塊,參照馬艷萍等[18]的方法進(jìn)行固定、包埋和染色等處理,體視顯微鏡觀察其結(jié)構(gòu)。
數(shù)據(jù)用Excel和Minitab 16.0軟件統(tǒng)計和差異顯著性分析,<0.05表示差異性顯著,結(jié)果表示為平均值±標(biāo)準(zhǔn)差。
由圖1可見,對照塊莖在貯藏前25 d,其呼吸強度略微下降,與塊莖處于休眠狀態(tài),各項生理生化代謝活動水平較弱相關(guān);貯藏25—50 d,塊莖休眠狀態(tài)逐漸解除,呼吸強度又逐漸增強;隨貯藏時間的進(jìn)一步延長,其呼吸強度逐漸增強,且出芽后呼吸作用迅速增強,貯藏至200 d時的呼吸速率高達(dá)9.3 mg?kg-1?h-1,較貯藏第75天提高了2.03倍,馬鈴薯采后有明顯休眠特性,休眠過程中呼吸速率較弱,呼吸作用隨休眠的解除逐漸增強。塊莖經(jīng)電子束輻照處理后,貯藏過程中呼吸強度隨時間的延長變化較小,維持在2.9—4 mg?kg-1?h-1,除0.5 kGy輻照馬鈴薯在貯藏前50 d的呼吸強度高于對照,其在貯藏第50—200天的呼吸強度及0.3和0.4 kGy輻照馬鈴薯在整個貯藏期的呼吸強度均低于對照;貯藏第150—200天,各輻照馬鈴薯呼吸強度均顯著低于對照(<0.05),說明適宜劑量高能電子束輻照可抑制塊莖貯藏過程中的呼吸速率,減緩其衰老進(jìn)程。
不同小寫字母表示差異顯著(P<0.05)。下同
對照馬鈴薯貯藏至50 d時開始發(fā)芽,貯藏至75和125 d時發(fā)芽率分別為31%和100%,芽長從5 cm伸長至30 cm,貯藏至200 d時塊莖芽長約60 cm,且塊莖因失水嚴(yán)重引起表皮明顯皺縮。但馬鈴薯經(jīng)不同劑量高能電子束輻照處理后,貯藏至200 d時均未發(fā)芽,保持著良好的外觀品質(zhì)(圖2)。
從左到右每列馬鈴薯分別為0、0.3、0.4和0.5 kGy輻照處理
不同處理組馬鈴薯貯藏過程中重量均逐漸下降,且輻照塊莖重量損失一直高于對照,貯藏至200 d時,對照及0.3、0.4和0.5 kGy輻照塊莖的重量損失依次為(10.3±0.01)%、(12.7±0.13)%、(19.8±0.04)%和(20.3±0.02)%,其中0.4和0.5 kGy輻照塊莖的重量損失顯著高于對照組(<0.05)(圖3-A)。0.4和0.5 kGy輻照引起塊莖在貯藏過程中出現(xiàn)了干腐,貯藏至200 d時腐爛率分別為0.5%和1.0%;而對照塊莖和0.3 kGy輻照塊莖貯藏至200 d時無腐爛(圖3-B)。
圖3 不同劑量高能電子束輻照對馬鈴薯貯藏過程中失重率(a)和腐爛率(b)的影響
硬度是衡量果蔬新鮮狀態(tài)和貯藏品質(zhì)的重要指標(biāo)之一。不同處理組馬鈴薯塊莖的硬度隨貯藏時間的延長逐漸下降。貯藏75 d內(nèi),輻照組塊莖硬度顯著小于對照(<0.05),且硬度隨輻照劑量的增大而迅速下降;隨貯藏時間的延長,對照塊莖硬度下降速率加快,輻照塊莖硬度變化不顯著,保持相對穩(wěn)定;貯藏至200 d時,對照塊莖硬度最小,顯著低于不同劑量輻照組塊莖(<0.05)(圖4)。
圖4 不同劑量高能電子束輻照對馬鈴薯貯藏過程中塊莖硬度的影響
