聶江波 金明超 方添順 蔣豪威 李建有
[摘要] 骨關(guān)節(jié)炎(osteoarthritis,OA)是常見的關(guān)節(jié)退行性病變,常表現(xiàn)為關(guān)節(jié)疼痛及活動受限。不可逆的軟骨退變與軟骨下骨骨質(zhì)破壞是其最主要的病理改變。OA早期診斷困難,大多數(shù)晚期患者因此接受關(guān)節(jié)置換。環(huán)狀RNA(circRNAs)是一類特殊的非編碼RNAs,由堿基組成閉環(huán)結(jié)構(gòu),廣泛存在真核生物中。作為調(diào)節(jié)細(xì)胞代謝的重要分子,circRNAs近年來被發(fā)現(xiàn)在骨關(guān)節(jié)炎中異常表達,參與軟骨破壞及關(guān)節(jié)無菌性炎癥等生物學(xué)行為。同時,circRNAs的環(huán)狀結(jié)構(gòu)使其能在血液中穩(wěn)定存在,具有骨關(guān)節(jié)炎早期診斷、療效評估及治療的潛力?,F(xiàn)就circRNAs及其在骨關(guān)節(jié)炎調(diào)控的研究進展展開論述。
[關(guān)鍵詞] 骨關(guān)節(jié)炎;circRNAs;病理機制;早期診斷
[中圖分類號] R684? ? ? ? ? [文獻標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2022)16-0148-04
Recent advances of circRNAs in pathological regulation of osteoarthritis
NIE Jiangbo JIN Mingchao FANG Tianshun JIANG Haowei LI Jianyou
Department of Orthopaedics, Huzhou hospital of Zhejiang University, Huzhou 31300, China
[Abstract] Osteoarthritis (OA) is a common age-related, degenerative joint disease, with severe joint pain and functional limitation.Advancement of degenerative changes in the joint cartilage and irreversible breakage of subchondral bone are the main pathological changes of OA. Due to the difficulty in early diagnosis of OA, most of advanced patients have to receive joint arthroplasty.CircRNAs, that RNAs with closed loop structure formed by bases, are specific non-coding RNAs in eukaryotic cells.Involving in regulating cellular metabolism, circRNAs are recently demonstrated to express in OA abnormally. Studies show that circRNAs play important role in cartilage destruction and aseptic inflammation. Meanwhile, circRNAs, that can exist stably in blood because of their ring structure, have great potential in early diagnosis, evaluation of therapeutic efficacy and targeted therapy of OA. The advances of circRNAs in pathological regulation of OA would be reviewed in this paper.
