徐桂發(fā), 劉平偉, 李伯耿, 王文俊
梳型聚合物流變研究進展
徐桂發(fā)1,2, 劉平偉1,2, 李伯耿1, 王文俊1,2
(1. 化學工程聯(lián)合國家重點實驗室(浙江大學), 浙江大學 化學工程與生物工程學院浙江 杭州 310027;2. 浙江大學衢州研究院, 浙江 衢州 324000)
梳型聚合物;流變;鏈結(jié)構(gòu);零切黏度;平臺模量;傅里葉變換流變
梳型聚合物是一類由線性側(cè)鏈接枝到線性主鏈上形成的支化聚合物[1-3],在介電彈性體、藥物載體、彈性體增韌材料、潤滑劑、刺激響應材料、聚合物紡絲和發(fā)泡材料等領域有著廣泛的應用[4-6],受到了學術(shù)界和工業(yè)界的廣泛關(guān)注[7]。與線性聚合物相比,梳型聚合物因獨特的鏈結(jié)構(gòu)產(chǎn)生的特殊纏結(jié)行為,具有更優(yōu)異的力學性能,如更低的平臺模量[8-9]、更高的斷裂伸長率和拉伸強度[5]等;其熔體也具有特殊的流動和形變特征,如更顯著的剪切稀化現(xiàn)象和更高的應變硬化指數(shù)[10-12]等,使其具備更優(yōu)異的加工和發(fā)泡性能。因此,探明梳型聚合物流變性能與其鏈結(jié)構(gòu)之間的構(gòu)效關(guān)系,對其設計、加工和應用具有重要的指導意義。
隨著“活性”/可控自由基聚合(CRP)[13-24]、活性配位聚合[2, 25]、開環(huán)易位聚合(ROMP)[19, 26-30]等可控聚合技術(shù)的發(fā)展,可實現(xiàn)不同鏈結(jié)構(gòu)參數(shù)(如主、側(cè)鏈長度、支鏈數(shù)等)的梳型聚合物的制備[4, 7, 31-33],例如,作者所在課題組合成的梳型丙烯酸酯壓敏膠[34-35]、梳型聚烯烴熱塑性彈性體 (CPOE)[25]、超支化聚乙烯[36-37]等。以這些聚合物為模型體系,為系統(tǒng)地揭示梳型聚合物流變性能與其鏈結(jié)構(gòu)之間的構(gòu)效關(guān)系提供了基礎[38]。
綜述通過梳型聚合物的流變特性,揭示主、側(cè)鏈長度和支鏈數(shù)等鏈結(jié)構(gòu)參數(shù)對其熔體的零切黏度、動態(tài)模量主曲線和平臺模量等流變性能的影響,同時介紹一種用于梳型聚合物鏈拓撲結(jié)構(gòu)的表征方法——傅里葉變換流變分析方法,以期為梳型聚合物鏈結(jié)構(gòu)的流變分析和表征提供理論支持,并為其設計、加工和實際應用提供指導。
梳型聚合物的黏彈性主要依賴其高分子量鏈之間的纏結(jié)作用,受到主、側(cè)鏈長度的影響[38]。可通過以下3個獨立參數(shù)來量化其分子鏈結(jié)構(gòu):主鏈分子量bb、側(cè)鏈分子量sc和支鏈數(shù),它們的定義以及與其他參數(shù)間的關(guān)系分別參見圖1和表1。圖1中的0為一個聚合單元的摩爾質(zhì)量,g×mol-1;g為相鄰支化點之間所有聚合單元的摩爾質(zhì)量,g×mol-1;bb、sc、g分別為主鏈、側(cè)鏈、支化點間的聚合度。表1中的e為鏈纏結(jié)摩爾質(zhì)量,g×mol-1,是聚合物產(chǎn)生鏈纏結(jié)所需的最低摩爾質(zhì)量;bb、sc、g分別為主鏈、側(cè)鏈、支化點間的鏈纏結(jié)數(shù)目;bb為主鏈體積分數(shù);sc為側(cè)鏈體積分數(shù)。
圖1 梳型聚合物鏈結(jié)構(gòu)示意圖
表1 梳型高分子鏈結(jié)構(gòu)定義[38]
不同聚合物的e不同,聚乙烯的e約為1 250 g×mol-1 [39]。e的計算式如下:
根據(jù)粗粒度分子模擬結(jié)果[3, 42-47],梳型聚合物可分為梳狀(comb)和瓶刷(bottlebrush) 2類構(gòu)象。根據(jù)縮比模型(scaling model),如圖2(a)所示,Liang等[14, 42, 46-47]將聚合物鏈等效為無數(shù)個半徑為sc的小球(blobs),建立了如下?lián)頂D因子的表達式:
圖2 描述梳型聚合物的模型及其分子鏈構(gòu)象[3, 46]
式中:m為整條聚合物鏈所有聚合單元的體積之和,nm3;為整條聚合物鏈的排除體積,nm3。可用來描述相鄰分子間的重疊程度,1為梳狀構(gòu)象,>1為瓶刷構(gòu)象。在瓶刷構(gòu)象中,根據(jù)側(cè)鏈的長短又可將構(gòu)象細分為3個亞類[42]:伸展型主鏈(SBB)、伸展型側(cè)鏈(SSC)和棒狀型側(cè)鏈(RSC)。前兩類擁有較長的柔性側(cè)鏈,最后一類擁有短的棒狀側(cè)鏈。
為進一步量化梳型聚合物的鏈構(gòu)象,借助粗粒度分子動力學模擬,并結(jié)合g、Abbasi等[12]、Paturej等[43]、Daniel等[44]將梳型聚合物的鏈構(gòu)象分為4個區(qū)域,如圖2(c)所示,圖中,g*表示梳型聚合物從DC構(gòu)象變?yōu)長B構(gòu)象時,相鄰側(cè)鏈之間的聚合度;g**表示梳型聚合物從LB構(gòu)象變?yōu)镈B構(gòu)象時,相鄰側(cè)鏈之間的聚合度。當g
在梳型聚合物構(gòu)象理論研究基礎上,人們也開展了大量流變實驗,以便研究和掌握其構(gòu)象變化與流變性能之間的相互關(guān)系[12, 38]。綜述將重點介紹利用零切黏度、動態(tài)模量主曲線、平臺模量和損耗角對復數(shù)模量圖(vGP圖)來定性或定量分析梳型聚合物鏈結(jié)構(gòu),論述bb、sc和的變化對其流變性能的影響,還將介紹一種流變分析方法——傅里葉變換流變分析方法。
高分子聚合物熔體的零切黏度0可用來定量描述聚合物鏈結(jié)構(gòu)特征[49-51]。當線性高分子重均分子量w大于臨界纏結(jié)摩爾質(zhì)量c(c約是e的2~3倍)時[39-41, 52-54],存在以下關(guān)系式:
但梳型聚合物熔體的0不再符合式(4)的關(guān)系,它受到bb、sc和等因素的影響。根據(jù)管模型理論[55]和蠕動模型 (reptation model)[56],可量化梳型高分子的黏彈性[51, 57]。對于具有纏結(jié)側(cè)鏈的高分子,側(cè)鏈延緩了支化點間主鏈鏈段的旋轉(zhuǎn),從而增加了與主鏈之間的摩擦,其末端具有更高的移動性,比其他部分鏈段松弛更快;進一步增加支鏈數(shù),會稀釋主鏈的爬行管徑,使主鏈更加伸展。因此,與線性聚合物相比,梳型聚合物的弛豫過程更復雜。