將貯藏至200 d的馬鈴薯蒸熟后進(jìn)行品嘗,發(fā)現(xiàn)對照塊莖接近薯皮的薯肉發(fā)黑,香味較淡,咀嚼起來有顆粒感和粘黏性,且具有澀味,口感較差;而輻照馬鈴薯的薯肉色澤良好,呈黃色,具有與新鮮馬鈴薯一樣特有的香氣,粉質(zhì)細(xì)膩,無澀味和其他不良風(fēng)味,口感佳(圖5)。
同處理組馬鈴薯塊莖中VC含量隨貯藏時間的延長而逐漸減少,貯藏過程中,對照塊莖在休眠解除開始發(fā)芽過程中的VC含量迅速下降,并顯著低于在輻照塊莖中的含量(<0.05);貯藏至150 d時,對照塊莖中VC含量由貯藏前的14.07%下降至4.99%,而輻照塊莖中VC含量僅下降了約25%,VC減少量僅為對照塊莖的1/3。同樣,高能電子束輻照也延緩了塊莖貯藏過程中淀粉含量的下降速率,并對塊莖中可溶性蛋白含量無顯著影響(表1),不同處理組塊莖中淀粉含量隨貯藏時間的延長而逐漸減少,貯藏50 d內(nèi),對照與輻照塊莖中淀粉含量無顯著差異(>0.05);貯藏50 d后,對照塊莖隨芽的萌發(fā)和大量生長,其淀粉含量迅速減少,并于100 d后顯著低于輻照塊莖中的含量(<0.05);貯藏至150 d時,對照塊莖中淀粉含量較貯藏前下降了32.4%,較輻照塊莖中淀粉含量少13.0%。但馬鈴薯經(jīng)高能電子束輻照處理并貯藏75 d后的塊莖中還原糖含量顯著高于對照塊莖(<0.05),還原糖含量是衡量馬鈴薯加工品質(zhì)和口感的重要指標(biāo),還原糖含量過高影響其深加工。
圖5 對照、0.3和0.4 kGy馬鈴薯貯藏至200 d蒸熟后的感官品質(zhì)
借助體視顯微鏡觀察貯藏50和75 d的馬鈴薯塊莖芽體形態(tài)(圖6)。貯藏50 d時,對照塊莖出現(xiàn)肉眼可見的芽體,芽端保持幼嫩鮮活的狀態(tài)(圖6-A1、B1),隨貯藏時間的延長,芽體膨脹、伸長;所有經(jīng)高能電子束輻照的塊莖,其頂芽呈燒焦?fàn)顟B(tài),芽體完全干枯、壞死(圖6-A2—A4、B2—B4),且輻照劑量越高,對芽體的損壞越明顯。
與對照塊莖細(xì)胞結(jié)構(gòu)相比,輻照對塊莖芽眼處細(xì)胞超微結(jié)構(gòu)形成了不同程度的損傷,主要表現(xiàn)為細(xì)胞壁畸變、扭曲,并輕微凸起且與膜結(jié)構(gòu)分離,相鄰細(xì)胞間由大量胞間連絲連接(圖7-B3、B4);細(xì)胞核外形發(fā)生變化,呈不規(guī)則狀態(tài),核內(nèi)物部分降解(圖7-B2),但線粒體、淀粉及內(nèi)質(zhì)網(wǎng)與對照塊莖無明顯不同,二者均含有大量淀粉顆粒,且顆粒結(jié)構(gòu)完整(圖7-A1、A2);內(nèi)質(zhì)網(wǎng)數(shù)量較多,大量分布在細(xì)胞內(nèi)壁處;線粒體數(shù)量也較多,結(jié)構(gòu)較完整,內(nèi)嵴較清晰(圖7-A5、B5)。
表1 不同劑量高能電子束輻照對馬鈴薯貯藏過程中營養(yǎng)成分含量的影響
同列不同小寫字母間表示差異顯著(<0.05) Different lowercase letters in the same column indicate significant differences (<0.05)
A1—A4、B1—B4分別為對照、0.3、0.4和0.5 kGy馬鈴薯貯藏50 d和75 d時的芽體形態(tài)
