王澤楠,陶 冶,b,卞景垚
(東北師范大學(xué) a.物理學(xué)院;b.物理學(xué)國家級實驗教學(xué)示范中心(東北師范大學(xué)),吉林 長春 130024)
由于結(jié)構(gòu)簡單、高耐久性、低功耗、三維堆疊能力以及與互補金屬氧化物半導(dǎo)體(CMOS)工藝兼容等優(yōu)勢,憶阻器已經(jīng)在信息存儲、人工突觸、 非線性電路等領(lǐng)域展現(xiàn)出巨大的應(yīng)用潛力[1-3]. 對于不同材料體系的選取,會有不同的微觀物理機制,目前研究比較成熟的材料有過渡金屬氧化物[4]、有機物[5-6]和碳材料[7]等. 氧化石墨烯(GO)是新興的碳基材料,具有成本低廉、性能可靠等優(yōu)勢,可被選做阻變介質(zhì)材料制備阻變存儲器[8-9]. 對Al/GO/ITO“三明治”結(jié)構(gòu)進行測試后,發(fā)現(xiàn)器件的開關(guān)比維持在103量級,并且經(jīng)過多次循環(huán)運行沒有明顯的退化,表明器件具有良好的耐久性. 此外,器件的高阻和低阻變化不大,器件的開啟電壓與關(guān)閉電壓始終在一定范圍內(nèi)波動,表明器件參量有良好的統(tǒng)一性和可靠性.
由于GO內(nèi)部結(jié)構(gòu)碳氧鍵的不確定性,導(dǎo)致GO基阻變存儲器在阻變過程中轉(zhuǎn)變參量(阻值、電壓等)不穩(wěn)定. 此外,導(dǎo)電細絲(CF)的形成和斷裂是非常隨機的過程,這將導(dǎo)致細絲生長過程中容易形成樹枝狀CF,而在復(fù)位過程中,細絲會出現(xiàn)部分斷裂現(xiàn)象. CF的直徑和數(shù)量直接決定器件的性能,例如,粗壯的CF由于較大的關(guān)閉電壓將導(dǎo)致器件功耗增加,而細小的CF容易發(fā)生自發(fā)斷裂而產(chǎn)生數(shù)據(jù)邏輯錯誤. 此外,還會使器件均一性、穩(wěn)定性、耐受性和保持特性出現(xiàn)問題. 同時,GO自身含氧官能團分布在石墨環(huán)的中間或邊緣,自身還原過程中會使含氧官能團被破壞,施加正向電壓時,阻變層內(nèi)部sp3將轉(zhuǎn)變?yōu)閟p2[10],呈現(xiàn)低阻;而加負反向電壓時,sp2氧化程度卻不易控制,導(dǎo)致器件均一性和穩(wěn)定性較差.
由于本實驗所制備器件的阻變機制是GO薄膜的sp2和sp3團簇的相互轉(zhuǎn)變. 因此,在GO中引入一定量的sp2團簇,有望一定程度上加強局域(sp2區(qū)域)電場. 通常,要使sp3向sp2轉(zhuǎn)變,需要采用金屬催化、高溫加熱、激光轟擊[11-12]等極端工藝方法,然而,這并不是局域化的作用,而是對整體材料體系的還原. 采用局域電場增強手段可以實現(xiàn)對電阻轉(zhuǎn)變位置的有效約束,進而形成倒錐形的CF結(jié)構(gòu),使CF的形成和斷裂變得更加可控. 針對制備的Al/GO/ITO,本實驗采用在GO中摻雜碳黑,利用碳黑的高電導(dǎo)特性對局域電場進行增強;通過探究摻雜碳黑的質(zhì)量分數(shù),對器件進行典型參量測試. 由于碳黑的光熱效應(yīng),進一步探究加光后器件的性能. 利用旋涂方法,與純GO相比,采用摻雜碳黑和加光方式探究器件性能優(yōu)化的機制.
1)阻變層—GO
GO是二維材料石墨烯氧化后形成的衍生物,與石墨烯結(jié)構(gòu)相比,GO含有豐富的官能團,例如羥基(—OH)、環(huán)氧基[—C(O)C—]、羰基(—C=O)、羧基(—COOH)、酯基(—COO—)等,其中大多數(shù)都是通過sp3雜化鍵聚集在GO表面上. 在外電壓下,GO會發(fā)生還原反應(yīng),含氧官能團分解,sp3雜化鍵變成sp2雜化鍵,從而形成低電阻態(tài).