Inkson等[57]給出了具有纏結(jié)側(cè)鏈和纏結(jié)主鏈的梳型聚乙烯(PE-g-PE)的0計算式:
式中:te為鏈纏結(jié)達到一個Me所需要的松弛時間,s;fbb11,6 ≤ q≤ Zbb,2 ≤ Zsc≤ 10,10 ≤ Zbb ≤ 100,Zg≥1。式(5)的右邊可分為3部分:(1)線性鏈的零切黏度項(),近似等于與主鏈等長的線性鏈的零切黏度。隨Mbb增加,鏈纏結(jié)增加,η0呈指數(shù)增加;(2)稀釋項(),隨q增大,即接枝密度提高,主鏈支化點間距變小,fbb減小,η0不斷降低,甚至降到線性鏈的零切黏度以下。這是由于側(cè)鏈對主鏈的強稀釋效應所致;(3)摩擦項(),與側(cè)鏈和主鏈間的摩擦相關(guān)。提高Msc,可增加鏈摩擦和鏈纏結(jié),使η0呈指數(shù)增加。摩擦項中還含有一稀釋項(1+2fbb),該項與側(cè)鏈的動態(tài)自稀釋效應有關(guān)[38]??偟膩碚f,線性鏈上方區(qū)域側(cè)鏈對主鏈的摩擦強于其稀釋作用,而線性鏈下方區(qū)域則正相反。在摩擦項與稀釋項的共同作用下,PE-g-PE的η0對Mw的標度關(guān)系分布在線性聚乙烯η0的上下兩側(cè)(見圖3(a)) [38,57]。
上述研究表明,鏈纏結(jié)、鏈摩擦與主、側(cè)鏈分子量(即主、側(cè)鏈長度)密切相關(guān),而接枝密度不僅影響側(cè)鏈的稀釋效應,還會影響主鏈的構(gòu)象[2, 12, 49, 58-64]。
主鏈長短影響鏈纏結(jié),長主鏈可產(chǎn)生鏈纏結(jié),而短主鏈則不會。López-Barrón等[60, 65]合成側(cè)鏈長度為4~16個碳的聚-烯烴瓶刷分子,每兩個碳之間有一條短側(cè)鏈,側(cè)鏈遠未達到纏結(jié)程度;當主鏈足夠長時(bb=1 650~6 290 kg×mol-1、bb=53~451),聚合物熔體呈現(xiàn)出與線性鏈一樣的纏結(jié)現(xiàn)象[65],聚烯烴瓶刷鏈可視為半徑增厚的高斯鏈;當主鏈很短時(bb=33~50 kg×mol-1、bb=0.30~1.45),則不發(fā)生鏈纏結(jié)[60],聚合物熔體的流變行為可與Rouse模型吻合良好[66]。
側(cè)鏈長短影響鏈摩擦和鏈纏結(jié)。Dalsin等[58]合成了帶有降冰片烯(NB)官能團的無規(guī)聚丙烯大單體(aPP)和乙烯/丙烯大單體(PEP),通過ROMP方法分別合成PNB-g-aPP (bb=11~732、sc=2.05 kg×mol-1、sc≈0.5)和PNB-g-PEP (bb=13~627、sc= 6.7 kg×mol-1、sc≈3.5),每5個碳有一條側(cè)鏈。研究發(fā)現(xiàn),長側(cè)鏈的PNB-g-PEP熔體擁有更高的0:在主鏈長度相同的情況下,長側(cè)鏈的0比短側(cè)鏈的高了近十倍,這表明側(cè)鏈鏈纏結(jié)的存在極大地增加了鏈摩擦。ZHANG等[25, 67]合成了主鏈為乙烯/1-辛烯的無規(guī)共聚物(POE)、側(cè)鏈為PE的CPOE (bb=80~100 kg×mol-1、sc=5~25.8 kg×mol-1、=0~5),簡稱POE-g-PE,發(fā)現(xiàn)最長側(cè)鏈的0比最短側(cè)鏈的高6倍,力學性能與陶氏EngageTM8150相當。
對于接枝密度更高的DB構(gòu)象,0與w之間的關(guān)系類似不纏結(jié)的線性Rouse鏈。隨著主鏈聚合度的增加,整個瓶刷分子從球形或紡錘形構(gòu)象,逐漸轉(zhuǎn)變成棒狀或圓柱狀構(gòu)象[63-64],直至變?yōu)榘肴嵝愿咚规淸62]。由于DB構(gòu)象中主鏈和側(cè)鏈均完全伸展,所以,無論主鏈和側(cè)鏈長與短,其0與w之間均呈現(xiàn)正比例關(guān)系[58, 62-64, 69]。
Dalsin等[58, 62-63, 70]通過ROMP方法,以降冰片烯二甲酯(DME)為稀釋劑,合成了主鏈為NB、側(cè)鏈為聚乳酸(PLA)的梳型聚合物 (PNB-g-PLA,bb=40~1 800、sc3.5kg×mol-1、sc≈0.4、g=2.7~53.6),研究了PNB-g-PLA的約化零切黏度(0/T)對w的標度關(guān)系(T為平移因子),發(fā)現(xiàn)其0/T存在2個標度區(qū)域,如圖4(a)所示,冪指數(shù)分別為1和3,這2個區(qū)域中鏈松弛分別與Rouse松弛和爬行松弛有關(guān)。如圖4(b)所示,圖中g(shù)為玻璃化轉(zhuǎn)變溫度,將w無量綱為w/e,并以此為軸。由圖可見,當w/e=1時,Rouse松弛和爬行松弛存在一個轉(zhuǎn)折點,這說明梳型聚合物本質(zhì)上與線性聚合物類似。當聚合物由梳狀構(gòu)象轉(zhuǎn)變?yōu)槠克?gòu)象時,其0/T對w的冪指數(shù)從3變?yōu)?,松弛機制也由爬行松弛變?yōu)镽ouse松弛[38, 68]。
圖4 PNB-g-PLA的約化零切黏度與重均分子量關(guān)系圖[38, 62]
利用動態(tài)模量主曲線可研究聚合物熔體的完整松弛過程,通過如下WLF方程[71],平移得到動態(tài)模量主曲線:
式中:ref為參比溫度,K;1、2為常數(shù)。
具有簡單熱流變行為的聚合物熔體滿足時溫等效原理(TTS),即低溫下長時間的松弛過程,等同于高溫下短時間發(fā)生的松弛;而具有復雜熱流變行為的聚合物,因其多存在微相分離,很難通過平移得到動態(tài)模量主曲線。為避免梳型聚合物出現(xiàn)微相分離,通常使其主鏈體積分數(shù)小于1%[27, 58, 62, 69, 72],或者使主鏈與側(cè)鏈的化學性質(zhì)相近[12, 14, 60, 64]。