與貯藏至25 d相比,對照(圖8-A1—A5)和0.3 kGy輻照(圖8-B1—B5)馬鈴薯在(8±1)℃貯藏至100 d時,其芽眼處細(xì)胞的超微結(jié)構(gòu)隨貯藏時間的延長也發(fā)生了不同程度的變化,其中,線粒體、內(nèi)質(zhì)網(wǎng)和胞間連絲變化最明顯。對照塊莖細(xì)胞線粒體的完整性和內(nèi)嵴發(fā)達(dá)程度顯著減弱,內(nèi)嵴幾乎完全降解;細(xì)胞壁扭曲并凸起,與細(xì)胞膜輕微分離;內(nèi)質(zhì)網(wǎng)數(shù)量顯著減少,僅觀察到少量內(nèi)質(zhì)網(wǎng)存在。0.3 kGy輻照塊莖細(xì)胞線粒體結(jié)構(gòu)較對照完整,但也發(fā)生了降解;內(nèi)質(zhì)網(wǎng)和胞間連絲幾乎完全消失,未觀察到二者在細(xì)胞中的存在。同時,二者細(xì)胞中出現(xiàn)更多小顆粒淀粉。
A1—A6:對照;B1—B6:0.3 kGy。St:淀粉粒(1900×);N:細(xì)胞核(10000×);Nu:核仁;ER:內(nèi)質(zhì)網(wǎng)(25000×);P:胞間連絲;M:線粒體(30000×);CW:細(xì)胞壁(8000×);IL:中膠層;PM:細(xì)胞質(zhì)膜;Cyt:原生質(zhì)。下同
與對照和0.3 kGy輻照塊莖貯藏至100 d時細(xì)胞超微結(jié)構(gòu)相比,0.4(圖8-C1—C5)和0.5 kGy(圖8-D1 —D5)輻照塊莖貯藏至100 d時,最明顯的不同是二者淀粉顆粒數(shù)量明顯減少,淀粉顆粒較?。▓D8-C1、D1);0.4 kGy輻照塊莖的細(xì)胞核破損,膜核破裂(圖8-C4),但線粒體內(nèi)嵴較對照更完整清晰(圖8-D3)。
A1—A5:對照;B1—B5:0.3 kGy;C1—C5:0.4 kGy;D1—D5:0.5 kGy。N:細(xì)胞核(30000×);ER:內(nèi)質(zhì)網(wǎng)(23000×);M:線粒體(49000×);CW:細(xì)胞壁(9300×)
TODORIKI等[15]和BLESSINGTON等[16]將經(jīng)200 Gy電子束輻照處理后的馬鈴薯于4℃或常溫條件下貯藏,發(fā)現(xiàn)塊莖貯藏至4個月未發(fā)芽。FRAZIER等[22]還報道40—50 Gy輻照處理可保證馬鈴薯在7℃條件下貯藏9個月不發(fā)芽。本研究結(jié)果與上述研究一致,馬鈴薯經(jīng)0.3、0.4和0.5 kGy高能電子束輻照處理后,在9℃冷藏條件下貯藏7個月未發(fā)芽,事實上,貯藏于27℃高溫條件下的輻照馬鈴薯也未發(fā)芽(數(shù)據(jù)未提供)。在MATHO等[23]的研究中,40—120 Gy γ射線輻照減緩了馬鈴薯貯藏過程中質(zhì)地的變化,使塊莖保持較高的硬度,但120 Gy以上劑量輻照馬鈴薯的硬度較未輻照馬鈴薯硬度低,SOARES等[24]也得出類似的結(jié)果。本研究結(jié)果顯示,0.3、0.4和0.5 kGy電子束輻照均引起塊莖貯藏初期硬度迅速下降。研究表明,較高劑量輻照導(dǎo)致果蔬硬度迅速下降是由于輻照激活了細(xì)胞壁代謝酶的活性,使果膠、纖維素等細(xì)胞壁結(jié)構(gòu)成分分解[23,25-26],因此,推測輻照引起塊莖重量損失增加與細(xì)胞壁結(jié)構(gòu)遭到破壞相關(guān)[27]。采后蔬菜呼吸強度的變化與其耐貯性密切相關(guān)。一般來說,呼吸強度越高,果蔬品質(zhì)迅速下降,衰老速率越快。本研究結(jié)果顯示,高能電子束輻照抑制了塊莖貯藏過程中的呼吸強度,有利于減緩塊莖衰老進(jìn)程,延長貯藏期。