2)碳黑
碳黑(carbon black)是一種無定形碳,屬于光滑、柔軟、極細、比表面積很大的黑色粉末,由含碳物質(zhì)(煤、天然氣、重油和燃料油等)通過不完全燃燒或在不充足的空氣條件下加熱獲得. 碳黑結(jié)構(gòu)性越高,越容易形成空間網(wǎng)狀通道,而且不易被破壞. 高結(jié)構(gòu)碳黑顆粒很細,交聯(lián)堆積得很緊,比表面積大,單位質(zhì)量粒子數(shù)大,有利于聚合物導(dǎo)電鏈結(jié)構(gòu)的形成. 此外,碳黑可以作為吸波劑,能進行光熱轉(zhuǎn)化.
3)頂電極——Al
Al為銀白色輕金屬,有延展性,以其良好的導(dǎo)電和導(dǎo)熱性能、高反射性和耐氧化而被廣泛使用. 由于GO含有非常多的含氧官能團,可以提供豐富的O2-,當(dāng)頂電極Al被蒸鍍到GO表面時,在Al電極與GO接觸的交界面處會形成nm量級薄層Al2O3. 當(dāng)對器件施加電壓時,Al電極與GO接觸的界面發(fā)生變化,其內(nèi)部O2-會遷移到GO層中,在界面層特定區(qū)域留下富Al層,即形成導(dǎo)通的Al導(dǎo)電細絲,使得界面層AlOx由高阻轉(zhuǎn)變?yōu)榈妥?
4)底電極——ITO
實驗中制備的器件底電極材料為N型氧化物半導(dǎo)體——氧化銦錫(ITO). ITO作為底電極,當(dāng)一側(cè)受到電壓刺激時,其表面導(dǎo)電層ITO作為儲氧池,可以儲存遷移來的O2-,也可釋放出O2-,這有助于器件保持良好的結(jié)構(gòu)穩(wěn)定性,雖然ITO參與了電阻轉(zhuǎn)變過程,但對材料本身的導(dǎo)電性影響不大[13].
1)制備底電極
將附有ITO薄膜的玻璃作為底電極,并將其切割成大小為1 cm×1 cm的方塊. 將切割好的ITO襯底經(jīng)過三氯乙烯、丙酮、無水乙醇及超聲清洗后烘干備用. 通過萬用表測試附有ITO薄膜的一面,導(dǎo)電性良好. 用膠帶封住邊緣一部分,作為底電極,方便后續(xù)測試.
2)制備阻變層GO薄膜
未摻雜的阻變層GO薄膜使用0.5 mg/mL的GO水溶液制備得到. 取適量的GO水溶液用磁力攪拌機攪勻,以備后續(xù)旋涂使用. 在取GO水溶液時要注意避光.
GO中摻雜碳黑的阻變層薄膜制備與未摻雜的薄膜制備方法相似. 計算碳黑摻雜的質(zhì)量分數(shù),稱量適量碳黑粉末,將其按所需比例與GO溶液混合(碳黑的摻雜質(zhì)量分數(shù)設(shè)定為3%,6%和10%). 將攪勻的溶液使用勻膠機進行溶液旋涂,共旋涂5層. 具體步驟為:用移液管轉(zhuǎn)移80 μL GO溶液,均勻涂抹后蓋上勻膠機蓋子,設(shè)定勻膠機的轉(zhuǎn)動低速為500 r/min,保持時間10 s,轉(zhuǎn)動高速為3 000 r/min,保持時間20 s. 旋涂1次結(jié)束后,取出等待2 min后重復(fù)旋涂,每個器件旋涂5次,以達到理想的GO薄膜厚度.
在制備薄膜前,摻雜碳黑的GO溶液經(jīng)過充分的磁力攪拌,因此薄膜的厚度具有很好的均一性,采用原子力顯微鏡表征薄膜的表面形貌如圖1所示,均方根粗糙度為1.8~2.2 nm,表明薄膜較為均一和平整.
圖1 GO摻雜碳黑的原子力表面形貌特征
3)蒸鍍頂電極Al
用導(dǎo)電膠帶將已旋涂好GO薄膜的襯底固定. 將掩膜板貼于GO表面,壓緊后放置于真空蒸鍍儀器中,將蒸鍍的Al粒(0.038 g)放置于鎢舟上,從而將Al蒸鍍到器件上形成頂電極.
采用B1500半導(dǎo)體參量分析儀,將負極探針接在底電極,正極探針接在頂電極,測試器件的電流、電壓、電阻等參量. 測試環(huán)境溫度為26 ℃,室內(nèi)相對濕度40%,器件未封裝.