Xu等[27]合成了NB修飾的聚甲基丙烯酸三氟乙酯大單體(PTFEMA),通過ROMP方法合成了主鏈為NB、側(cè)鏈為PTFEMA的梳型聚合物 (PNB-g-PTFEMA,bb=21~200,sc=13.8 kg×mol-1),每5個碳有一條側(cè)鏈。發(fā)現(xiàn)其熔體具有簡單熱流變行為,如圖5(a)所示,在動態(tài)模量主曲線中按鏈段(segment)、側(cè)鏈(side chain)和主鏈(backbone chain)分層級松弛(hierarchy relaxtion)[27, 60, 73]。圖中,為頻率,r×s-1;T為校正頻率,r×s-1;¢為儲能模量,Pa;2為損耗模量, Pa。動態(tài)模量主曲線可分為3個部分:高頻鏈段松弛區(qū)域,反映玻璃態(tài)模量大小,松弛機制只與單體種類有關(guān),與鏈拓撲結(jié)構(gòu)無關(guān)[58];中頻側(cè)鏈松弛區(qū)域,長側(cè)鏈在此區(qū)域有明顯的側(cè)鏈模量平臺(見圖5(b)),而短側(cè)鏈沒有(見圖5(c));低頻主鏈松弛區(qū)域,隨著主鏈鏈長增加,該區(qū)域會出現(xiàn)主鏈模量平臺,曲線末端會向低頻移動,松弛所需時間延長。
圖5 梳型聚合物動態(tài)模量主曲線[27, 58]
在側(cè)鏈和主鏈松弛區(qū)域之間,還存在一個過渡區(qū)域[64],該區(qū)域受接枝密度的影響[62],可反映主鏈構(gòu)象的變化。Dobrynin研究團隊[14]通過原子轉(zhuǎn)移自由基聚合(ATRP)合成主、側(cè)鏈均為聚丙烯酸正丁酯(PBA)的梳型聚丙烯酸正丁酯(PBA-g-PBA,bb= 2 000~3 000、sc= 13~15、g= 68~6),實驗發(fā)現(xiàn)隨著g減小,聚合物構(gòu)象從梳狀變?yōu)槠克?,其黏彈性逐漸向黏性轉(zhuǎn)變。在g= 6時(見圖6),整個頻率范圍內(nèi)2恒大于¢。在過渡區(qū)域出現(xiàn)¢≈2現(xiàn)象,這種現(xiàn)象與側(cè)鏈對主鏈的屏蔽效應有關(guān)[58]。對于高接枝密度的DB聚合物,在過渡區(qū)域,¢與2互相平行,接近相等,且是頻率的冪函數(shù),冪指數(shù)約為0.6[12, 14, 27, 58, 60, 62, 64, 69, 74-76]:
圖6 不同ng的PBA-g-PBA的動態(tài)模量與校正頻率之間的關(guān)系[14]
(bb=2 000~3 000,sc=13~15,g= 6 ~68,ref= 343 K)
Wang等[34-35]通過開環(huán)反應合成了丙交酯(LLA)與己內(nèi)酯(CL)的無規(guī)聚酯大單體(PLC),并將PLC、丙烯酸(AA)與丙烯酸異辛酯(EHA)共聚,制得梳型丙烯酸酯共聚物(PAE-g-PLC,bb=92~205 kg×mol-1、sc=2.04~7.68 kg×mol-1、=8~29)。研究發(fā)現(xiàn),在過渡區(qū)域,¢與2互相平行,且是的冪函數(shù),冪指數(shù)約為0.5,呈現(xiàn)Rouse松弛的流變特征。
上述關(guān)系也可用如下線性聚合物的Rouse模型[66]和Zimm模型[77]來解釋:
Rouse:
Zimm:
這2種模型最初都是用于聚合物稀溶液體系,Zimm模型比Rouse模型預測的松弛過程更快,可更好地描述實際聚合物溶液。Zimm模型通過合并水力學相互作用來校正Rouse模型的標度關(guān)系,由于流體線團中鏈段的運動受周圍流場干擾,聚合物內(nèi)部鏈段被排除體積中的溶劑包裹形成球形結(jié)構(gòu),使溶劑不能穿過排除體積,因此聚合物鏈段對整個流場的黏性阻力沒有貢獻[77];而Rouse模型則忽略了流體水力學的相互作用,采用了平均場的方法,即所有聚合物鏈段對總黏度的貢獻相等[66]。因此,Rouse模型能更好地描述不纏結(jié)線性鏈熔體的流變行為。對于高接枝密度的瓶刷聚合物熔體,由于微觀尺度上梳型高分子側(cè)鏈的密集堆疊,內(nèi)部鏈段不接觸周圍分子,側(cè)鏈相當于溶劑,起到了屏蔽主鏈的作用,但由于側(cè)鏈并不是真正的溶劑,因此,瓶刷分子可被當作粗的高斯柔性鏈,其松弛行為有望被Rouse模型進行描述[58]。
圖7 梳型聚合物鏈構(gòu)象和平臺模量的理論計算[38]
為驗證計算結(jié)果的準確性,Lewis等[80]分析獲得了2個基于聚-烯烴平臺模量的經(jīng)驗方程:
需要指出的是,圖7中SBB、SSC和RSC這3種類型的瓶刷聚合物的標度分析僅針對未達到纏結(jié)摩爾質(zhì)量e的短側(cè)鏈,對于達到e的長側(cè)鏈瓶刷聚合物,是否能滿足圖7中的理論模擬還需進一步研究[58]。
vGP圖用于表征聚合物的多分散性[81-82]和分子量[83],之后拓展到表征聚合物鏈拓撲結(jié)構(gòu)[2, 84-85],用于定性分析聚乙烯/烯烴共聚物中共單體[86]和長側(cè)鏈含量[82]的影響。具有熱流變簡單行為的聚合物熔體在不同溫度下的vGP曲線能直接疊加在一起,無需平移處理;而存在相分離的具有熱流變復雜行為的聚合物,不經(jīng)過曲線平移無法疊加在一起,所以vGP圖可用于驗證時溫等效原理的有效性,以判斷聚合物是否發(fā)生了相分離[58]。
傅里葉變換流變通過對剪切震蕩應力正弦波的傅里葉變換[93],可用于中等剪切震蕩(MAOS)和大振幅剪切震蕩(LAOS)條件下的聚合物黏彈性研究,而小振幅下的聚合物剪切震蕩(SAOS)位于線型區(qū)。在固定頻率下,通過流變儀的轉(zhuǎn)子在聚合物膜片上施加固定振幅的應變,再由傳感器檢測轉(zhuǎn)子所受應力大小,得到應力正弦波,見圖9(a)。隨著振幅增大,聚合物熔體從線型區(qū)過渡到非線性區(qū),檢測到的應力不再是標準的正弦波,而不同拓撲結(jié)構(gòu)聚合物對應著不同的波形[94]。通過傅里葉變換,可將應力變化曲線轉(zhuǎn)換為如式(13)所示的一系列疊加的三角函數(shù),從而得到其在非線性區(qū)的擬合函數(shù)[93-95]。
圖8 不同接枝密度的PS-g-PS的vGP圖[12]
(bb=290 kg×mol-1,bb=20,w=4.4 kg×mol-1,sc=3,0 <≤190,ref= 453 K)
式中:()為轉(zhuǎn)子所施加的剪切應力,Pa;I為階諧波強度,Pa;為時間,s;為傅里葉變換階數(shù);為相位角。