[Key words] Osteoarthritis; circRNAs; Pathological mechanisms; Early dignosis
骨關(guān)節(jié)炎(osteoarthritis,OA)是一種以疼痛、關(guān)節(jié)活動受限為特征的退行性病變,全身多關(guān)節(jié)可見,最常累及膝、髖等承重關(guān)節(jié)。早期藥物治療可一定程度延緩OA的進展,但大多數(shù)晚期患者不得不接受關(guān)節(jié)置換,帶來巨大的醫(yī)療負(fù)擔(dān)。OA的病理改變累及整個關(guān)節(jié),主要為軟骨退變及軟骨下骨硬化。多種機制參與其形成,包括軟骨細(xì)胞凋亡、細(xì)胞外基質(zhì)降解、炎癥及遺傳學(xué)因素等[1]。研究其病變機制對于早期干預(yù)、逆轉(zhuǎn)OA進展至關(guān)重要。
環(huán)狀RNAs(circular RNAs, circRNAs)是一種特殊的非編碼RNA,是由堿基單鏈組成的穩(wěn)定閉環(huán)結(jié)構(gòu),不具備5’帽和3’多聚腺苷酸尾[2]。其廣泛存在于真核生物中,具有時間特異性和組織特異性。由于實驗技術(shù)的限制,低表達量的circRNAs曾被視作前信使RNAs(pre-messenger RNAs,pre-mRNAs)錯誤剪切的產(chǎn)物。而隨著生物信息技術(shù)的發(fā)展,circRNAs被證實能夠調(diào)控基因的剪切、轉(zhuǎn)錄、直接編碼蛋白及多肽的合成,參與多種疾病的發(fā)生和發(fā)展[3]。近年來研究發(fā)現(xiàn),部分circRNAs與OA的發(fā)病機制相關(guān)。本文將對circRNAs在OA發(fā)病機制調(diào)控的研究進展進行綜述。
1 circRNAs
早在1970年,Sanger等[4]通過電子顯微鏡在高等植物中發(fā)現(xiàn)了具有環(huán)狀結(jié)構(gòu)的RNA類病毒。隨后,有研究者通過PCR擴增技術(shù)及測序技術(shù)驗證了circRNAs的存在[5]。而直到2013年,人們首次提出circRNAs功能分析的方法,真正意義上打開circRNAs研究的大門[6]。隨著研究不斷深入,circRNAs的生成及作用機制更為清晰。
1.1 circRNAs的分類及生成
基因的各個片段,包括外顯子、內(nèi)含子、非翻譯區(qū)等,都能夠生成circRNAs。根據(jù)來源差異將circRNAs分為3種類型:外顯子circRNAs(exonic circRNA, ecircRNAs)、內(nèi)含子circRNAs(circular intronicRNA,ciRNAs)、外顯子-內(nèi)含子circRNAs(exon-introncircRNA,EIciRNAs)。其中外顯子circRNAs主要存在于細(xì)胞質(zhì)中,最為常見。circRNAs與mRNAs的前體均為pre-mRNAs?;蛟赗NA聚合酶Ⅱ的催化下轉(zhuǎn)錄生成pre-mRNAs,再通過剪切與修飾生成線性的mRNAs。與之不同的是,pre-mRNAs生成circRNAs需要環(huán)化機制參與[7]。目前主要研究的機制包括外顯子跳躍環(huán)化、內(nèi)含子配對驅(qū)動的環(huán)化、內(nèi)含子套索驅(qū)動環(huán)化及RNA 結(jié)合蛋白驅(qū)動的環(huán)化[8]。
1.2 circRNAs的生物學(xué)功能
circRNAs主要通過4種途徑發(fā)揮生物學(xué)功能:(1)miRNAs的分子“海綿”作用,circRNAs具有miRNA響應(yīng)原件(miRNA response elements,MREs)能夠結(jié)合特定的miRNAs,發(fā)揮競爭性內(nèi)源RNA(competing endogenous RNAs,ceRNA)的功能,調(diào)控mRNAs的表達。ciRS-7是首個被發(fā)現(xiàn)有70多個選擇性miRNAs結(jié)合位點的circRNAs,其能夠競爭性結(jié)合miR-7調(diào)控Argonaute的表達[6]。