韓光信,孟圣鈞,白淏文
(吉林化工學(xué)院 信息與控制工程學(xué)院,吉林 吉林 132022)
板球系統(tǒng)作為一種典型的欠驅(qū)動(dòng)控制系統(tǒng),其研究成果可以推廣到諸如機(jī)器人控制、飛行器、衛(wèi)星定位等科技領(lǐng)域.板球系統(tǒng)的研究涉及實(shí)驗(yàn)平臺(tái)機(jī)械結(jié)構(gòu)的設(shè)計(jì)[1]、動(dòng)力學(xué)建模[2]、圖像識(shí)別[3]和軌跡跟蹤控制[4]等多方面課題,同時(shí)也被廣泛用于檢驗(yàn)各類控制算法的優(yōu)劣.由于板球系統(tǒng)的非線性特性影響系統(tǒng)的控制性能,一些學(xué)者研究時(shí)利用模糊控制算法無(wú)須考慮精確數(shù)學(xué)模型這一優(yōu)點(diǎn),結(jié)合相關(guān)算法設(shè)計(jì)出控制器,并完成軌跡跟蹤控制,但這些方法控制精度受到一定限制[5-6].在板球系統(tǒng)的實(shí)際控制中,攝像機(jī)測(cè)量小球位置信息的延時(shí)以及受到的未知擾動(dòng)均會(huì)增加板球系統(tǒng)的控制難度.文獻(xiàn)[7~9]研究了基于計(jì)算機(jī)視覺(jué)的板球系統(tǒng),其中文獻(xiàn)[9]結(jié)合LQR和模糊控制方法設(shè)計(jì)控制器,使系統(tǒng)具有較強(qiáng)的抗干擾性和魯棒性.為解決不確定擾動(dòng)對(duì)板球系統(tǒng)的影響,董振曄[10]開(kāi)展了基于自抗擾控制的研究,利用擴(kuò)張狀態(tài)觀測(cè)器觀測(cè)出系統(tǒng)受到的未知擾動(dòng),然后進(jìn)行補(bǔ)償,使控制精度達(dá)到較高的水平.上述文獻(xiàn)設(shè)計(jì)的控制器均有一定的抗干擾能力,但軌跡跟蹤精度有待提高.
板球系統(tǒng)在實(shí)際控制過(guò)程中往往會(huì)受到隨機(jī)干擾的影響,這些干擾會(huì)以不確定的方式對(duì)系統(tǒng)反饋的狀態(tài)變量造成影響.對(duì)于板球系統(tǒng)的軌跡跟蹤問(wèn)題,通常要確保小球位置控制精度的條件下,最短的時(shí)間完成跟蹤任務(wù).本文針對(duì)板球系統(tǒng)中存在的不確定因素以及受到的外界未知擾動(dòng)影響小球位置輸出這一問(wèn)題,引入二階指令濾波器,抑制模型自身擾動(dòng)對(duì)小球狀態(tài)變量的影響.結(jié)合二階指令濾波器和板球系統(tǒng)組建復(fù)合系統(tǒng)模型,進(jìn)而設(shè)計(jì)誤差反步控制規(guī)律,增強(qiáng)系統(tǒng)抵抗自身和外界干擾的能力.同時(shí),能夠在較短的時(shí)間內(nèi)實(shí)現(xiàn)高精準(zhǔn)軌跡跟蹤控制.
板球系統(tǒng)實(shí)物模型如圖1所示.
圖1 板球系統(tǒng)實(shí)物模型
(1)
式中,系數(shù)k=m/(m+Jb/r2).m,Jb,r,分別表示小球的質(zhì)量、轉(zhuǎn)動(dòng)慣量、半徑.g為重力加速度.X,Y軸受到的未知擾動(dòng)分別是wx和wy.由于板球系統(tǒng)的對(duì)稱軸X,Y軸分別由兩個(gè)一樣的伺服電機(jī)控制,兩個(gè)方向的解耦、線性化關(guān)系是一樣的,故將板球系統(tǒng)分解為X軸和Y軸的兩個(gè)子系統(tǒng).