經(jīng)傅里葉變換可得到奇數(shù)諧波強度(見圖9(a))和第三階諧波相對強度3/1,表達式如下:
Hyun等[104]定義了非線性系數(shù)(,0)如下:
由圖9(c)可見,(,0)在MAOS區(qū)域內(nèi)為常數(shù),而在LAOS區(qū)域內(nèi),(,0)隨0增大而減小。類比于零切黏度的定義,在MAOS區(qū)域內(nèi)可將(,0)向0減小方向外推得到本征非線性系數(shù)0():
類比動態(tài)模量主曲線,通過采集不同下的0(),可構(gòu)建得到0()主曲線(見圖9(d))。
0()主曲線能描述梳型聚合物的分層級松弛現(xiàn)象。0()值依賴于分子量、分子量分布和聚合物拓撲結(jié)構(gòu)[96]。線性鏈的0()主曲線從低頻到高頻先升高后降低,存在一個最大值,其低頻末端的0()與理論上存在如式(17)所示的二次冪的標度關(guān)系[104],實驗結(jié)果也證明了這種關(guān)系的存在(見圖10)[95]。
對于梳型聚合物,其Q0(ω)主曲線出現(xiàn)兩個峰,兩峰之間存在一最小值,對應鏈的松弛變化。Kempf等[88]研究發(fā)現(xiàn)高頻峰、中頻谷、低頻峰分別對應側(cè)鏈松弛、主鏈Rouse松弛和主鏈末端松弛,頻率的倒數(shù)分別對應側(cè)鏈松弛時間、主鏈Rouse松弛時間和爬行松弛時間。Song等[95]研究了不同接枝密度的單分散PS-g-PS (Zbb=20、Zsc=3、q=0~190)的Q0(ω)主曲線(圖10),隨著分子量增加,峰向低頻方向移動,主鏈松弛時間延長,LC、DC等PS-g-PS呈現(xiàn)兩個峰一個谷,高頻峰位置都疊加在一起,代表了側(cè)鏈的松弛;中間谷位置是主鏈和側(cè)鏈的過渡區(qū)域,標志著主鏈構(gòu)象發(fā)生了變化;LC和DC的梳型聚苯乙烯的低頻峰向低頻方向移動,且Q0(ω)變小,表示主鏈的松弛;當構(gòu)象為LB時(見圖中PS290-120-44),只有一個高頻峰存在,低頻處的Q0(ω)為ω的單調(diào)函數(shù),呈現(xiàn)線性鏈的特征,此時主鏈伸展,梳型聚苯乙烯可被看作半徑增厚的柔性線性鏈。
目前僅有傅里葉變換流變對梳型聚合物接枝密度的報道,暫時沒有傅里葉變換流變對梳型聚合物主、側(cè)鏈長度的研究報道,相關(guān)的規(guī)律還需進行深入的理論和實驗研究。
本文綜述了梳型聚合物主、側(cè)鏈長度和支鏈數(shù)對其構(gòu)象及流變性能的影響?;诠苣P屠碚摵痛至6确肿觿恿W模擬可區(qū)分梳型高分子的四種構(gòu)象,利用模型分析可獲得其平臺模量與主鏈體積分數(shù)之間的規(guī)律,借助零切黏度、動態(tài)模量主曲線、vGP圖和傅里葉變換流變等,可定性或定量地表征梳型高分子的鏈結(jié)構(gòu),理論與實驗結(jié)果一致,對梳型聚合物流變研究具有通用性,可以推廣到其他鏈結(jié)構(gòu)清晰的梳型聚合物體系。總結(jié)發(fā)現(xiàn),梳型聚合物獨特的流變現(xiàn)象是由其側(cè)鏈帶來的鏈構(gòu)象變化所導致的,側(cè)鏈起到了3方面作用:(1)屏蔽主鏈對黏度的貢獻;(2)使主鏈伸展,從無規(guī)高斯構(gòu)象變?yōu)樯煺箻?gòu)象;(3)稀釋主鏈的體積分數(shù)。這3方面共同作用導致梳型聚合物熔體的零切黏度隨側(cè)鏈增多而下降,甚至低于線性鏈。鏈構(gòu)象變化在動態(tài)模量主曲線上呈現(xiàn)明顯的分層級松弛現(xiàn)象,高頻區(qū)域?qū)酆衔镦湺嗡沙?,中頻平臺區(qū)域?qū)獋?cè)鏈松弛,而低頻末端則對應主鏈松弛;隨著接枝密度的提高,整個聚合物分子逐漸遵從Rouse松弛機制。vGP圖和傅里葉變換流變表征結(jié)果也可很好地說明梳型聚合物鏈的松弛過程。
雖然流變工具用來分析梳型聚合物鏈結(jié)構(gòu)非常靈敏,相關(guān)理論也得到了一些實驗結(jié)果的驗證,但對其鏈結(jié)構(gòu)的分析目前還停留在半定量階段,主要依靠已知鏈結(jié)構(gòu)的模型聚合物來了解流變性能。通過流變性能來反推鏈結(jié)構(gòu),往往存在較大偏差,目前仍存在巨大挑戰(zhàn),為此還需:(1)加強相關(guān)的流變理論基礎研究,建立梳型聚合物流變性能與其鏈結(jié)構(gòu)的構(gòu)效關(guān)系,包括進一步完善管模型,建立更加準確、通用的流變模型;(2)結(jié)合其他鏈結(jié)構(gòu)分析手段,如核磁、凝膠滲透色譜等,精確分析梳型聚合物鏈結(jié)構(gòu),輔助其流變性能研究,相互佐證實驗結(jié)果;(3)逐步建立相應的大數(shù)據(jù)庫,將梳型聚合物鏈結(jié)構(gòu)因子與其重要流變性能參數(shù)進行關(guān)聯(lián),使其流變性能參數(shù)與鏈結(jié)構(gòu)因子相對應。
擁有低平臺模量和良好流動性的梳型聚合物,在藥物載體、潤滑劑、刺激響應材料、超柔介電彈性體等方面具有很大的應用潛力,如何設計和優(yōu)化鏈結(jié)構(gòu)、定制具有良好流變和力學性能的梳型聚合物,并拓展其在不同領域的應用是梳型聚合物研究所需關(guān)注的。目前,梳型聚合物側(cè)鏈均接枝在一維主鏈上,如能結(jié)合二維材料并在二維平面上接枝側(cè)鏈,構(gòu)造出大面積二維平面分子刷;或在球表面接枝長鏈,構(gòu)建出三維球形分子刷,并研究它們的流變行為,對開發(fā)具有特殊功能的新材料非常重要。
[1] ROOVERS J. Synthesis and dilute-solution characterization of comb polystyrenes [J]. Polymer, 1979, 20(7): 843-849.
[2] STADLER F J, ARIKAN-CONLEY B A, KASCHTA J,. Synthesis and characterization of novel ethylene-graft-ethylene/ propylene copolymers [J]. Macromolecules, 2011, 44(12): 5053-5063.