(2)RNA結(jié)合蛋白(RNA binding proteins,RBPs)的“海綿”作用,RBPs參與多種細(xì)胞生物功能,而circRNAs被證實能夠結(jié)合RBPs,形成穩(wěn)定的RNA-蛋白復(fù)合體(RNA-protein complexes,RPCs),發(fā)揮調(diào)控作用。如circ-Foxo3與CDK2及p21結(jié)合形成circ-Foxo3-p21-CDK2復(fù)合物,阻斷細(xì)胞周期進程[9]。(3)編碼蛋白質(zhì)/多肽,既往認(rèn)為,circRNAs不存在游離的5’帽結(jié)構(gòu),不能夠翻譯蛋白質(zhì)。而最新的研究發(fā)現(xiàn),部分circRNAs可以通過非帽依賴機制編碼蛋白質(zhì)/多肽。如通過滾環(huán)擴增(rolling circle amplification,RCA)機制、甲基化修飾m6A驅(qū)動或直接結(jié)合多聚核糖體等方式翻譯下游蛋白。(4)調(diào)節(jié)轉(zhuǎn)錄及RNA剪切,circRNAs能夠影響RNA聚合酶Ⅱ的活性調(diào)節(jié)轉(zhuǎn)錄,或直接調(diào)控pre-mRNA的選擇性剪切。如ci-ankrd52能夠調(diào)控RNA聚合酶Ⅱ促進ankrd52的轉(zhuǎn)錄,敲除ci-ankrd52將下調(diào)親本基因的表達[10]。
2 circRNAs與骨關(guān)節(jié)炎
軟骨退變是OA最重要的致病機制。參與軟骨退變的因素有很多,如軟骨細(xì)胞凋亡、衰老、細(xì)胞外基質(zhì)(extracellular matrix,ECM)的代謝障礙、炎癥等[11]。circRNAs在其中發(fā)揮重要作用。研究發(fā)現(xiàn),OA患者關(guān)節(jié)軟骨及滑膜組織中存在circRNAs異常表達。Liu等[12]通過聚類分析發(fā)現(xiàn),退變軟骨相較于正常軟骨存在71個差異circRNAs,其中55個circRNAs在退變軟骨中下調(diào)。隨后進一步對比OA患者同一關(guān)節(jié)的負(fù)重區(qū)和非負(fù)重區(qū)軟骨,檢測到104個circRNAs表達差異,其中應(yīng)力相關(guān)的circRNA-MSR與OA進展相關(guān)[13]。此外,Xiang等[14]對10例關(guān)節(jié)滑膜組織(5例正常、5例OA)進行RNA測序,發(fā)現(xiàn)滑膜中存在122個差異circRNAs。在非負(fù)重關(guān)節(jié)OA患者的滑膜中,差異circRNAs大小約為300~3000 bp,主要來自于1號染色體,極少來自性染色體,并且大部分能夠調(diào)控免疫活性[15]。同時,這些circRNAs可以調(diào)控TGF-β、HTLV-1、Wnt等信號通路及炎癥因子的生成參與ECM合成和軟骨細(xì)胞代謝[16, 17]。深入研究circRNAs在OA發(fā)生發(fā)展的作用機制,尋找到致病的關(guān)鍵因子,將為治療早期軟骨退變、逆轉(zhuǎn)OA的進展提供新手段。
2.1 circRNAs與關(guān)節(jié)軟骨細(xì)胞外基質(zhì)的代謝
ECM是維持軟骨細(xì)胞生存的微環(huán)境,由Ⅱ型膠原蛋白、蛋白聚糖、水、彈性纖維等構(gòu)成,其中Ⅱ型膠原和蛋白聚糖是最主要的功能物質(zhì)。在正常軟骨中,ECM的合成與分解相對穩(wěn)定,各種因素導(dǎo)致的ECM分解增加都將影響關(guān)節(jié)軟骨的正常結(jié)構(gòu)與功能,誘發(fā)軟骨退變。金屬基質(zhì)蛋白酶(matrix metalloproteinases,MMPs)和解聚蛋白樣金屬蛋白酶(a disintegrin like and metalloproteinase with thrombospondin motifs,ADAMTSs)能夠分解膠原蛋白和蛋白聚糖,參與ECM的降解,其中MMP-13主要降解Ⅱ型膠原。circRNAs結(jié)合miRNAs后可以調(diào)控MMPs的表達,如circTMBIM6競爭性結(jié)合miR-27a并沉默其功能,上調(diào)軟骨中的MMP-13表達[18]。Liu等[12]發(fā)現(xiàn)circRNA-CER在OA負(fù)重區(qū)高表達,轉(zhuǎn)染siRNA沉默circRNA-CER后,軟骨中MMP-13顯著減少,而miR-136表達上調(diào),表明circRNA-CER通過抑制 miR-136發(fā)揮作用,促進MMP-13生成,加速ECM降解及軟骨損傷。部分circRNAs能夠同時調(diào)控MMPs與ADAMTSs參與OA進展。如hsa_circ_0005105、circGCN1L1分別結(jié)合miR-26a、miR-330-3p,抑制MMP-13及ADAMTS-4生成,轉(zhuǎn)染hsa_circ_0005105、circGCN1L1后軟骨細(xì)胞中Ⅱ型膠原及蛋白聚糖減少[19,20]。