2.1.1 阻變特性曲線
制備好的Al/GO/ITO器件示意圖如圖2所示. Al頂電極接正向電壓,ITO底電極接地. 對器件進行正向和負向偏壓掃描,連續(xù)進行開啟關(guān)閉循環(huán)測試,偏置電壓從0→Vmax→0→-Vmax→0掃過. 圖3所示為不摻雜碳黑,即純GO的Al/GO/ITO器件100組I-V特性曲線. 從圖3中可以看出明顯的電阻突變現(xiàn)象,但是開啟關(guān)閉電壓均一性較差,當(dāng)加正向偏壓時,開啟電壓在1~4 V范圍波動;當(dāng)加負向偏壓時,關(guān)閉電壓也相對分散.
圖2 Al/GO/ITO器件的結(jié)構(gòu)圖
圖3 Al/GO/ITO的I-V特性曲線
在GO中摻雜碳黑,圖4所示為純GO和摻雜碳黑質(zhì)量分數(shù)為3%,6%和10%的典型I-V曲線.
(a)無摻雜
從圖4可以看出,隨著摻雜質(zhì)量分數(shù)增加,器件的阻變類型由突變逐漸變?yōu)榫徸儯僄O和摻雜3%碳黑的GO保持突變特性,而摻雜超過6%以后,器件阻變類型呈現(xiàn)緩變特性. 同時隨著器件變?yōu)榫徸儯骷拈_關(guān)窗口值變得越來越小.
2.1.2 循環(huán)穩(wěn)定性
圖5和圖6分別是循環(huán)50次的高低阻和開啟關(guān)閉電壓變化過程統(tǒng)計,不摻雜的器件高低阻值相對波動率標準差與平均值之比分別為76%和98%,摻雜質(zhì)量分數(shù)為6%的器件高低阻值相對波動率分別為14%和7%,較純GO明顯降低,摻雜3%和6%后器件循環(huán)變得穩(wěn)定,摻雜質(zhì)量分數(shù)為10%時,高低阻分辨不明顯,存儲窗口極小,這主要是因為器件阻值由突變變?yōu)榫徸? 從開啟、關(guān)閉電壓統(tǒng)計圖中也可得出相似的結(jié)論,可見相比無摻雜的原始器件,摻雜碳黑后的器件在均一性和穩(wěn)定性方面都明顯提高.
圖5 摻雜不同質(zhì)量分數(shù)碳黑器件的高低阻值
圖6 摻雜不同質(zhì)量分數(shù)碳黑器件的開啟關(guān)閉電壓
通過在GO中摻雜不同質(zhì)量分數(shù)的碳黑來探究Al/GO/ITO的阻變性能,即在中間層GO中摻雜不同質(zhì)量分數(shù)的碳黑,起到加強局域電場的作用,器件的電阻轉(zhuǎn)變均一性得到了提高,摻雜后器件的高低阻值和開啟關(guān)閉電壓變得更加穩(wěn)定. 同時,隨著碳黑摻雜質(zhì)量分數(shù)的提高,器件電阻轉(zhuǎn)變特性由突變向緩變轉(zhuǎn)換,在摻雜質(zhì)量分數(shù)小于6%時,器件突變現(xiàn)象更穩(wěn)定,適合做信息存儲;當(dāng)摻雜質(zhì)量分數(shù)近一步提高到10%時,器件呈現(xiàn)緩變的特性,適合做突觸仿生研究.
由于器件阻變原理主要是電場誘導(dǎo)O2-從GO/Al界面層遷移到GO內(nèi)部,界面層厚度減少從而使得GO薄膜從sp2到sp3轉(zhuǎn)換,導(dǎo)致器件轉(zhuǎn)變到LRS. 碳在紫外波段有吸收作用[14-16],而將碳黑作為增強局域電場材料并摻入GO電阻轉(zhuǎn)變層,其在紫外光照射下可使GO內(nèi)部碳雜化從sp2向sp3轉(zhuǎn)變,當(dāng)摻雜碳黑質(zhì)量分數(shù)為3%時,器件的穩(wěn)定性較好,且器件仍然保持突變特性,因此采取碳黑摻雜質(zhì)量分數(shù)3%的器件進行紫外光照射的實驗探究.
在光照實驗過程中,統(tǒng)一設(shè)置紫外光功率為30 mW,波長為315~400 nm,光照時間分別為5 min,10 min和15 min,與未加紫外光照進行比較,結(jié)果如圖7所示.
(a)紫外光照0,5 min,10 min
隨著紫外光照時間增加,器件逐漸變?yōu)榫徸儯庸庹丈?5 min時,器件基本處于低阻狀態(tài). 這可能是由于GO在紫外光照射下于碳黑周圍形成了還原氧化石墨烯(RGO)區(qū)域,由氧遷移所致的CF優(yōu)先在RGO區(qū)域形成. 光照時間較短時,RGO形成區(qū)域少,器件仍然呈現(xiàn)絕緣狀態(tài),而光照時間長(15 min),RGO區(qū)域增加,電導(dǎo)的增強趨于飽和,從而出現(xiàn)了較小的開關(guān)窗口[14].
