• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      樹冠尺寸與建筑高度對街谷通風(fēng)與污染物擴(kuò)散的影響

      2022-07-13 01:40:18黃遠(yuǎn)東崔鵬義劉宇辰羅楊
      上海理工大學(xué)學(xué)報 2022年3期
      關(guān)鍵詞:峽谷樹冠氣流

      張 震,黃遠(yuǎn)東,崔鵬義,劉宇辰,羅楊

      (上海理工大學(xué) 環(huán)境與建筑學(xué)院,上海 200093)

      街道峽谷通常指沿著兩側(cè)連續(xù)排列的建筑物之間相對狹窄的街道[1],由于汽車尾氣排放和有限的環(huán)境通風(fēng),街道峽谷成為城市大氣環(huán)境中污染嚴(yán)重的區(qū)域[2]。迄今為止,已有研究通過數(shù)值模擬、風(fēng)洞實(shí)驗(yàn)等手段對街道峽谷內(nèi)通風(fēng)及污染物擴(kuò)散情況進(jìn)行了詳細(xì)的探討,結(jié)果表明,影響街道峽谷內(nèi)通風(fēng)與污染物擴(kuò)散的因素很多。例如,街道峽谷高寬比[3-5]、建筑布局[6-7]、建筑高度[8-9]、架空結(jié)構(gòu)[10-12]、壁面熱[13-15]及屋頂形狀等[16-18]。

      在城市發(fā)展更新過程中,以高樓代替低矮建筑是城市建設(shè)的主要措施,因此,在城市地區(qū)普遍存在著街道峽谷的非對稱結(jié)構(gòu),其對城市大氣環(huán)境的影響不容忽視[19],很多學(xué)者也對此展開了大量的研究。Li等[20]在建筑高度對街谷內(nèi)污染物分布影響的研究中發(fā)現(xiàn),在升階式街谷中,逆風(fēng)建筑變高導(dǎo)致了街谷內(nèi)污染情況的惡化。另外,當(dāng)降階式街谷中的迎風(fēng)建筑物升高時,污染物濃度僅在較小風(fēng)速下增加。Reiminger等[21]進(jìn)一步研究了降階式街谷內(nèi)逆風(fēng)建筑高度與街谷寬度變化的影響,結(jié)果表明,街谷內(nèi)氣流結(jié)構(gòu)受建筑高度和街谷寬度的影響顯著。然而以往這些研究主要針對街谷長寬比、建筑長度比、建筑高度比等方面進(jìn)行探討,降階式結(jié)構(gòu)和街道綠化特征的結(jié)合并沒有得到太多的關(guān)注。樹木綠化是城市街道的重要元素,其對街道峽谷內(nèi)自然通風(fēng)與污染物擴(kuò)散有著重要的影響。Buccolieri等[22]在研究中發(fā)現(xiàn),與無樹木情況相比,有樹木時街谷背風(fēng)壁附近的污染物濃度較大,迎風(fēng)壁附近的污染物濃度稍低。同時在低風(fēng)速下,樹木對污染物濃度的影響比在高風(fēng)速下更顯著。而樹木種植密度和樹冠孔隙度對污染物濃度的影響較小。另有研究引入空氣交換率ACH對樹干高度不同的街道峽谷內(nèi)的通風(fēng)性能進(jìn)行了評估,發(fā)現(xiàn)當(dāng)樹木增加到一定高度時,ACH會隨之增大[23]。盡管關(guān)于樹木綠化對街谷內(nèi)污染物擴(kuò)散的影響研究已相當(dāng)廣泛,但絕大部分是圍繞對稱結(jié)構(gòu)街谷展開,未對非對稱街谷進(jìn)行詳細(xì)的研究,同時也很少考慮樹木樹冠尺寸變化的影響。

      本文利用經(jīng)風(fēng)洞實(shí)驗(yàn)驗(yàn)證的CFD 數(shù)值模型,研究樹冠尺寸與建筑高度變化對降階式街道峽谷內(nèi)自然通風(fēng)與污染物擴(kuò)散的影響。研究結(jié)果能從有利于街道峽谷內(nèi)通風(fēng)與污染物擴(kuò)散的角度出發(fā),為城市街道綠化的修剪提供一定理論指導(dǎo)。