同時,hsa_circ_0005105、circGCN1L1可以誘發(fā)TNF-α及IL-1β等炎癥因子的生成。炎癥因子進一步刺激MMPs和ADAMTSs表達,形成正反饋效應(yīng)加速ECM降解。并且炎癥因子并不是單獨發(fā)揮作用,而是通過瀑布式效應(yīng)放大下游因子釋放,形成交織的調(diào)控網(wǎng)絡(luò)。研究發(fā)現(xiàn),其他circRNAs也能參與調(diào)控炎癥因子釋放。如ciRS-7與circ-0136474存在拮抗作用,circ-0136474抑制miR-127-5p的功能,刺激TNF-α、IL-1β等炎癥因子的釋放,損傷軟骨活性,而ciRS-7結(jié)合miR-7后產(chǎn)生相反作用[21,22]。環(huán)氧合酶2(cyclooxygenase-2,COX2)催化前列腺素合成,誘導(dǎo)炎癥反應(yīng)。服用選擇性的COX2抑制劑可以減輕OA患者關(guān)節(jié)內(nèi)無菌性炎癥,同時緩解患者關(guān)節(jié)疼痛。在IL-1β誘導(dǎo)的OA模型中,circRNA Atp9b結(jié)合miR-138-5p,參與誘導(dǎo)COX2表達,促進ECM的降解[23]。而circFADS2結(jié)合miR-489后,激活mTORs通路,抑制COX2、IL-6的產(chǎn)生,有利于保護關(guān)節(jié)軟骨[24]。
CircRNAs結(jié)合miRNAs后,參與炎癥相關(guān)通路,如NF-κB通路、髓樣分化因子(MyD88)、MEK/ERK通路等,進一步影響ECM的代謝活動。NF-κB基因參與調(diào)控多種炎癥反應(yīng),在OA患者軟骨中顯著增多,可以刺激MMPs表達。Ma等[25]發(fā)現(xiàn)circVCAN通過抑制NF-κB 通路活性保護關(guān)節(jié)軟骨。MyD88屬于Toll樣受體(Toll-like receptors,TLR)和IL-1受體家族,是調(diào)節(jié)NF-κB通路的重要適配器蛋白。CircRNF121是OA軟骨細(xì)胞中MyD88的重要調(diào)節(jié)RNA,在IL-1β誘導(dǎo)的OA細(xì)胞模型中,miR-665與MyD88表達呈負(fù)相關(guān),而miR-665是軟骨細(xì)胞中circRNF121的直接靶點,circRNF121通過結(jié)合miR-665誘導(dǎo)MyD88表達,激活下游NF-κB通路,促進炎癥因子及MMPs的釋放[26]。研究證明,蛋白激酶信號通路廣泛參與炎癥調(diào)控過程。MAPK激酶1/2(MEK1/2)磷酸化激活ERK1/2,在OA發(fā)病過程中持續(xù)發(fā)揮作用。circRNA-CDR1as結(jié)合miR-641后,通過上調(diào)FGF-2表達激活MEK/ERK通路,誘發(fā)關(guān)節(jié)內(nèi)炎癥反應(yīng),破壞ECM[27]。
2.2 circRNAs與軟骨細(xì)胞凋亡
軟骨細(xì)胞凋亡是參與OA的重要機制之一,炎癥反應(yīng)與其密不可分。有越來越多的研究證據(jù)表明,circRNAs在通過炎癥因子調(diào)控ECM降解的同時,參與了軟骨細(xì)胞的增殖及凋亡調(diào)控。TGF-β作為公認(rèn)的抑炎因子,同時廣泛參與細(xì)胞生長分化的調(diào)節(jié)。Shen等[28]報道circCDK14依賴于miR-125a-5p/Smad2參與OA的調(diào)控,間接增強TGF-β抑制炎癥及軟骨細(xì)胞凋亡的作用。另有研究發(fā)現(xiàn),部分circRNAs參與調(diào)控細(xì)胞生長相關(guān)通路。