細(xì)胞作為植物體基本的結(jié)構(gòu)和功能單位,完整的細(xì)胞結(jié)構(gòu)是植物正常生長發(fā)育的基礎(chǔ)[28]。本研究結(jié)果顯示,高能電子束輻照對馬鈴薯芽眼處細(xì)胞部分結(jié)構(gòu)形成損傷,但也維持了部分細(xì)胞結(jié)構(gòu)的完整性和穩(wěn)定性。輻照導(dǎo)致其細(xì)胞壁扭曲、畸變,細(xì)胞壁與細(xì)胞膜發(fā)生輕微分離,可能與輻照塊莖硬度迅速下降有關(guān);細(xì)胞核外形發(fā)生變化,呈不規(guī)則狀態(tài),核內(nèi)物部分降解。此外,隨貯藏時間的延長,輻照塊莖細(xì)胞中出現(xiàn)了更多顆粒較小的淀粉粒,且0.4和0.5 kGy輻照塊莖細(xì)胞中淀粉粒數(shù)量明顯減少,王汝順等[28]的研究發(fā)現(xiàn),輻照會使馬鈴薯淀粉內(nèi)部結(jié)晶結(jié)構(gòu)斷裂,分子鏈結(jié)晶度降低,降解為小分子物質(zhì)。同時,內(nèi)質(zhì)網(wǎng)數(shù)量較對照也顯著減少。內(nèi)質(zhì)網(wǎng)發(fā)達(dá)程度可表征細(xì)胞分化和功能狀態(tài),內(nèi)質(zhì)網(wǎng)的大量降解將導(dǎo)致細(xì)胞的正常分化和功能狀態(tài)被破壞,從而導(dǎo)致塊莖生理生化活動代謝的方向性和協(xié)調(diào)性發(fā)生變化[29]。但輻照維持了塊莖芽眼處細(xì)胞線粒體結(jié)構(gòu)的完整性和穩(wěn)定性。線粒體是植物細(xì)胞進(jìn)行呼吸作用的主要場所,可為植物的生長和代謝提供直接能源物質(zhì)[29],還是馬鈴薯休眠解除感應(yīng)刺激的潛在中心[30],完整的線粒體結(jié)構(gòu)可保證塊莖呼吸強度的穩(wěn)定,與呼吸強度變化的結(jié)果一致。然而,體視顯微鏡下觀察到輻照馬鈴薯的頂芽于芽眼處死亡,因而塊莖在貯藏過程中始終未萌芽,推測致死因素可能是由輻照產(chǎn)生的自由基等物質(zhì)所引起,有待進(jìn)一步證實。
高能電子束輻照可完全抑制馬鈴薯在(8±1)℃貯藏200 d不發(fā)芽,一定程度上減緩了塊莖貯藏過程中淀粉、Vc和可溶性固形物的下降速率。但0.3 kGy及以上劑量電子束輻照會加速塊莖質(zhì)量和硬度的下降,因此,應(yīng)采用更低劑量輻照處理馬鈴薯同時達(dá)到抑制發(fā)芽和保持其貯藏品質(zhì)的作用。高能電子束輻照通過抑制塊莖呼吸代謝,延緩了其衰老速率;另外,輻照使塊莖芽眼處細(xì)胞結(jié)構(gòu)遭到破壞,并引起芽眼幼嫩芽體逐漸死亡,從而抑制了芽的萌發(fā)與生長,因此,高能電子束輻照不能用于種薯的短期貯藏。
[1] 平華, 馬智宏, 李楊, 李冰茹. 不同發(fā)芽天數(shù)及芽周不同深度馬鈴薯中-茄堿含量變化規(guī)律. 食品科技, 2017, 42(1): 55-59. doi: 10.13684/j.cnki.spkj.2017.01.014.
