喻楚英 湯順和 張志成 鐘文斌
摘要:采用二維導(dǎo)電材料MXene(TiCT)與電活性生物質(zhì)單寧酸以及高強(qiáng)度的芳綸納米纖維復(fù)合經(jīng)真空抽濾制備了具有層狀結(jié)構(gòu)的自支撐柔性薄膜.系統(tǒng)研究了TiCT/TA/ANF薄膜的微觀形貌結(jié)構(gòu)、力學(xué)以及電化學(xué)性能.結(jié)果表明TiCT/TA/ANF薄膜的拉伸強(qiáng)度高達(dá)36.2 MPa,具有良好的柔性,可被任意彎曲、折疊以及扭曲.TiCT/TA/ANF薄膜所組裝的柔性固態(tài)超級(jí)電容器體積比電容為826.56 F cm,體積能量密度高達(dá)28.7 Wh L,且經(jīng)過不同角度的彎曲能保持穩(wěn)定的電化學(xué)性能.
關(guān)鍵詞:MXene;單寧酸;芳綸纖維;復(fù)合膜;超級(jí)電容器
中圖分類號(hào):O631文獻(xiàn)標(biāo)志碼:A
Preparation of High Mechanical Strength Electroactive MXene/TA/ANF Composite Film and Its Electrochemical Performance
YU Chuying,TANG Shunhe,ZHANG Zhicheng,ZHONG Wenbin
(College of Materials Science and Engineering,Hunan University,Changsha 410082,China)
Abstract:The 2D conductive material MXene(TiCT),electroactive tannic acid and robust aramid nanofibers are composited and vacuum-filtered to prepare self-supported flexible films with layer structure. The microstructure,morphology,mechanical and electrochemical performance of TiCT/TA/ANF films are systematically investigated. The results show that TiCT/TA/ANF film exhibits a high tensile strength of 36.2 MPa and excellent flexibil- ity,which can be arbitrarily bent,folded and twisted. The TiCT/TA/ANF film assembled flexible solid-state supercapacitor possesses a volumetric specific capacitance of 826.56 F cm,a superior volumetric energy density of 28.7 Wh L and electrochemical stability under various bending angles.
Key words:MXene;tannic acid;aramid nanofiber;composite film;supercapacitor
隨著電子技術(shù)的飛速發(fā)展以及智能終端的普及,具有柔性、輕便、可植入、可穿戴等優(yōu)點(diǎn)的柔性/可穿戴電子設(shè)備呈現(xiàn)出巨大的市場(chǎng)前景[1-3],柔性電子設(shè)備的功能化離不開與之匹配的高性能柔性儲(chǔ)能器件.柔性超級(jí)電容器作為一類功率密度高、充放電速率快、循環(huán)性能好的新型儲(chǔ)能器件,是柔性電子供能系統(tǒng)的理想選擇[4].開發(fā)在不同外力條件下(如彎曲、折疊、拉伸等)具有穩(wěn)定優(yōu)異的電化學(xué)性能的柔性電極材料是制備高性能柔性超級(jí)電容器的關(guān)鍵[5-6].
MXene是一類新型的二維層狀材料,通過將MAX相(M為過渡金屬如Ti、Sc和Mo等,A為III A或IV A族元素如Al、Si等,X為碳或氮元素)中的A元素刻蝕去除所得,其化學(xué)式可表述為MXT(n=1-4)[7].MXene材料具有優(yōu)異的導(dǎo)電性(1000-6500 S cm)、高比表面積和密度、可調(diào)的帶隙和表面特性以及出色的機(jī)械強(qiáng)度,在儲(chǔ)能、吸附和傳感器等領(lǐng)域展現(xiàn)出巨大的應(yīng)用潛力[8-11]. Ghidiu等人采用LiF和HCl混合體系制備TiCT.并通過真空抽濾的方法獲得TiCT柔性自支撐紙,其具有高達(dá)900 F cm的體積比電容[9].此外,TiCT還與石墨烯[12]、聚苯胺[13]以及纖維素[14]等復(fù)合制備各類電極材料.然而,TiCT容易氧化,穩(wěn)定性較差,且層間結(jié)合強(qiáng)度較低,導(dǎo)致其拉伸強(qiáng)度較低.因此,如何通過結(jié)構(gòu)設(shè)計(jì)以及表面改性獲得具有高電化學(xué)性能和高力學(xué)性能且穩(wěn)定性良好的TiCT基電極材料仍然具有挑戰(zhàn).
