• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      組合計(jì)數(shù)推導(dǎo)法求多項(xiàng)式展開系數(shù)

      2022-06-23 03:45:46
      關(guān)鍵詞:展開式二項(xiàng)式通項(xiàng)

      趙 憶

      (1.揚(yáng)州大學(xué)數(shù)學(xué)科學(xué)學(xué)院,225000;2.江蘇省丹陽市第五中學(xué),212300)

      一、問題陳述

      北京卷、天津卷、上海卷的三道題都可以采用通項(xiàng)方法求解,但是對于浙江卷,由于多項(xiàng)式是(x-1)3,(x+1)4的和,套用通項(xiàng)公式就顯得復(fù)雜,具體體現(xiàn)在以下幾個方面.

      從上述例子可以看出,機(jī)械地套用公式會將簡單問題復(fù)雜化,同時還需要防止丟項(xiàng)、漏項(xiàng)及多個字母的混用等問題.

      二、方法溯源

      如何從根本上解決學(xué)生的困惑呢?需回歸二項(xiàng)式定理的基本內(nèi)容:

      表1

      這里,表格的使用克服了組合計(jì)數(shù)推導(dǎo)法書寫繁瑣、耗時長的缺點(diǎn),使得抽象的組合計(jì)數(shù)推導(dǎo)法變得更加具體、清晰,且易于推廣.

      三、應(yīng)用舉例

      例1求(3+2x)7展開式中x3的系數(shù).

      解兩項(xiàng)和的展開,第一項(xiàng)為3,第二項(xiàng)為2x,求x3的系數(shù),具體選取過程見表2表示.

      表2

      評析對于這種標(biāo)準(zhǔn)的二項(xiàng)式展開系數(shù)問題,通項(xiàng)公式法與組合推導(dǎo)表格法相比,雖然在解題繁簡上沒有明顯區(qū)別,但是表格使得思維過程一目了然.

      例2求(1+2x)3(1-x)4展開式中x3系數(shù).

      解兩因式(1+2x)3,(1-x)4乘積,考慮x3的系數(shù),x分別來自于兩個因式,冪指數(shù)之和等于3即可,具體選取過程見表3.

      表3

      評析對于求(a+b)n(c+d)m兩個因式乘積展開式中特定項(xiàng)的系數(shù),通項(xiàng)公式法需對每個因式進(jìn)行展開后再組合通項(xiàng)公式,再討論求和,易導(dǎo)致缺項(xiàng)、漏項(xiàng).采用表格,則每個構(gòu)成項(xiàng)的系數(shù)都直接的展現(xiàn)出來,一目了然,具有一定的規(guī)律性,檢查起來也更加方便.

      例3求(x2+3x+4)4的展開式中x2的系數(shù).

      表4

      評析對于求(a+b+c)n三項(xiàng)展開式中特定項(xiàng)的系數(shù),通項(xiàng)公式法需將三項(xiàng)看成兩項(xiàng)進(jìn)行展開,并對其中兩項(xiàng)部分再次展開,再討論求和.該方法不僅繁瑣,還夾雜著二元一次方程的求解,易導(dǎo)致缺項(xiàng)、漏項(xiàng)和字母的混亂.采用表格,則每個構(gòu)成項(xiàng)的系數(shù)都直接展現(xiàn)出來,具有一定的規(guī)律性,可有效避免復(fù)雜的求通項(xiàng)的過程,解題步驟更加簡明.

      面對機(jī)械運(yùn)用公式求解二項(xiàng)式定理展開式系數(shù)問題出現(xiàn)的解題困境,依據(jù)課標(biāo)要求,回顧二項(xiàng)式定理推導(dǎo)過程給出組合計(jì)數(shù)推導(dǎo)法,并創(chuàng)造性地以表格的形式呈現(xiàn)出組合計(jì)數(shù)推導(dǎo)法,使得學(xué)生理解和書寫起來更加直觀具體,簡單易懂.基于牛頓二項(xiàng)定理的組合推導(dǎo)表格法在知識層面上層層遞進(jìn),在思想層面上循序漸進(jìn),在數(shù)學(xué)方法上由抽象到具體,彰顯了數(shù)學(xué)文化在教學(xué)中的魅力,同時又展示了數(shù)學(xué)對簡潔性的追求.

      《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版)》提出,“高中數(shù)學(xué)課程以學(xué)生發(fā)展為本……同時注重?cái)?shù)學(xué)文化的滲透.”教師更應(yīng)當(dāng)注重?cái)?shù)學(xué)文化的作用,結(jié)合學(xué)生的主體性地位,讓學(xué)生經(jīng)歷數(shù)學(xué)家發(fā)現(xiàn)數(shù)學(xué)知識的過程,結(jié)合數(shù)學(xué)史,尋找數(shù)學(xué)家發(fā)現(xiàn)數(shù)學(xué)知識的歷史淵源,再現(xiàn)人類發(fā)現(xiàn)數(shù)學(xué)知識的過程,讓數(shù)學(xué)文化服務(wù)于數(shù)學(xué)課堂.

      猜你喜歡
      展開式二項(xiàng)式通項(xiàng)
      數(shù)列通項(xiàng)與求和
      聚焦二項(xiàng)式定理創(chuàng)新題
      二項(xiàng)式定理備考指南
      二項(xiàng)式定理常考題型及解法
      泰勒展開式在函數(shù)中的應(yīng)用
      n分奇偶時,如何求數(shù)列的通項(xiàng)
      巧求等差數(shù)列的通項(xiàng)
      求數(shù)列通項(xiàng)課教學(xué)實(shí)錄及思考
      函數(shù)Riemann和式的類Taylor級數(shù)展開式
      對一道冪級數(shù)展開式例題的思考
      灵寿县| 彭州市| 台北县| 华坪县| 洛宁县| 福州市| 清水县| 隆昌县| 贡嘎县| 镇远县| 琼结县| 巩义市| 宕昌县| 海宁市| 湖北省| 洪湖市| 西青区| 许昌市| 太原市| 左云县| 讷河市| 崇州市| 临沭县| 韶山市| 南澳县| 台前县| 屯留县| 资中县| 任丘市| 五家渠市| 高平市| 教育| 吉林省| 岳阳市| 行唐县| 乌苏市| 新巴尔虎右旗| 苏尼特左旗| 徐州市| 江阴市| 伊宁市|