      1 研究方法

      1.1 物理模型

      如表1 所示,考慮4 種上、下游建筑高度比HA/HB=1,2,3,1.5及3種不同樹冠尺寸(3×4(小型),6×8(中型),9×12(大型)),采用1∶100 的縮尺比建立以樹冠、建筑、線源為主要元素的3D 降階式街道峽谷模型(圖1(以HA/HB=2 的街谷為例)),共計(jì)12 種工況。如圖1(a)—1(c)所示,其中,建筑參考高度H=0.24 m(實(shí)際尺寸為24 m),街谷寬度W=H,街谷長度L=7.5H,街谷地面設(shè)置4 條具有相同源強(qiáng)度的平行線源,以恒定速率連續(xù)釋放CO 氣體,以模擬四車道道路上的交通排放。每條線源的寬度和高度均為0.021H(0.05 m),長度超出街谷末端0.92H(0.22 m)(以考慮街道交叉口的污染物排放)[24]。樹冠沿街谷y軸線延伸,距地面高均為0.167H(0.04 m),大中型樹冠距離兩側(cè)建筑壁面距離為0.042H(0.01 m),而小型樹冠則為0.167H。

      圖1 街道峽谷模型Fig.1 Street canyon model

      表1 物理模型參數(shù)設(shè)置Tab.1 Parameter settings of physical model

      1.2 數(shù)值模型

      1.2.1 控制方程

      降階式街谷內(nèi)的三維穩(wěn)態(tài)流動采用標(biāo)準(zhǔn)k-ε模型與標(biāo)準(zhǔn)壁函數(shù)進(jìn)行求解,控制方程為[25]

      式中:Cα為污染物 α的濃度;Dα,m為污染物 α在混合物中的分子擴(kuò)散系數(shù);Sα,p為污染物 α的源項(xiàng);S ct為湍流施密特數(shù)(取0.7)。

      采用ANSYS Fluent 14.5 軟件進(jìn)行數(shù)值計(jì)算,其中,控制方程應(yīng)用有限體積法(FVM)離散求解,壓力和速度耦合采用SIMPLE 算法與二階迎風(fēng)格式,各變量收斂殘差設(shè)置為1 × 10-6。

      1.2.2 樹冠模型

      利用Fluent 多孔介質(zhì)條件對樹冠進(jìn)行建模[22],通過在標(biāo)準(zhǔn)流體流動方程中添加動量源項(xiàng)來實(shí)現(xiàn)樹冠的模擬。源項(xiàng)由兩部分組成:黏性損失項(xiàng)與慣性損失項(xiàng),具體如式(6)所示。

      式中:Si為動量方程的源項(xiàng);|v|為流體速度;vj為x,y,z方向速度分量;Di j與Cij為速度矩陣;ρ為空氣密度。

      1.2.3 計(jì)算域與網(wǎng)格

      計(jì)算域采用對稱域,圖1(d)為計(jì)算域示意圖,入口邊界采用速度入口條件(velocity inlet),距離上游建筑迎風(fēng)面10H,基于式(7)~(9),速度冪律分布u(z)、湍流動能k和湍流耗散率 ε應(yīng)用于入口邊界[26];出口邊界(采用outflow 條件)與下游建筑背風(fēng)面距離為15H;上邊界(采用symmetry 條件)距離建筑頂部7H,建筑壁面及地面均設(shè)置為壁面無滑移的邊界條件(wall)。

      式中:u(z)為z高度的平均水平速度;Uref為建筑參考高度H處的平均水平速度,本文Uref=1.5 m/s;基于建筑高度H=0.24 m 的參考雷諾數(shù)(Re=大小為2.3×104,滿足雷諾數(shù)獨(dú)立;u*為摩擦速度,u*=0.54 m/s;δ為邊界層厚度,δ=0.5 m;κ為卡門常數(shù),κ=0.4。

      使用六面體網(wǎng)格對計(jì)算域進(jìn)行離散(圖2)。在0.5H高度以下的街道峽內(nèi)部創(chuàng)建大小相等的網(wǎng)格單元,其中,各網(wǎng)格單元在x,y,z軸向上的長度分別為δx=0.021H,δy=0.042H,δz=0.021H。對于0.5H高度以上,1.5H高度以下的街谷內(nèi)部區(qū)域,x與y方向上的網(wǎng)格單元尺寸不變(δx=0.021H,δy=0.042H),z方向上2 個連續(xù)網(wǎng)格單元之間采用1.04 的膨脹比。對于遠(yuǎn)離街道峽谷的網(wǎng)格,其中,x軸向上2 個連續(xù)網(wǎng)格單元之間的膨脹比采用1.03,y與z軸向上的膨脹比均為1.05。研究的網(wǎng)格總數(shù)量為216 萬。