[3] LIANG H, GREST G S, DOBRYNIN A V. Brush-like polymers and entanglements: from linear chains to filaments [J]. ACS Macro Letters, 2019, 8(10): 1328-1333.
[4] XIE G, MARTINEZ M R, OLSZEWSKI M,. Molecular bottlebrushes as novel materials [J]. Biomacromolecules, 2019, 20(1): 27-54.
[5] VATANKHAH-VARNOOSFADERANI M, DANIEL W F, ZHUSHMA A P,. Bottlebrush elastomers: A new platform for freestanding electroactuation [J]. Advanced Materials, 2017, 29(2): 1604209.
[6] RIAZI K, KUBEL J, ABBASI M,. Polystyrene comb architectures as model systems for the optimized solution electrospinning of branched polymers [J]. Polymer, 2016, 104: 240-250.
[7] FENG C, LI Y, YANG D,. Well-defined graft copolymers: From controlled synthesis to multipurpose applications [J]. Chemical Society Reviews, 2011, 40(3): 1282-1295.
[8] REYNOLDS V G, MUKHERJEE S, XIE R X,. Super-soft solvent-free bottlebrush elastomers for touch sensing [J]. Materials Horizons, 2020, 7(1): 181-187.
[9] ARRINGTON K J, RADZINSKI S C, DRUMMEY K J,. Reversibly cross-linkable bottlebrush polymers as pressure-sensitive adhesives [J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26662-26668.
[10] ABBASI M, FAUST L, WILHELM M. Molecular origin of the foam structure in model linear and comb polystyrenes: II. Volume expansion ratio [J]. Polymer, 2020, 193: 122354.
[11] ABBASI M, FAUST L, WILHELM M. Molecular origin of the foam structure in model linear and comb polystyrenes: I cell density [J]. Polymer, 2020, 193: 122351.
[12] ABBASI M, FAUST L, RIAZI K,. Linear and extensional rheology of model branched polystyrenes: From loosely grafted combs to bottlebrushes [J]. Macromolecules, 2017, 50(15): 5964-5977.
[13] PAKULA T, ZHANG Y, MATYJASZEWSKI K,. Molecular brushes as super-soft elastomers [J]. Polymer, 2006, 47(20): 7198-7206.
[14] LIANG H Y, MORGAN B J, XIE G J,. Universality of the entanglement plateau modulus of comb and bottlebrush polymer melts [J]. Macromolecules, 2018, 51(23): 10028-10039.
[15] NEARY W J, FULTZ B A, KENNEMUR J G. Well-defined and precision-grafted bottlebrush polypentenamers from variable temperature ROMP and ATRP [J]. ACS Macro Letters, 2018, 7(9): 1080-1086.
[16] SHANMUGAM S, CUTHBERT J, KOWALEWSKI T,. Catalyst-free selective photoactivation of RAFT polymerization: A facile route for preparation of comblike and bottlebrush polymers [J]. Macromolecules, 2018, 51(19): 7776-7784.
[17] NEUGEBAUER D, ZHANG Y, PAKULA T,. Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers [J]. Macromolecules, 2003, 36(18): 6746-6755.
[18] HUANG K, RZAYEV J. Well-defined organic nanotubes from multicomponent bottlebrush copolymers [J]. Journal of the American Chemical Society, 2009, 131(19): 6880-6885.