為了更準確地對比光照前后的阻變性能,進行了I-V循環(huán)掃描測試,掃描電壓范圍為0 V→2 V→0 V→-2 V→0 V,限制電流均控制在50 μA,圖8所示為不同光照時間高低阻值的波動性,由于紫外光照15 min器件已基本呈現(xiàn)導(dǎo)通狀態(tài),所以只統(tǒng)計到光照10 min的數(shù)據(jù).
圖8 器件摻雜3%碳黑紫外光照后的高低阻值
不加紫外光時器件運行已經(jīng)較穩(wěn)定,加光照后高低阻值的波動性沒有明顯改善. 原因可能是摻雜碳黑質(zhì)量分數(shù)較小,即使形成一定數(shù)量的RGO點位,細絲的形成和斷裂位置仍然具有一定的偶然性. 同時,紫外光照后無論是器件的高阻值還是低阻值都有所下降,該結(jié)果與碳黑的導(dǎo)電性有關(guān).
通過對不同摻雜質(zhì)量分數(shù)器件在不同光照條件下的測試,可以發(fā)現(xiàn),隨著光照時間的增長,器件由突變向緩變變化,開關(guān)窗口值變小. 加紫外光照后,由于碳黑的光熱轉(zhuǎn)化效應(yīng),形成的CF在熱效應(yīng)下易斷裂,不穩(wěn)定,高低阻與不加光照相比波動率變化較小. 此外,加紫外光照后器件的高低阻值都有所下降.
阻變存儲器的機制主要是CF在電場作用下的形成和斷裂[17-19]. 實驗制備的器件Al/GO(碳黑)/ITO是基于O2-遷移的電阻轉(zhuǎn)變機制,示意圖如圖9所示,強調(diào)了GO和上電極之間接觸電阻的重要性. 由于存在nm量級厚度的絕緣金屬氧化物層(本器件為Al2O3),該器件處在高電阻狀態(tài)[圖9(a)],負偏壓加在電極上[圖9(b)],導(dǎo)致O2-從氧化界面層遷移到GO層,厚度減小導(dǎo)致器件切換到低電阻狀態(tài).
(a)高電阻狀態(tài)
2.4.1 Al/GO(3%碳黑)/ITO器件的制備
柔性器件的制備過程:將之前配置的3%摻雜碳黑的GO溶液旋涂在柔性襯底上,仍然旋涂5層,利用蒸鍍儀器在上表面蒸鍍Al電極.
2.4.2 柔性器件的性能測試
在彎折測試平臺上對柔性器件進行了I-V曲線測試,如圖10所示.
圖10 3%摻雜器件彎折前后的I-V曲線
彎折前后器件的電學(xué)曲線基本趨勢一致,開啟電壓在1 V左右,在-0.5 V左右關(guān)閉,可見彎折后器件仍然保持良好的工作性能. 控制彎折角度約為120°,探究彎折次數(shù)Nb對高低阻值以及開啟、關(guān)閉電壓的影響,如圖11所示,通過彎折10,20,30,40,50次,可以看出彎折前后的開啟、關(guān)閉電壓有輕微變化,高低阻值相對變化很小. 摻雜后的GO阻變器件在紫外光輻照后具有良好的柔性特征,為GO應(yīng)用于柔性電子領(lǐng)域提供了可行的方案[20].
圖11 柔性器件電阻和開啟關(guān)閉電壓測試
在GO中摻雜碳黑,利用碳黑的導(dǎo)電性,增強阻變層內(nèi)部的局域電場,使得CF呈現(xiàn)倒錐形,其形成和斷裂變得更加可控. 通過調(diào)整碳黑的摻雜質(zhì)量分數(shù),使摻雜后器件的高低阻值和開啟、關(guān)閉電壓變得更加穩(wěn)定. 同時,隨著摻雜質(zhì)量分數(shù)的提高,器件電阻轉(zhuǎn)變特性由突變向緩變轉(zhuǎn)換. 碳黑顆粒可以吸收紫外光,隨著光照時間的增長,器件由突變向緩變變化,開關(guān)窗口值變小. 加紫外光照后,由于碳黑的光熱轉(zhuǎn)化效應(yīng),CF優(yōu)先在RGO區(qū)域形成,在熱效應(yīng)下所形成的CF不穩(wěn)定,易斷裂,高低阻與不加光照相比波動較大. 此外,加紫外光照后,器件的高低阻值都有所下降. 同時,在柔性測試方面,該器件也表現(xiàn)出良好的可彎折性.