PING H, MA Z H, LI Y, LI B R. Regularity of-solanine content changes in germinated potato on different days and depths. Food Science and Technology, 2017, 42(1): 55-59. doi: 10.13684/j.cnki.spkj. 2017.01.014. (in Chinese)
[2] GOUSETI O, BRIDDON A, SAUNDERS S, STROUD G, FRYER P J, CUNNINGTON A, BAKALIS S. CIPC vapour for efficient sprout control at low application levels. Postharvest Biology and Technology, 2015, 110: 239-246. doi: 10.1016/j.postharvbio.2015.07.024.
[3] SMITH M J, BUCHER G. Tools to study the degradation and loss of the N-phenyl carbamte chlorpropham-A comprehensive review. Environment Interational, 2012, 49: 38-50.
[4] 王迪軒, 吳艷梅. 植物生長調(diào)節(jié)物質(zhì)在馬鈴薯生產(chǎn)上的應(yīng)用. 西北園藝(蔬菜???, 2008(1): 39.
WANG D X, WU Y M. Application of plant growth regulators in potato production. Northwest Horticulture, 2008(1): 39. (in Chinese)
[5] DANIELS LAKE B J, LIEW C L, WALSH J R, DEAN P, COFFIN R, PRANGE R K, PAGE R T, KALT W. Using ethylene as a sprout control agent in stored ‘Russet Burbank’ potatoes. Journal of the American Society for Horticultural Science, 1998, 123(3): 463-469. doi: 10.21273/JASHS.123.3.463.
[6] DANIELS-LAKE B J, PRANGE R K, NOWAK J, ASIEDU S K, WALSH J R. Sprout development and processing quality changes in potato tubers stored under ethylene: 1. Effects of ethylene concentration. American Journal of Potato Research, 2005, 82(5): 389-397. doi: 10.1007/BF02871969.
[7] COSTA E SILVA M, GALHANO C I C, MOREIRA DA SILVA A M G. A new sprout inhibitor of potato tuber based on carvone/β- cyclodextrin inclusion compound. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57(1/2/3/4): 121-124. doi: 10.1007/s10847-006-9210-2.
[8] OWOLABI M S, OLOWU R A, LAJIDE L, OLADIMEJI M O, PADILLA-CAMBEROS E, FLORES-FERNáNDEZ J M. Inhibition of potato tuber sprouting during storage by the controlled release of essential oil using a wick application method. Industrial Crops & Products, 2013, 45: 83-87. doi: 10.1016/j.indcrop.2012.11.043.
[9] 葛霞, 田世龍, 田甲春, 李梅, 李守強, 程建新. 香芹酮處理對馬鈴薯微型薯發(fā)芽調(diào)控及田間種植的影響. 中國馬鈴薯, 2019, 33(3): 175-183. doi:10.3969/j.issn.1672-3635.2019.03.009.
GE X, TIAN S L, TIAN J C, LI M, LI S Q, CHENG J X. Effects of carvone on minituber sprout regulation and field planting. Chinese Potato Journal, 2019, 33(3): 175-183. doi: 10.3969/j.issn.1672-3635. 2019.03.009. (in Chinese)
[10] MAHTO R, DAS M. Effect of γ irradiation on the physico-mechanical and chemical properties of potato (L.), cv. ‘Kufri Chandramukhi’ and ‘Kufri Jyoti’, during storage at 12℃. Radiation Physics and Chemistry, 2015, 107(2): 12-18.
[11] GHOSH S, DAS M K. Optimization of the effect of gamma radiation on textural properties of different varieties of potato (Kufri Chandramukhi and Kufri Jyoti) and mango (Langra and Fazli) during storage by response surface methodology. Innovative Food Science and Emerging Technologies, 2014, 26: 257-264. doi: 10.1016/j.ifset. 2014.04.002.