[19] XIA Y, KORNFIELD J A, GRUBBS R H. Efficient synthesis of narrowly dispersed brush polymers via living ring-opening metathesis polymerization of macromonomers [J]. Macromolecules, 2009, 42(11): 3761-3766.
[20] NIAN S F, LIAN H D, GONG Z H,. Molecular architecture directs linear-bottlebrush-linear triblock copolymers to self-assemble to soft reprocessable elastomers [J]. ACS Macro Letters, 2019, 8(11): 1528-1534.
[21] CAI L H, KODGER T E, GUERRA R E,. Soft poly (dimethylsiloxane) elastomers from architecture-driven entanglement free design [J]. Advanced Materials, 2015, 27(35): 5132-5140.
[22] BERNARD J, FAVIER A, DAVIS T P,. Synthesis of poly(vinyl alcohol) combs via MADIX/RAFT polymerization [J]. Polymer, 2006, 47(4): 1073-1080.
[23] COSTANZO S, SCHERZ L, FLOUDAS G,. Hybrid dendronized polymers as molecular objects: Viscoelastic properties in the melt [J]. Macromolecules, 2019, 52(19): 7331-7342.
[24] COSTANZO S, SCHERZ L F, SCHWEIZER T,. Rheology and packing of dendronized polymers [J]. Macromolecules, 2016, 49(18): 7054-7068.
[25] ZHANG K, LIU P, WANG W J,. Preparation of comb-shaped polyolefin elastomers having ethylene/1-octene copolymer backbone and long chain polyethylene branches via a tandem metallocene catalyst system [J]. Macromolecules, 2018, 51(21): 8790-8799.
[26] LIN T P, CHANG A B, CHEN H Y,. Control of grafting density and distribution in graft polymers by living ring-opening metathesis copolymerization [J]. Journal of the American Chemical Society, 2017, 139(10): 3896-3903.
[27] XU Y W, WANG W Y, WANG Y Y,. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): Synthesis and characterization [J]. Polymer Chemistry, 2016, 7(3): 680-688.
[28] HU M, XIA Y, DAEFFLER C S,. The linear rheological responses of wedge-type polymers [J]. Journal of Polymer Science Part B-Polymer Physics, 2015, 53(13): 899-906.
[29] CHANG A B, LIN T P, THOMPSON N B,. Design, synthesis and self-assembly of polymers with tailored graft distributions [J]. Journal of the American Chemical Society, 2017, 139(48): 17683-17693.
[30] QIAN Z Y, KOH Y P, PALLAKA M R,. Linear rheology of a series of second-generation dendronized wedge polymers [J]. Macromolecules, 2019, 52(5): 2063-2074.
[31] VERDUZCO R, LI X, PESEK S L,. Structure, function, self-assembly and applications of bottlebrush copolymers [J]. Chemical Society Reviews, 2015, 44(8): 2405-2420.
[32] SHEIKO S S, SUMERLIN B S, MATYJASZEWSKI K. Cylindrical molecular brushes: Synthesis, characterization and properties [J]. Progress in Polymer Science, 2008, 33(7): 759-785.
[33] TU S D, CHOUDHURY C K, LUZINOV I,. Recent advances towards applications of molecular bottlebrushes and their conjugates [J]. Current Opinion in Solid State & Materials Science, 2019, 23(1): 50-61.
[34] WANG Y, WENG F, LI J,. Influence of phase separation on performance of graft acrylic pressure-sensitive adhesives with various copolyester side chains [J]. ACS Omega, 2018, 3(6): 6945-6954.
[35] WANG Y, XIA M, KONG X,. Tailoring chain structures of L-lactide and Ε-caprolactone copolyester macromonomers using rac-binaphthyl-diyl hydrogen phosphate-catalyzed ring-opening copolymerization with monomer addition strategy [J]. RSC Advances, 2017, 7(46): 28661-28669.
[36] LIU P W, YE Z B, WANG W J,. Synthesis of polyethylene and polystyrene miktoarm star copolymers using an “in-out” strategy [J]. Polymer Chemistry, 2014, 5(18): 5443-5452.
[37] LIU P W, LANDRY E, YE Z B,. “Arm-first” synthesis of core-cross-linked multiarm star polyethylenes by coupling palladium-catalyzed ethylene “l(fā)iving” polymerization with atom-transfer radical polymerization [J]. Macromolecules, 2011, 44(11): 4125-4139.
[38] ABBASI M, FAUST L, WILHELM M. Comb and bottlebrush polymers with superior rheological and mechanical properties [J]. Advanced Materials, 2019, 31(26): 1806484.
[39] LITVINOV V M, RIES M E, BAUGHMAN T W,. Chain entanglements in polyethylene nelts. Why is it studied again? [J]. Macromolecules, 2013, 46(2): 541-547.
[40] RAJU V R, SMITH G G, MARIN G,. Properties of amorphous and crystallizable hydrocarbon polymers. I. Melt rheology of fractions of linear polyethylene [J]. Journal of Polymer Science: Polymer Physics Edition, 1979, 17(7): 1183-1195.
[41] AGUILAR M, VEGA J F, SANZ E,. New aspects on the rheological behaviour of metallocene catalysed polyethylenes [J]. Polymer, 2001, 42(24): 9713-9721.
[42] LIANG H, CAO Z, WANG Z,. Combs and bottlebrushes in a melt [J]. Macromolecules, 2017, 50(8): 3430-3437.
[43] PATUREJ J, SHEIKO S S, PANYUKOV S,. Molecular structure of bottlebrush polymers in melts [J]. Science Advances, 2016, 2(11): e1601478.
[44] DANIEL W F, BURDYNSKA J, VATANKHAH-VARNOOSFADERANI M,. Solvent-free, supersoft and superelastic bottlebrush melts and networks [J]. Nature Materials, 2016, 15(2): 183-189.
[45] LIANG H Y, WANG Z L, DOBRYNIN A V. Scattering from melts of combs and bottlebrushes: Molecular dynamics simulations and theoretical study [J]. Macromolecules, 2019, 52(15): 5555-5562.
[46] LIANG H, WANG Z, SHEIKO S S,. Comb and bottlebrush graft copolymers in a melt [J]. Macromolecules, 2019, 52(10): 3942-3950.
[47] LIANG H, SHEIKO S S, DOBRYNIN A V. Supersoft and hyperelastic polymer networks with brushlike strands [J]. Macromolecules, 2018, 51(2): 638-645.