(2)
為了抑制板球系統(tǒng)自身擾動(dòng)對(duì)系統(tǒng)輸出狀態(tài)變量的影響,引用二階指令濾波器濾除小球的位置狀態(tài)變量和速度狀態(tài)變量的噪聲干擾,以子系統(tǒng)X軸為例設(shè)計(jì)二階指令濾波器如式(3)所示[12].因板球系統(tǒng)X,Y軸對(duì)稱分布,故本文以板球系統(tǒng)X軸方向?yàn)槔O(shè)計(jì)控制器,Y軸方向設(shè)計(jì)參考X軸.
(3)
其中,ξ為阻尼比;ωn為無(wú)阻尼自然頻率;y0x為板球系統(tǒng)X軸輸入信號(hào).
結(jié)合式(2)X軸方向子系統(tǒng)和式(3),組建帶有指令濾波的復(fù)合系統(tǒng)為:
(4)
結(jié)合式(4)定義系統(tǒng)誤差:
(5)
其中,e1為小球位置誤差;e2、e3、e4分別表示廣義上的小球速度誤差、平板轉(zhuǎn)角誤差和平板角速度誤差;α1、α2、α3為虛擬函數(shù),在后面進(jìn)行定義.
結(jié)合式(4)對(duì)式(5)中e1進(jìn)行求導(dǎo):
(6)
(7)
定義虛擬函數(shù)α1:
α1=-c1e1(c1>0),
(8)
代入式(7)得:
(9)
(10)
通過(guò)式(10)定義虛擬函數(shù)α2:
(11)
代入式(10)得:
(12)
(13)
通過(guò)式(13)定義虛擬函數(shù)α3:
(14)
代入式(14)得:
(15)
(16)
選取控制規(guī)律ux:
(17)
結(jié)合式(4)、(5)、(6)、(8)、(11)、(14),化簡(jiǎn)式(17)可得:
f1=c1c2c3c4+c3c4,f2=c1+c2+c3+c4,f3=c12+c1c2+c1c3+c1c4,f4=c32+f1-c1c2-1,
f5=c1c2+c2c3+c1c3+c1c4+c2c4+c3c4,f6=c1c2c4+c1c3c4+c2c3c4+c1c2c3,f7=c1c2+c1+c2+1.
(18)
(19)
則式(2)中的X軸子系統(tǒng)是漸進(jìn)穩(wěn)定的.
結(jié)合式(9)、(12)、(16)、(17)、(19)可知,
(20)
根據(jù)式(20)可知,板球系統(tǒng)X軸方向閉環(huán)控制系統(tǒng)是漸進(jìn)穩(wěn)定的.同理可證,板球系統(tǒng)Y軸方向閉環(huán)控制系統(tǒng)是漸進(jìn)穩(wěn)定的.
(21)
圖2和圖5分別是帶指令濾波的誤差反步控制和滑??刂葡碌能壽E跟蹤曲線.圖3和圖6分別是帶指令濾波的誤差反步控制和滑??刂芚,Y軸跟蹤誤差.從圖中可以看出,帶指令濾波的誤差反步控制X,Y軸跟蹤誤差絕對(duì)值的平均值分別為0.56 mm和0.78 mm;滑模控制X,Y軸跟蹤誤差絕對(duì)值的平均值分別為2.6 mm和3.43 mm.圖4和圖7分別是帶指令濾波的誤差反步控制器和滑??刂破鬏敵銮€.仿真結(jié)果表明,帶指令濾波的誤差反步控制能夠在4 s左右穩(wěn)定運(yùn)行,有效地克服外界干擾,且軌跡跟蹤精度更高.
x1/m
t/s
t/s
x1/m
t/s
t/s
針對(duì)板球系統(tǒng)的軌跡跟蹤控制問(wèn)題,研究了基于指令濾波的誤差反步控制方案.引入的二階指令濾波器有效地濾除噪聲干擾.同時(shí),設(shè)計(jì)的誤差反步控制器具有較強(qiáng)的抑制外擾能力.仿真結(jié)果驗(yàn)證該控制方案能夠在短時(shí)間內(nèi)迅速跟上預(yù)定軌跡,穩(wěn)定性更強(qiáng)、精確度更高.