單寧酸(TA)是一種天然的多酚物質(zhì),含有大量的兒茶酚以及鄰苯二酚,可為氫鍵、離子鍵、配位鍵以及疏水作用提供豐富的結(jié)合位點(diǎn),有利于構(gòu)建多級(jí)結(jié)構(gòu)[15].單寧酸具有良好的抗氧化特性,作為還原劑有效的改變石墨烯的表面性質(zhì),提高了石墨烯的穩(wěn)定性[16].此外,單寧酸中的多酚羥基結(jié)構(gòu)可以發(fā)生可逆的氧化還原反應(yīng),提供贗電容,然而單寧酸本征不導(dǎo)電,因此不能單獨(dú)作為電極材料使用[17].
Kevlar纖維是由高度有序排列的聚對(duì)苯二甲酰對(duì)苯二胺分子鏈緊密堆砌而成,其具有超高的抗拉強(qiáng)度和抗拉模量,高比強(qiáng)度和高耐熱性,是制備高強(qiáng)度薄膜材料的理想的納米增強(qiáng)相材料[18].Yang將Kevlar纖維溶解于KOH/DMSO強(qiáng)堿溶液中使酰胺鍵上的N-H鍵斷裂去質(zhì)子化帶負(fù)電,獲得了穩(wěn)定的納米級(jí)芳綸纖維(ANF)分散液[19].ANF保留了Kevlar纖維的化學(xué)和晶體結(jié)構(gòu),同時(shí)增大了纖維表面積和粗糙度,兼具高的力學(xué)性能和反應(yīng)活性.據(jù)報(bào)道,Ma等人將聚多巴胺功能化的氮化硼納米片與ANF經(jīng)真空抽濾和熱壓制備了具有層狀結(jié)構(gòu)的柔性復(fù)合膜. 由于聚多巴胺與ANF界面強(qiáng)烈的氫鍵作用,復(fù)合膜的拉伸強(qiáng)度達(dá)36.8 MPa,是氮化硼/ANF復(fù)合膜的1.3倍[20],盡管ANF能大幅提高膜電極的力學(xué)性能,其自身不具備電化學(xué)活性且導(dǎo)電率低,導(dǎo)致電極的整體性能沒有明顯的改善.
本文將高導(dǎo)電性的TiCT與電活性生物質(zhì)TA、高強(qiáng)度的ANF納米纖維復(fù)合,經(jīng)真空抽濾制備了自支撐柔性TiCT/TA/ANF復(fù)合薄膜,系統(tǒng)表征了薄膜材料的形貌結(jié)構(gòu)、力學(xué)以及電化學(xué)性能.
1實(shí)驗(yàn)部分
1.1原料
單寧酸(TA),AR級(jí),Sigma-Aldrich公司;MAX(TiAlC),北京Jinhezhi Materials;Kevlar 纖維,東莞索維特特殊線帶有限公司;氟化鋰(LiF),二甲基亞砜(DMSO),氫氧化鉀(KOH),乙醇,濃鹽酸,丙酮,AR級(jí),國(guó)藥集團(tuán)化學(xué)試劑有限公司.
1.2TiCT/TA/ANF復(fù)合膜的制備
1.2.1TiCT的制備
將TiAlC粉末(1.0 g)緩慢加入到LiF(1.33 g)與Hcl(20 mL)的混合溶液中,在35℃恒溫?cái)嚢?4 h,然后用去離子水在4000 rpm轉(zhuǎn)速下離心洗滌3次獲得膠體分散液,將膠體分散液超聲30 min后繼續(xù)在3500 rpm轉(zhuǎn)速下離心60 min,取上層清液即獲得單層或少層的TiCT納米片分散液.
1.2.2ANF的制備
將Kevlar纖維用丙酮和去離子水進(jìn)行清洗,隨后放入烘箱干燥.取1g Kevlar纖維置于KOH(1.5 g)與DMSO(200 mL)的混合溶液中,隨后加入8 mL去離子水并攪拌6 h獲得ANF/DMSO分散液,將200 mL去離子水加入上述ANF/DMSO分散液中攪拌1 h,隨后通過真空抽濾獲得ANF并用乙醇和去離子水反復(fù)洗滌,去除殘余KOH和DMSO獲得膠體ANF,將0.2 g膠體ANF加入到400 mL去離子水中攪拌30 min獲得濃度為0.5 mg mL的ANF水系分散液.