[12] 史萌, 許立興, 林瓊, 閻瑞香, 劉斌, 關(guān)文強. UV-C處理抑制馬鈴薯貯藏期發(fā)芽及相關(guān)機理研究. 食品工業(yè)科技, 2019, 40(13): 242-247, 252. doi:10.13386/j.issn1002-0306.2019.13.040.
SHI M, XU L X, LIN Q, YAN R X, LIU B, GUAN W Q. Study on UV-C treatment inhibits germination and related mechanism of potato during storage. Science and Technology of Food Industry, 2019, 40(13): 242-247, 252. doi: 10.13386/j.issn1002-0306.2019.13.040. (in Chinese)
[13] PAUL V, EZEKIEL R, PANDEY R. Sprout suppression on potato: Need to look beyond CIPC for more effective and safer alternatives. Journal of Food Science and Technology, 2016, 53(1): 1-18. doi: 10.1007/s13197-015-1980-3.
[14] FAN X T, SOKORAI K, WEIDAUER A, GOTZMANN G, ROGNER F H, KOCH E. Comparison of gamma and electron beam irradiation in reducing populations of E-coil artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiation Physics and Chemistry, 2017, 130: 306-315.
[15] TODORIKI S, HAYASHI T. Sprout inhibition of potatoes with soft-electron (low-energy electrons beams). Journal of the Science of Food and Agriculture, 2004, 84(15): 2010-2014.
[16] BLESSINGTON T, SCHEURING D C, NZARAMBA M N, HALE A L, REDDIVARI L, VESTAL T A, MAXIM J E, MILLER J C. The use of low-dose electron-beam irradiation and storage conditions for sprout control and their effects on xanthophylls, antioxidant capacity, and phenolics in the potato cultivar Atlantic. American Journal of Potato Research, 2015, 92(5): 609-618. doi: 10.1007/s12230-015- 9474-4.
[17] Etemadinasab H, Zahedi M, Ramin A A, Kadivar M, Shirmardi S P. Effects of electron beam irradiation on physicochemical, nutritional properties and storage life of five potato cultivars. Radiation Physics and Chemistry, 2020, 177: 109093.
[18] 馬艷萍, 王國梁, 劉興華, 張繼增.60Coγ射線輻照對鮮食核桃貯藏期間胚細(xì)胞超微結(jié)構(gòu)的影響. 西北植物學(xué)報, 2010, 30(7): 1382-1387.
MA Y P, WANG G L, LIU X H, ZHANG J Z. Influence of60Co γ-irradiation on ultrastructure of embryonic cell of fresh walnut during storage. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(7): 1382-1387. (in Chinese)
[19] 傅俊杰, 沈偉橋, 包勁松, 徐穎, 張世民. 輻照對板栗胚芽細(xì)胞結(jié)構(gòu)的影響. 核農(nóng)學(xué)報, 2002, 16(2): 85-88. doi: 10.3969/j.issn.1000- 8551.2002.02.005.
FU J J, SHEN W Q, BAO J S, XU Y, ZHANG S M. Effects of γ-irradiation on the embryonic bud structure of chestnut. Acta Agriculturae Nucleatae Sinica, 2002, 16(2): 85-88. doi: 10.3969/j. issn.1000-8551.2002.02.005. (in Chinese)
[20] 曹建康, 姜微波, 趙玉梅. 果蔬采后生理生化實驗指導(dǎo). 北京: 中國輕工業(yè)出版社, 2007: 101-105.
CAO J K, JIANG W B, ZHAO Y M. Guidance of Post-Harvest Physiological and Biochemical Experiments of Fruits and Vegetables. Beijing: China Light Industry Press, 2007: 101-105. (in Chinese)
[21] 張萬明, 王志明, 陳開陸, 蔡光澤, 黃鄭, 黃娟. 蒽酮比色法測定馬鈴薯淀粉深加工工藝廢液總糖含量的研究. 光譜實驗室, 2010, 27(2): 435-440. doi: 10.3969/j.issn.1004-8138.2010.02.008.