miR-193b可以直接靶向作用于胰島素生長因子1受體(insulin-like growth factor 1,IGF1R),抑制細(xì)胞的增殖[29]。而hsa_circ_0045714結(jié)合并沉默miR-193b之后,OA軟骨細(xì)胞凋亡數(shù)目顯著減少[30]。Ma等[25]發(fā)現(xiàn)circVCAN表達與增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)表達呈正相關(guān)。轉(zhuǎn)染LV-circVCAN后,circVCAN及PCNA高表達,G0/G1期軟骨細(xì)胞增多,S期顯著減少,大量細(xì)胞進入增殖期,同時凋亡通路顯著受抑制。
3 circRNAs與OA的早期診斷
診斷OA主要依賴臨床癥狀和影像學(xué)檢查,而明確診斷時關(guān)節(jié)軟骨已顯著破壞、不可逆轉(zhuǎn)。目前仍缺乏OA早期診斷的有效方法。circRNAs廣泛分布于各組織中,具有顯著的組織特異性,并且其閉環(huán)結(jié)構(gòu)能夠耐受核酸外切酶,在組織及外周血中穩(wěn)定存在[31]。同時,OA患者的關(guān)節(jié)軟骨及滑膜組織中均存在circRNAs的異常表達。通過檢測特定circRNAs能夠有助于OA的早期診斷。Wang等[32]發(fā)現(xiàn)hsa_circRNA_0032131能夠結(jié)合多個miRNA參與軟骨退變,對于早期OA具備很好的診斷潛力。然而,關(guān)節(jié)穿刺獲取組織標(biāo)本可能進一步損傷軟骨、加速OA的進展或?qū)е玛P(guān)節(jié)感染。進一步研究表明hsa_circRNA_0032131在OA患者的外周血中也存在高表達。因此,檢測血液中的circRNAs更具備OA早期診斷的應(yīng)用前景。同樣有研究報道hsa_circ_101178在OA患者的關(guān)節(jié)滑膜及外周血中高表達,并且在外周血中的表達水平與滑膜中表達水平存在相關(guān)性,能夠用于評估患者OA的嚴(yán)重程度[33]。其他如hsa_circ_20014在OA及大骨結(jié)病血液中差異表達,可以作為診斷骨關(guān)節(jié)疾病的標(biāo)志物[34]。
4 總結(jié)與挑戰(zhàn)
近年來,隨著測序技術(shù)及生物信息學(xué)的迅速發(fā)展,circRNAs越來越受關(guān)注。最新研究表明,circRNAs在OA患者的關(guān)節(jié)軟骨及滑膜組織中差異表達,參與調(diào)控OA的發(fā)生發(fā)展。目前認(rèn)為circRNAs主要通過miRNAs的分子“海綿”作用參與軟骨退變、凋亡及炎癥過程。而既往研究證實circRNAs可以直接翻譯多肽和(或)蛋白參與疾病的發(fā)生發(fā)展。circRNAs-蛋白質(zhì)通路是否參與OA病理生理過程仍不清楚。進一步尋找致病的關(guān)鍵circRNAs及研究circRNAs是否通過其他機制參與OA的病理過程十分必要。同時,眾多的circRNAs與miRNAs組成調(diào)控網(wǎng)絡(luò)發(fā)揮作用,其調(diào)節(jié)機制復(fù)雜,基于目前的研究尚不能完全闡述circRNAs作用的相關(guān)分子機制。如何合理利用生物信息學(xué)技術(shù)構(gòu)建及發(fā)掘circRNAs數(shù)據(jù)庫、通過數(shù)據(jù)分析預(yù)測相關(guān)的作用通路仍是研究的趨勢。由于circRNAs能在關(guān)節(jié)液及外周血中穩(wěn)定存在,其具備OA早期診斷及治療的巨大潛力。部分外周血中circRNAs的表達量與OA分級存在良好的相關(guān)性,但其診斷的特異性和敏感度仍有待評估,需要大樣本的臨床研究。不過,隨著技術(shù)進步以及對circRNAs研究的不斷深入,circRNAs將可以切實地應(yīng)用于臨床。
[參考文獻]
[1]? ?Wang Q,Rozelle AL,Lepus CM,et al.Identification of a central role for complement in osteoarthritis[J].Nat Med,2011,17(12):1674-1679.