      圖2 網(wǎng)格劃分Fig.2 Mesh generation

      1.3 模型驗(yàn)證

      采用德國Karlsruhe 大學(xué)的風(fēng)洞實(shí)驗(yàn)數(shù)據(jù)對本文模型進(jìn)行驗(yàn)證[27]。CFD 模型采用了Karlsruhe 風(fēng)洞實(shí)驗(yàn)的有關(guān)條件[28-29],應(yīng)用標(biāo)準(zhǔn)k-ε模型進(jìn)行數(shù)值計(jì)算。圖3 顯示了雙排植樹情況下,街道峽谷背風(fēng)墻和迎風(fēng)墻y/H=0,1.26,3.38 這3 個不同位置處對應(yīng)垂直線上風(fēng)洞實(shí)驗(yàn)測量值與無量綱污染物濃度K的計(jì)算值分布。無量綱濃度K定義為[23]

      圖3 不同位置處數(shù)值模擬計(jì)算值與風(fēng)洞實(shí)驗(yàn)測量值Fig.3 Numerical simulation values and wind tunnel measurements at different positions

      式中:C為污染物的體積分?jǐn)?shù);l為線源長度(l=2.24 m);Qe為氣態(tài)污染物(此處采用SF6)釋放源強(qiáng)。

      分析圖3 可以觀察到各位置上的計(jì)算值與實(shí)驗(yàn)測量值非常吻合。為了量化數(shù)值模型的性能,選擇歸一化均方誤差(NMSE)、分?jǐn)?shù)偏差(FB)、在觀測值兩倍因子內(nèi)的預(yù)測分?jǐn)?shù)(FAC2)和皮爾遜相關(guān)系數(shù)(R)對數(shù)值模型計(jì)算值和風(fēng)洞實(shí)驗(yàn)數(shù)據(jù)之間的關(guān)聯(lián)程度進(jìn)行了統(tǒng)計(jì)學(xué)評估[30]。由表2 可知,各驗(yàn)證指標(biāo)都在規(guī)定標(biāo)準(zhǔn)范圍內(nèi)。綜上,本文采用標(biāo)準(zhǔn)k-ε模型研究街道峽谷內(nèi)的氣流運(yùn)動和污染物擴(kuò)散是可靠的。

      表2 數(shù)值模型評估指標(biāo)Tab.2 Evaluation indicators of numerical model

      2 結(jié)果與討論

      2.1 街道峽谷內(nèi)流場變化與分析

      圖4,5,6 分別為小、中和大型樹冠的街道峽谷中心垂直面的流場分布。對于小型樹冠街谷(圖4),當(dāng)HA/HB=1 時,街谷內(nèi)產(chǎn)生1 個順時針渦,渦心處氣流流速較低,而壁面與地面附近的流速較快;當(dāng)上游建筑高度增加時,順時針渦尺寸變大,渦心上移,并且街谷內(nèi)部生成1 個新的逆時針渦,逆時針渦附近(下游建筑高度以下區(qū)域)的氣流流速明顯低于上部區(qū)域;對比圖4(c)與4(d)可知,當(dāng)上游建筑高度不變時,下游建筑的升高會導(dǎo)致順時針渦渦心向上游偏移。相較小型樹冠街谷,中型樹冠街谷內(nèi)的氣流流動結(jié)構(gòu)沒有發(fā)生顯著改變,但在HA/HB=2 的街谷內(nèi)逆時針渦消失(圖5(b))。隨著樹冠尺寸的進(jìn)一步增大,HA/HB=1,街谷內(nèi)的順時針渦消失,HA/HB=3,街谷內(nèi)的逆時針渦結(jié)構(gòu)嚴(yán)重變形,渦心向迎風(fēng)墻偏移,而HA/HB=2 與HA/HB=1.5 街谷內(nèi)的流動結(jié)構(gòu)沒有發(fā)生顯著變化。

      圖4 小型樹冠街道峽谷中心垂直面流場分布Fig.4 Flow field distribution in central vertical plane of small tree-canopy street canyon

      圖5 中型樹冠街道峽谷中心垂直面流場分布Fig.5 Flow field distribution in central vertical plane of medium tree-canopy street canyon