ZHANG W M, WANG Z M, CHEN K L, CAI G Z, HUANG Z, HUANG J. Determination of total sugar in potato starch deep- processing waste liquid using anthrone colorimetry. Chinese Journal of Spectroscopy Laboratory, 2010, 27(2): 435-440. doi:10.3969/ j.issn.1004-8138.2010.02.008. (in Chinese)
[22] FRAZIER M J, KLEINKOPF G E, BREY R R, OLSEN N L. Potato sprout inhibition and tuber quality after treatment with high-energy ionizing radiation. American Journal of Potato Research, 2006, 83(1): 31-39. doi: 10.1007/BF02869607.
[23] MATHO R, DAS M. Effect of gamma irradiation on the physico- mechanical and chemical properties of potato (L.), cv.‘Kufri Sindhuri’, in non-refrigerated storage conditions. Postharvest Biology Technology, 2014, 92: 37-45.
[24] SOARES I G M, SILVA E B, AMARAL A J, MACHADO E C L, SILVA J M. Physico-chemical and sensory evaluation of potato (L.) after irradiation. Anais Da Academia Brasileira De Ciencias, 2016, 88(2): 941-950. doi: 10.1590/0001- 3765201620140617.
[25] 董婷, 高鵬, 蔣毅, 李華, 王丹, 陳浩. 電子束輻照對芒果品質(zhì)的影響. 食品工業(yè)科技, 2021, 42(2): 279-283, 289. doi: 10.13386/j. issn1002-0306.2020030073.
DONG T, GAO P, JIANG Y, LI H, WANG D, CHEN H. Effect of electron beam irradiation on mango quality. Science and Technology of Food Industry, 2021, 42(2): 279-283, 289. doi: 10.13386/j. issn1002-0306.2020030073. (in Chinese)
[26] 王琛, 高雅, 陶燁, 崔智博, 吳興壯.60Co-γ輻照對冷藏藍(lán)莓果實軟化相關(guān)指標(biāo)的影響. 食品安全質(zhì)量檢測學(xué)報, 2020, 11(22): 8540-8546. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.069.
WANG C, GAO Y, TAO Y, CUI Z B, WU X Z. Effect of60Co-γ irradiation on softening indices of blueberry fruit during cold storage. Journal of Food Safety & Quality, 2020, 11(22): 8540-8546. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.069. (in Chinese)
[27] 李陽, 沙飛, 高月霞, 李佳佳, 彭雪, 任亞梅. 高能電子束輻照對金絲絞瓜的保鮮效果. 現(xiàn)代食品科技, 2021, 37(2): 171-182. doi: 10.13982/j.mfst.1673-9078.2021.2.0694.
LI Y, SHA F, GAO Y X, LI J J, PENG X, REN Y M. Effects of high energy electron beam irradiation on the preservation of spaghetti squash. Modern Food Science and Technology, 2021, 37(2): 171-182. doi: 10.13982/j.mfst.1673-9078.2021.2.0694. (in Chinese)
[28] 王汝順, 周盼, 肖成, 夏發(fā)明, 王曉廣. 電子束輻射劑量大小對淀粉結(jié)構(gòu)的影響. 膠體與聚合物, 2018, 36(3): 117-119. doi: 10.13909/j.cnki.1009-1815.2018.03.007.
WANG R S, ZHOU P, XIAO C, XIA F M, WANG X G. Effect of electron beam radiation dose on the structure of starch. Chinese Journal of Colloid & Polymer, 2018, 36(3): 117-119. doi: 10.13909/j. cnki.1009-1815.2018.03.007. (in Chinese)
[29] 江枝和, 翁伯琦, 王義祥, 林勇, 黃挺俊, 肖淑霞.60Co γ射線輻照對姬松茸菌絲體細(xì)胞超微結(jié)構(gòu)的影響. 電子顯微學(xué)報, 2006, 25(5): 435-439. doi: 10.3969/j.issn.1000-6281.2006.05.017.