[48] WATANABE H. Viscoelasticity and dynamics of entangled polymers [J]. Progress in Polymer Science, 1999, 24(9): 1253-1403.
[49] GABRIEL C, MUNSTEDT H. Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear [J]. Rheologica Acta, 2002, 41(3): 232-244.
[50] JANZEN J, COLBY R H. Diagnosing long-chain branching in polyethylenes [J]. Journal of Molecular Structure, 1999, 485: 569-584.
[51] LARSON R G. Combinatorial rheology of branched polymer melts [J]. Macromolecules, 2001, 34(13): 4556-4571.
[52] KARJALA T P, SAMMLER R L, MANGNUS M A,. Detection of low levels of long-chain branching in polydisperse polyethylene materials [J]. Journal of Applied Polymer Science, 2011, 119(2): 636-646.
[53] KARJALA T P, SAMMLER R L, MANGNUS M A,. Detection of low levels of long-chain branching in polyolefins [M]. New York: American Institute of Physics, 2008, 1027(1): 342-344.
[54] MILNER S T, MCLEISH T C B. Reptation and contour-length fluctuations in melts of linear polymers [J]. Physical Review Letters, 1998, 81(3): 725-728.
[55] DANIELS D R, MCLEISH T C B, CROSBY B J,. Molecular rheology of comb polymer melts. 1. Linear viscoelastic response [J]. Macromolecules, 2001, 34(20): 7025-7033.
[56] DE GENNES P G. Reptation of a polymer chain in the presence of fixed obstacles [J]. The Journal of Chemical Physics, 1971, 55(2): 572-579.
[57] INKSON N J, GRAHAM R S, MCLEISH T C B,. Viscoelasticity of monodisperse comb polymer melts [J]. Macromolecules, 2006, 39(12): 4217-4227.
[58] DALSIN S J, HILLMYER M A, BATES F S. Linear rheology of polyolefin-based bottlebrush polymers [J]. Macromolecules, 2015, 48(13): 4680-4691.
[59] WIJESINGHE S, PERAHIA D, GREST G S. Polymer topology effects on dynamics of comb polymer melts [J]. Macromolecules, 2018, 51(19): 7621-7628.
[60] LóPEZ-BARRóN C R, BRANT P, EBERLE A P R,. Linear rheology and structure of molecular bottlebrushes with short side chains [J]. Journal of Rheology, 2015, 59(3): 865-883.
[61] LIN Y C, ZHENG J, YAO K,. Synthesis and linear rheological property of comb-like styrene-based polymers with a high degree of branch chain [J]. Polymer, 2015, 59: 252-259.
[62] HAUGAN I N, MAHER M J, CHANG A B,. Consequences of grafting density on the linear viscoelastic behavior of graft polymers [J]. ACS Macro Letters, 2018, 7(5): 525-530.
[63] DALSIN S J, HILLMYER M A, BATES F S. Molecular weight dependence of zero-shear viscosity in atactic polypropylene bottlebrush polymers [J]. ACS Macro Letters, 2014, 3(5): 423-427.
[64] ALEXANDRIS S, PEPONAKI K, PETROPOULOU P,. Linear viscoelastic response of unentangled polystyrene bottlebrushes [J]. Macromolecules, 2020, 53(10): 3923-3932.
[65] LóPEZ-BARRóN C R, TSOU A H, HAGADORN J R,. Highly entangled a-olefin molecular bottlebrushes: Melt structure, linear rheology and interchain friction mechanism [J]. Macromolecules, 2018, 51(17): 6958-6966.
[66] ROUSE P E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers [J]. The Journal of Chemical Physics, 1953, 21(7): 1272-1280.
[67] 張凱倫. 串級催化溶液聚合定制梳狀聚烯烴熱塑性彈性體的研究 [D]. 杭州: 浙江大學, 2019.
ZHANG K L. Study on tailoring comb-branched polyolefinic thermoplastic elastomers using a tandem solution copolymerization system[D]. Hangzhou: Zhejiang University, 2019.
[68] QIAN Z, CHEN D, MCKENNA G B. Re-visiting the “consequences of grafting density on the linear viscoelastic behavior of graft polymers” [J]. Polymer, 2020, 186: 121992.
[69] HU M, XIA Y, MCKENNA G B,. Linear rheological response of a series of densely branched brush polymers [J]. Macromolecules, 2011, 44(17): 6935-6943.
[70] DALSIN S J, RIONS-MAEHREN T G, BEAM M D,. Bottlebrush block polymers: quantitative theory and experiments [J]. ACS Nano, 2015, 9(12): 12233-12245.
[71] WILLIAMS M L, LANDEL R F, FERRY J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids [J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707.
[72] TSUKAHARA Y, NAMBA S, IWASA J,. Bulk properties of poly(macromonomer)s of increased backbone and branch lengths [J]. Macromolecules, 2001, 34(8): 2624-2629.
[73] ROOVERS J, GRAESSLEY W W. Melt rheology of some model comb polystyrenes [J]. Macromolecules, 1981, 14(3): 766-773.
[74] VLASSOPOULOS D, FYTAS G, LOPPINET B,. Polymacromonomers: Structure and dynamics in nondilute solutions, melts and mixtures [J]. Macromolecules, 2000, 33(16): 5960-5969.
[75] BAILLY C, STEPHENNE V, MUCHTAR Z,. Linear viscoelastic behavior of densely grafted poly(chloroethyl vinyl ether)-g-polystyrene combs in the melt [J]. Journal of Rheology, 2003, 47(4): 821-827.
[76] YAVITT B M, GAI Y, SONG D P,. High molecular mobility and viscoelasticity of microphase-separated bottlebrush diblock copolymer melts [J]. Macromolecules, 2016, 50(1): 396-405.
[77] ZIMM B H. Dynamics of polymer molecules in dilute solution-viscoelasticity, flow birefringence and dielectric loss [J]. Journal of Chemical Physics, 1956, 24(2): 269-278.
[78] CAO Z, DANIEL W F M, VATANKHAH-VARNOSFADERANI M,. Dynamics of bottlebrush networks [J]. Macromolecules, 2016, 49(20): 8009-8017.
[79] CAO Z, CARRILLO J M Y, SHEIKO S S,. Computer simulations of bottle brushes: From melts to soft networks [J]. Macromolecules, 2015, 48(14): 5006-5015.