      圖6 大型樹冠街道峽谷中心垂直面流場分布Fig.6 Flow field distribution in central vertical plane of large tree-canopy street canyon

      圖7,8,9 分別為小、中和大型樹冠街道峽谷人行呼吸高度面的流場分布。對于小型樹冠街谷(圖7),當(dāng)HA/HB=1 時,街谷y軸正方向出口處生成一個順時針渦,負(fù)方向出口處則生成一個逆時針渦,街谷內(nèi)氣流主要向背風(fēng)墻方向流動,而在大型樹冠街谷內(nèi),街谷內(nèi)氣流則向迎風(fēng)墻流動;當(dāng)HA/HB=2 時,街谷內(nèi)產(chǎn)生對向流動,氣流被分成兩部分,一部分往背風(fēng)墻方向流動,一部分往迎風(fēng)墻流動,而在中型與大型樹冠街谷內(nèi),同樣觀察到對向流動,但流向均往背風(fēng)墻方向。隨著上游建筑繼續(xù)增高,即HA/HB=3 時,街谷內(nèi)氣流對向流動發(fā)展為反向流動,分別流向兩端出口;當(dāng)上游建筑增高后保持不變而下游建筑增高,即HA/HB=1.5 時,街谷內(nèi)氣流反向流動發(fā)展為對向流動,氣流主要向迎風(fēng)墻流動。通過對比分析不同樹冠尺寸的街谷內(nèi)的流動情況可以看出,樹冠尺寸的增加能夠明顯改變氣流的流速與流動結(jié)構(gòu),這在HA/HB=1,2 的街谷尤為明顯。

      圖7 小型樹冠街道峽谷人行呼吸高度面流場分布Fig.7 Flow field distribution at pedestrian breathing height in small tree-canopy street canyon

      圖8 中型樹冠街道峽谷人行呼吸高度面流場分布Fig.8 Flow field distribution at pedestrian breathing height in medium tree-canopy street canyon

      圖9 大型樹冠街道峽谷人行呼吸高度面流場分布Fig.9 Flow field distribution at pedestrian breathing height in large tree-canopy street canyon

      2.2 街道峽谷內(nèi)污染物濃度分布

      圖10,11,12 分別為小、中和大型樹冠街道峽谷中心垂直面的污染物濃度分布,結(jié)合圖4,5,6 分析可知,街谷內(nèi)污染物的分布主要受氣流流動結(jié)構(gòu)的影響。對于小型樹冠街谷(圖10),當(dāng)HA/HB=1 時,污染物在街谷內(nèi)順時針渦的作用下向背風(fēng)墻一側(cè)擴(kuò)散。隨著上游建筑的升高,街谷內(nèi)污染物受逆時針渦的影響,開始向迎風(fēng)墻一側(cè)擴(kuò)散,導(dǎo)致迎風(fēng)墻附近的污染物濃度升高,這在HA/HB=3與HA/HB=1.5 的街谷內(nèi)尤為明顯。由于與小型樹冠街谷內(nèi)的流動結(jié)構(gòu)相比變化不大,中型樹冠街谷內(nèi)的污染物分布趨勢與小型街谷內(nèi)基本相似。但在大型樹冠街谷內(nèi),尤其是HA/HB=1時,街谷內(nèi)順時針渦消失,氣流向迎風(fēng)墻流動,污染物隨氣流向該側(cè)擴(kuò)散,導(dǎo)致迎風(fēng)墻一側(cè)污染程度加劇。顯然,在不同結(jié)構(gòu)街谷內(nèi),樹冠尺寸變化對污染物分布情況的影響程度不同,在HA/HB=2,3,1.5 的街谷內(nèi),樹冠尺寸改變,街谷內(nèi)污染物分布趨勢變化不大,而在HA/HB=1 的街谷內(nèi),樹冠尺寸增為大型時,污染物分布情況發(fā)生顯著改變。

      圖10 小型樹冠街道峽谷中心垂直面污染物分布Fig.10 Pollutant distribution in central vertical plane of small tree-canopy street canyon

      圖11 中型樹冠街道峽谷中心垂直面污染物分布Fig.11 Pollutant distribution in central vertical plane of medium tree-canopy street canyon

      圖12 大型樹冠街道峽谷中心垂直面污染物分布Fig.12 Pollutant distribution in central vertical plane of large tree-canopy street canyon