[2]? ?Ren S,Lin P,Wang J,et al.Circular RNAs:Promising molecular biomarkers of human aging-related diseases via functioning as an miRNA sponge[J].Mol Ther Methods Clin Dev,2020,18:215-229.
[3]? ?Du WW,Zhang C,Yang W,et al.Identifying and characterizing circRNA-Protein interaction[J].Theranostics,2017, 7(17):4183-4191.
[4]? ?Sanger HL,Klotz G,Riesner D,et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J].Proc Natl Acad Sci USA,1976,73(11):3852-3856.
[5]? ?Kos A,Dijkema R,Arnberg AC,et al.The hepatitis delta (delta) virus possesses a circular RNA[J].Nature,1986, 323(6088):558-560.
[6]? ?Hansen TB,Jensen TI,Clausen BH, et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388.
[7]? ?Ashwal-Fluss R,Meyer M,Pamudurti NR,et al.circRNA biogenesis competes with pre-mRNA splicing[J].Mol Cell,2014,56(1):55-66.
[8]? ?齊玉涵,劉澤鵬, 張偉杰, 等.環(huán)狀RNA研究進展[J].生理學(xué)報,2019,71(4):613-624.
[9]? ?Du WW,Yang W,Liu E,et al.Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J].Nucleic Acids Res,2016,44(6):2846-2858.
[10]? Zhang Y,Zhang XO,Chen T,et al.Circular intronic long noncoding RNAs[J].Mol Cell,2013,51(6):792-806.
[11]? Charlier E,Deroyer C,Ciregia F,et al.Chondrocyte dedifferentiation and osteoarthritis(OA)[J].Biochem Pharmacol,2019,165:49-65.
[12]? Liu Q,Zhang X,Hu X,et al.Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 'sponge' in human cartilage degradation[J].Sci Rep,2016,6:22 572.
[13]? Liu Q,Zhang X,Hu X,et al.Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis[J].Mol Ther Nucleic Acids,2017, 7:223-230.
[14]? Xiang S, Li Z, Bian Y, et al.RNA sequencing reveals the circular RNA expression profiles of osteoarthritic synovium[J].J Cell Biochem,2019,120(10):18 031-1 8040.
[15]? Hu Y,Zhu H,Bu L,et al.Expression profile of circular RNA s in TMJ osteoarthritis synovial tissues and potential functions of hsa_circ_0000448 with specific back-spliced junction[J].Am J Transl Res,2019,11(9):5357-5374.
[16]? Xiao K,Xia Z,F(xiàn)eng B,et al.Circular RNA expression profile of knee condyle in osteoarthritis by illumina HiSeq platform[J].J Cell Biochem,2019,120(10):17 500-17 511.
[17]? Wang Y,Wu C,Zhang Y,et al.Screening for differentially expressed circRNA between Kashin-Beck disease and osteoarthritis patients based on circRNA chips[J].Clin Chim Acta,2020,501:92-101.