[80] FETTERS L J, LOHSE D J, GARCíA-FRANCO C A,. Prediction of melt state poly(a-olefin) rheological properties: The unsuspected role of the average molecular weight per backbone bond [J]. Macromolecules, 2002, 35(27): 10096-10101.
[81] TRINKLE S, FRIEDRICH C. Van gurp-palmen-plot: A way to characterize polydispersity of linear polymers [J]. Rheologica Acta, 2001, 40(4): 322-328.
[82] GARCíA-FRANCO C A, LOHSE D J, ROBERTSON C G,. Relative quantification of long chain branching in essentially linear polyethylenes [J]. European Polymer Journal, 2008, 44(2): 376-391.
[83] QIAN Z Y, MCKENNA G B. Expanding the application of the van gurp-palmen plot: New insights into polymer melt rheology [J]. Polymer, 2018, 155: 208-217.
[84] TRINKLE S, WALTER P, FRIEDRICH C. Van gurp-palmen plot ii-classification of long chain branched polymers by their topology [J]. Rheologica Acta, 2002, 41(1/2): 103-113.
[85] WOOD-ADAMS P M, DEALY J M, DEGROOT A W,. Effect of molecular structure on the linear viscoelastic behavior of polyethylene [J]. Macromolecules, 2000, 33(20): 7489-7499.
[86] GARCíA-FRANCO C A, HARRINGTON B A, LOHSE D J. Effect of short-chain branching on the rheology of polyolefins [J]. Macromolecules, 2006, 39(7): 2710-2717.
[87] DOI Y, MATSUBARA K, OHTA Y,. Melt rheology of ring polystyrenes with ultrahigh purity [J]. Macromolecules, 2015, 48(9): 3140-3147.
[88] KEMPF M, AHIRWAL D, CZIEP M,. Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching [J]. Macromolecules, 2013, 46(12): 4978-4994.
[89] LEE J H, FETTERS L J, ARCHER L A,. Tube dynamics in binary polymer blends [J]. Macromolecules, 2005, 38(9): 3917-3932.
[90] PARK S J, LARSON R G. Tube dilation and reptation in binary blends of monodisperse linear polymers [J]. Macromolecules, 2004, 37(2): 597-604.
[91] WATANABE H, ISHIDA S, MATSUMIYA Y,. Test of full and partial tube dilation pictures in entangled blends of linear polyisoprenes [J]. Macromolecules, 2004, 37(17): 6619-6631.
[92] VAN RUYMBEKE E, SHCHETNIKAVA V, MATSUMIYA Y,. Dynamic dilution effect in binary blends of linear polymers with well-separated molecular weights [J]. Macromolecules, 2014, 47(21): 7653-7665.
[93] WILHELM M. Fourier-transform rheology [J]. Macromolecular Materials and Engineering, 2002, 287(2): 83-105.
[94] HYUN K, WILHELM M, KLEIN C O,. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear(LAOS) [J]. Progress in Polymer Science, 2011, 36(12): 1697-1753.
[95] SONG H Y, FAUST L, SON J,. Small and medium amplitude oscillatory shear rheology of model branched polystyrene (PS) melts [J]. Polymers (Basel), 2020, 12(2): 365-385.
[96] CZIEP M A, ABBASI M, HECK M,. Effect of molecular weight, polydispersity and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity3Q0(Ω) in MAOS [J]. Macromolecules, 2016, 49(9): 3566-3579.
[97] HYUN K, BAIK E S, AHN K H,. Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts [J]. Journal of Rheology, 2007, 51(6): 1319-1342.
[98] VITTORIAS I, WILHELM M. Application of FT rheology to industrial linear and branched polyethylene blends [J]. Macromolecular Materials and Engineering, 2007, 292(8): 935-948.
[99] VITTORIAS I, PARKINSON M, KLIMKE K,. Detection and quantification of industrial polyethylene branching topologies via fourier-transform rheology, NMR and simulation using the pom-pom model [J]. Rheologica Acta, 2007, 46(3): 321-340.
[100] SCHLATTER G, FLEURY G, MULLER R. Fourier-transform rheology of branched polyethylene: Experiments and models for assessing the macromolecular architecture [J]. Macromolecules, 2005, 38(15): 6492-6503.
[101] NEIDH?FER T, SIOULA S, HADJICHRISTIDIS N,. Distinguishing linear from star-branched polystyrene solutions with fourier-transform rheology [J]. Macromolecular Rapid Communications, 2004, 25(22): 1921-1926.
[102] HYUN K, AHN K H, LEE S J,. Degree of branching of polypropylene measured from fourier-transform rheology [J]. Rheologica Acta, 2006, 46(1): 123-129.
[103] AHIRWAL D, FILIPE S, NEUHAUS I,. Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene [J]. Journal of Rheology, 2014, 58(3): 635-658.
[104] HYUN K, WILHELM M. Establishing a new mechanical nonlinear coefficientqfrom FT-rheology: First investigation of entangled linear and comb polymer model systems [J]. Macromolecules, 2009, 42(1): 411-422.
[105] KAPNISTOS M, KIRKWOOD K M, RAMIREZ J,. Nonlinear rheology of model comb polymers [J]. Journal of Rheology, 2009, 53(5): 1133-1153.
Advance in the rheology study of comb polymers
XU Gui-fa1,2, LIU Ping-wei1,2, LI Bo-geng1, WANG Wen-jun1,2
(1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027,China; 2. Institute of Zhejiang University-Quzhou, Quzhou 324000, China)
comb-shaped polymers; rheology; chain structure; zero-shear viscosity; plateau modulus; Fourier-transform rheology
TQ465.92
A
10.3969/j.issn.1003-9015.2022.00.001
1003-9015(2022)03-0293-14
https://kns.cnki.net/kcms/detail/33.1141.TQ.20220106.1527.002.html
2021-03-02;
2021-05-05。
2022-01-07 07:47:28
國家自然科學基金項目(21938010, 21536011, 21420102008);浙江大學衢州研究院項目(IZQ2019-KJ-010)。
徐桂發(fā)(1995-),男,山東莒縣人,浙江大學碩士生。
劉平偉,E-mail:liupingwei@zju.edu.cn
徐桂發(fā), 劉平偉, 李伯耿, 王文俊.梳型聚合物流變研究進展[J]. 高?;瘜W工程學報, 2022, 36(3): 293-306.
:XU Gui-fa, LIU Ping-wei, LI Bo-geng, WANG Wen-jun. Advance in the rheology study of comb polymers [J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(3): 293-306.