      圖13,14,15 分別為小、中和大型樹冠街道峽谷人行呼吸高度面的污染物濃度分布,人行呼吸高度面污染物的分布同樣受氣流運(yùn)動的主導(dǎo)。當(dāng)HA/HB=1 時,對于小型與中型樹冠街谷,由于氣流向背風(fēng)墻方向流動,污染物隨之向背風(fēng)墻一側(cè)擴(kuò)散;當(dāng)HA/HB=2 時,人行呼吸高度面的污染物仍主要分布在背風(fēng)墻一側(cè),但小型樹冠街谷內(nèi)的部分污染物有明顯向迎風(fēng)墻擴(kuò)散的趨勢。隨著上游建筑繼續(xù)增高,即HA/HB=3 時,街谷內(nèi)污染物在氣流的作用下向街谷出口端擴(kuò)散,導(dǎo)致街谷出口附近的污染物濃度升高。而當(dāng)HA/HB=1.5 時,街谷內(nèi)氣流對向流動,街谷中部的污染程度明顯高于其他區(qū)域。對比相同結(jié)構(gòu)不同樹冠尺寸的街谷,隨著樹冠尺寸的增加,對應(yīng)結(jié)構(gòu)的街谷內(nèi)污染物濃度明顯上升,高濃度污染區(qū)域的范圍明顯擴(kuò)大,這是由于樹冠的阻滯作用抑制了污染物的擴(kuò)散。

      圖13 小型樹冠街道峽谷人行呼吸高度面污染物分布Fig.13 Pollutant distribution at pedestrian breathing height in small tree-canopy street canyon

      2.3 街道峽谷內(nèi)ACH 的評估分析

      空氣交換率ACH表示單位時間內(nèi)街道峽谷和環(huán)境大氣之間的空氣交換量??諝鈴慕止扰懦霰硎緸锳CH+,進(jìn)入街谷則表示為ACH-。對于本研究中的3D 街道峽谷,氣流主要在街谷兩端出口與頂部與環(huán)境空氣發(fā)生交換,ACH+與ACH-的計(jì)算定義為[23,31-33]

      圖14 中型樹冠街道峽谷人行呼吸高度面污染物分布Fig.14 Pollutant distribution at pedestrian breathing height in medium tree-canopy street canyon

      式中:ACHt表示穿過街谷頂面;ACHs1表示穿過街谷y軸正向出口平面;ACHs2表示穿過街谷y軸負(fù)向出口平面。

      式中:Γ表示對應(yīng)平面的面積,k為湍動能。

      圖15 大型樹冠街道峽谷人行呼吸高度面污染物分布Fig.15 Pollutant distribution at pedestrian breathing height in large tree-canopy street canyon

      圖16 為各工況下街道峽谷內(nèi)的空氣交換率ACH的柱狀圖。由圖16 可知,對于相同結(jié)構(gòu)的街道峽谷,隨著樹冠尺寸的增加,街谷內(nèi)的ACH隨之降低。其中,當(dāng)樹冠尺寸從小型增大為中型時,在HA/HB=1,2,3,1.5 的街谷內(nèi),ACH分別降低了3.40%,10.53%,3.27%,0.99%,而當(dāng)樹冠尺寸從小型增大為大型時,ACH則分別降低了10.61%,28.37%,26.45,3.34%。進(jìn)一步分析可知,在各結(jié)構(gòu)街谷內(nèi),樹冠尺寸從小型改變?yōu)橹行团c大型時,ACH分別平均降低了7.00%,19.45%,14.86%,2.16%。顯然,在不同結(jié)構(gòu)的街谷內(nèi),樹冠尺寸對ACH的影響程度不同,尤其在HA/HB=1.5 的街谷內(nèi),樹冠尺寸改變引起的ACH變幅很小。同時,街谷結(jié)構(gòu)的變化同樣會顯著影響街谷內(nèi)的ACH。當(dāng)樹冠尺寸不變,上游建筑升高時,街谷內(nèi)的ACH明顯降低,其中,HA/HB=3 街谷內(nèi)的ACH相較HA/HB=1 街谷平均降低了42.4%,而在此情況下將下游建筑升高,即HA/HB=1.5 時,街谷內(nèi)的環(huán)境通風(fēng)能力得到明顯提升,此時街谷內(nèi)的ACH相較HA/HB=3 街谷最大升高了139.1%,平均升高了99.1%。