[18]? Bai ZM,Kang MM,Zhou XF,et al.CircTMBIM6 promotes osteoarthritis-induced chondrocyte extracellular matrix degradation via miR-27a/MMP13 axis[J].Eur Rev Med Pharmacol Sci,2020,24(15):7927-7936.
[19]? Zhu H,Hu Y,Wang C,et al.CircGCN1L1 promotes synoviocyte proliferation and chondrocyte apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis[J].Cell Death Dis,2020,11(4):284.
[20]? Wu Y,Zhang Y,Zhang Y,et al.CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a[J].Cell Biol Int,2017,41(12):1283-1289.
[21]? Zhou X,Jiang L,F(xiàn)an G,et al.Role of the ciRS-7/miR-7 axis in the regulation of proliferation,apoptosis and inflammation of chondrocytes induced by IL-1β[J].Int Immunopharmacol,2019,71:233-240.
[22]? Li Z,Yuan B,Pei Z,et al.Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis[J].J Cell Mol Med,2019,23(10):6554-6564.
[23]? Zhou ZB,Du D,Huang GX,et al.Circular RNA Atp9b,a competing endogenous RNA, regulates the progression of osteoarthritis by targeting miR-138-5p[J].Gene,2018, 646:203-209.
[24]? Li G,Tan W,F(xiàn)ang Y,et al.circFADS2 protects LPS-treated chondrocytes from apoptosis acting as an interceptor of miR-498/mTOR cross-talking[J].Aging (Albany NY),2019,11(10):3348-3361.
[25]? Ma HR,Mu WB,Zhang KY,et al.CircVCAN regulates the proliferation and apoptosis of osteoarthritis chondrocyte through NF-κB signaling pathway[J].Eur Rev Med Pharmacol Sci,2020,24(12):6517-6525.
[26]? Wang T,Hao Z,Liu C,et al.LEF1 mediates osteoarthritis progression through circRNF121/miR-665/MYD88 axis via NF-кB signaling pathway[J].Cell Death Dis,2020,11(7):598.
[27]? Zhang W,Zhang C,Hu C,et al.Circular RNA-CDR1as acts as the sponge of microRNA-641 to promote osteoarthritis progression[J].J Inflamm (Lond),2020,17:8.
[28]? Shen P,Yang Y,Liu G,et al.CircCDK14 protects against Osteoarthritis by sponging miR-125a-5p and promoting the expression of Smad2[J].Theranostics,2020,10(20):9113-9131.
[29]? Chen J,Deng T,Li X,et al.MiR-193b inhibits the growth and metastasis of renal cell carcinoma by targeting IGF1R[J].Artif Cells Nanomed Biotechnol,2019,47(1):2058-2064.
[30]? Li BF,Zhang Y,Xiao J,et al.Hsa_circ_0045714 regulates chondrocyte proliferation, apoptosis and extracellular matrix synthesis by promoting the expression of miR-193b target gene IGF1R[J].Hum Cell,2017,30(4):311-318.
[31]? Maass PG,Gla?ar P,Memczak S,et al.A map of human circular RNAs in clinically relevant tissues[J].J Mol Med (Berl),2017,95(11):1179-1189.
[32]? Wang Y,Wu C,Zhang F,et al.Screening for differentially expressed circular RNAs in the cartilage of osteoarthritis patients for their diagnostic value[J].Genet Test Mol Biom-arkers,2019,23(10):706-716.
[33]? Wang Y,Wu C,Yang Y,et al.Preliminary exploration of hsa_circ_0032131 levels in peripheral blood as a potential diagnostic biomarker of osteoarthritis[J].Genet Test Mol Biomarkers,2019,23(10):717-721.
[34]? Chen C.Serum hsa_circ_101178 as a potential biomarker for early prediction of osteoarthritis[J].Clin Lab,2020,66(8):191 251.
(收稿日期:2021-02-22)