JIANG Z H, WENG B Q, WANG Y X, LIN Y, HUANG T J, XIAO S X. Effect of irradiation with60Co γ radiation on mycelial ultrastructure ofmurill. Journal of Chinese Electron Microscopy Society, 2006, 25(5): 435-439. doi: 10.3969/j.issn.1000-6281.2006. 05.017. (in Chinese)
[30] 王海波, 王孝娣, 史祥賓, 王寶亮, 鄭曉翠, 王志強, 劉鳳之. 破眠劑1號對葡萄冬芽休眠解除及萌芽過程中呼吸代謝的影響. 中國果樹, 2016(4): 5-10. doi: 10.16626/j.cnki.issn1000-8047.2016.04.002.
WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, WANG Z Q, LIU F Z. Effect of sleep breaker No. 1 on respiratory metabolism during grape winter bud dormancy release and germination. China Fruits, 2016(4): 5-10. doi: 10.16626/j.cnki.issn1000-8047. 2016.04.002. (in Chinese)
Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure
1College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi;2Chengdu College of Arts and Sciences, Chengdu 610401
【】The aim of this study was to clarify the effects of high energy electron beam (e-beam) irradiation on potato sprouting and storage quality, and to explore the mechanism of inhibiting sprout. 【】By using potato tubers Zihuabai as the raw material and the non-irradiation tubers as the control, the tubers were irradiated with e-beam at 0.3, 0.4 and 0.5 kGy, then, which were packed in 0.03 mm kraft paper bags and stored at (8±1)℃ with a relative humidity of 70%-75%. During storage, the sprouting of tubers was observed and recorded every week, and the respiratory, weight loss rate, decay rate, firmness and changes in the content of nutrients (such as starch, Vc, and reducing sugar) of the tubers were determined every 25 days after storage. Besides, the changes of tuber bud morphology and cell ultrastructure at the bud eye were observed with the stereo microscope and transmission electron microscope, respectively. 【】All tubers did not sprouting for 200 days by irradiating with e-beam at 0.3, 0.4 and 0.5 kGy at (8±1)℃, and the dormancy period was significantly prolonged. The reductions of soluble solid, Vc and starch in tubers irradiated with e-beam were lower than that in non-irradiated tubers after 150 days storage, and had no significant effect on the soluble protein content with e-beam irradiation. The accumulation of reducing sugars in the irradiated tubers slightly higher than that in control, and the flavor, taste and color of the tubers after 200 days storage were good. The respiration intensity was inhibited by e-beam irradiated, which was beneficial to slow down its senescence process. However, unfortunately, e-beam accelerated the weight loss and firmness decrease of tuber, and aggravated positively with the increase of irradiation dose. Electron microscopy results showed that the ultrastructure of the cell at the eye of the tuber bud was damaged by e-beam irradiation, and the cell wall was distorted and plasmolysis; the shape of the nucleus changes irregularly, and the nuclear content was degraded; the endoplasmic reticulum completely degraded with the prolong of storage time, and the number of starch granules was obviously reduced and shrunk, but the integrity and stability of the mitochondrial structure were maintained. At the same time, the irradiation caused the tuber shoots to die directly, and the buds gradually wither with the storage time extension. 【】 e-beam irradiation could completely inhibit potato tubers sprouting at (8±1)℃ for 7 months, however, it had no adverse effect on the nutritional quality of tubers, which was beneficial to maintain their good sensory and nutritional quality. It was speculated that the suppression of buds by e-beam irradiation related to the respiratory was inhibited, and the physiological activity level was weaken. At the same time, the irradiation damaged the cell structure of the bud eye, and directly caused the buds to die and dry.
potato; high-energy electron beam; storage quality; cell ultrastructure
10.3864/j.issn.0578-1752.2022.07.013
2021-07-01;
2021-09-09
陜西省科技廳農(nóng)業(yè)攻關(guān)項目(K3300219042)
彭雪,E-mail:1601961692@qq.com。通信作者任亞梅,E-mail:715189648@qq.com
(責(zé)任編輯 趙伶俐)