      圖16 街道峽谷內(nèi)的空氣交換率Fig.16 ACH in street canyons

      3 結(jié)論

      采用經(jīng)風(fēng)洞實(shí)驗(yàn)數(shù)據(jù)驗(yàn)證的標(biāo)準(zhǔn)k-ε模型,通過數(shù)值模擬研究了垂直迎風(fēng)條件下,樹冠尺寸與建筑高度變化對街道峽谷內(nèi)環(huán)境通風(fēng)和交通污染物擴(kuò)散的影響,得到以下結(jié)論:

      a.建筑高度的變化對街道峽谷內(nèi)的氣流流動結(jié)構(gòu)有重要影響,因此,在不同建筑高度的街道峽谷內(nèi),污染物的擴(kuò)散分布情況顯著不同。上游建筑的升高會導(dǎo)致街谷中心垂直面逆向渦的生成以及人行呼吸高度面氣流流向的改變,此時街谷中心垂直面與人行呼吸高度面上的污染物有明顯向迎風(fēng)墻一側(cè)擴(kuò)散的趨勢。下游建筑抬高則會引起街谷上方順時針渦尺寸的變化與渦心的偏移,此時污染物在街谷內(nèi)的分布范圍變廣,且在迎風(fēng)墻一側(cè)濃度較高。

      b.在不同結(jié)構(gòu)的街道峽谷內(nèi),樹冠尺寸的改變對街谷內(nèi)氣流流動結(jié)構(gòu)與污染物擴(kuò)散的影響不同。相較HA/HB=2,3,1.5 的街谷,在HA/HB=1 街谷內(nèi),樹冠尺寸變化對氣流結(jié)構(gòu)的影響更為顯著。在HA/HB=1 街谷內(nèi),對比中、小尺寸樹冠情況,大型樹冠會導(dǎo)致較矮建筑的街谷中心垂直面的順時針渦消失以及人行呼吸高度面氣流流向改變。

      c.街谷內(nèi)的環(huán)境通風(fēng)情況會因樹冠尺寸與建筑高度的改變而發(fā)生變化。樹冠尺寸增大與上游建筑升高均會導(dǎo)致街谷內(nèi)ACH降低,而下游建筑抬高則會提升街谷內(nèi)ACH。為了改善現(xiàn)實(shí)街道的通風(fēng)條件,對于HA/HB=1,2,3 的街谷,應(yīng)盡量減小樹冠的尺寸,而對于HA/HB=1.5 的街谷,由于樹冠尺寸改變對街谷內(nèi)通風(fēng)影響甚小,在考慮經(jīng)濟(jì)性的前提下可不對這類街谷內(nèi)的樹冠進(jìn)行過多的修剪。

      研究了不同樹冠尺寸與建筑高度對街谷通風(fēng)與污染物擴(kuò)散的影響,提出了不同結(jié)構(gòu)的街道峽谷內(nèi)行道樹樹冠的最佳修剪方式。對綠化結(jié)構(gòu)進(jìn)行了初步的探討,但對實(shí)際綠化進(jìn)行了一定的簡化,后續(xù)研究將進(jìn)一步考慮樹冠對污染物的去除效果及行道樹葉片類型對街谷內(nèi)流動結(jié)構(gòu)及污染物擴(kuò)散分布的影響。

      猜你喜歡
      峽谷樹冠氣流
      氣流的威力
      樹冠羞避是什么原理?
      榕樹
      樹冠
      文學(xué)港(2019年5期)2019-05-24 14:19:42
      峽谷陰謀
      馬嶺河峽谷
      固體運(yùn)載火箭變軌發(fā)動機(jī)噴管氣流分離研究
      飛片下的空氣形成的“超強(qiáng)高速氣流刀”
      基于停留時間分布的氣流床氣化爐通用網(wǎng)絡(luò)模型
      寂靜峽谷
      上杭县| 邹城市| 巢湖市| 石棉县| 博乐市| 化德县| 宁武县| 乌拉特前旗| 金乡县| 修水县| 红安县| 成都市| 余庆县| 阳泉市| 淄博市| 体育| 包头市| 普陀区| 长沙县| 石台县| 婺源县| 台前县| 铜陵市| 三都| 仁化县| 江油市| 太湖县| 宁安市| 瓮安县| 上林县| 锡林郭勒盟| 贵南县| 张掖市| 宜春市| 梁山县| 图木舒克市| 黑山县| 保定市| 襄樊市| 邹平县| 岳阳市|