1.2.3復(fù)合膜的制備
將適量TiC2T納米片分散液、ANF分散液以及TA溶液混合攪拌1 h,混合物的總質(zhì)量為10 mg,其中TiCT與TA的質(zhì)量比為9:1,TiCT/TA與ANF的質(zhì)量比為93:7.隨后加入一定體積的去離子水使得最后體系總體積為50 mL,繼續(xù)攪拌1 h后將混合溶液進(jìn)行真空抽濾成膜,將抽干的復(fù)合膜置于35 ℃真空干燥箱干燥2 h去除水分即獲得所需復(fù)合膜TiCT/TA/ANF.此外,采用相同的反應(yīng)條件制備了TiCT以及TiCT/TA薄膜.
1.3TiCT/TA/ANF復(fù)合膜基超級(jí)電容器的制備
取2 g PVA粉末加入20 mL的1 M HSO中并在85℃水浴加熱攪拌2 h,冷卻至室溫獲得PVA/HSO凝膠電解質(zhì).將TiCT/TA/ANF復(fù)合膜剪裁成1×1 cm的形狀,并置于1 M HSO中浸泡12 h.隨后將兩片TiCT/TA/ANF復(fù)合膜與PVA/HSO凝膠電解質(zhì)組裝成三明治型對(duì)稱超級(jí)電容器.
1.4材料表征和電化學(xué)性能測(cè)試
1.4.1材料的結(jié)構(gòu)表征
通過掃描電子顯微鏡(SEM,日本Hitachi,S- 4800)和透射電子顯微鏡(TEM,日本JEOL,JEM- 2100F)觀察薄膜形貌,采用X-射線衍射儀(XRD,德國(guó)Siemens,D8 Advance)、紅外光譜分析儀(XRD,美國(guó)Thermo Fisher Scientific,Nicolet iS10)和X射線光電子能譜分析儀(XPS,美國(guó)Thermo Scientific,250 Xi)分析薄膜的結(jié)構(gòu)以及元素組成,將薄膜樣品裁剪成2×20 mm的長(zhǎng)條,采用萬能試驗(yàn)機(jī)(日本Shimadzu,AGS-X 500N)測(cè)量薄膜的力學(xué)性能,測(cè)試速度為0.2 mm min.
1.4.2材料的電化學(xué)性能測(cè)試
采用電化學(xué)工作站(上海辰華責(zé)任有限公司CHI660c)測(cè)試超級(jí)電容器的電化學(xué)性能,窗口電壓為0~1.0 V,電解質(zhì)為PVA-HSO.超級(jí)電容器的質(zhì)量電容C(F g)、體積比電容C(F cm)、體積能量密度E(μWh cm)以及體積功率密度P(μW cm)的計(jì)算分別如公式(1)~(4)所示:
2結(jié)果與討論
圖1為各薄膜樣品的SEM照片.由圖可知純TiCT薄膜具有多片層堆疊結(jié)構(gòu),整個(gè)膜厚度約為3μm.TiCT/TA薄膜呈現(xiàn)出相對(duì)蓬松的片層堆疊結(jié)構(gòu),這是由于TA插入TiCT層間增加了片層的問隙,這種蓬松的結(jié)構(gòu)有利于離子的傳輸.在TiCT/TA/ANF薄膜的TiCT片層之間能觀察到ANF纖維,且隨著ANF質(zhì)量分?jǐn)?shù)的增加,纖維形貌越明顯,說明ANF成功的插入到了TiCT層間.
圖2為TiCT和TiCT/TA/ANF的TEM照片,可以明顯地看出TiCT為片層結(jié)構(gòu),TiCT/TA/ANF 薄膜中具有ANF纖維.
圖3(a)為不同材料的紅外光譜.TiCT的紅外光譜中位于569和1626 cm的峰分別代表Ti-O和- C=O伸縮振動(dòng),位于1109和1400 cm的峰分別代表-C-F和-O-H的伸縮振動(dòng).這些峰的存在表明TiCT存在=O,-F和-OH官能團(tuán)[13,21].TA的紅外光譜中位于758、1 085和1 202 cm的峰分別代表多取代芳香環(huán)、醇基的C-O拉伸振動(dòng)以及酯基的C-O-C不對(duì)稱拉伸振動(dòng),1 325 cm的峰屬于酚、酯類基團(tuán)的O-H彎曲振動(dòng)和C-O拉伸振動(dòng),1 448 cm的峰為羥基的C-OH彎曲振動(dòng),1 535和1 614 cm的峰為苯環(huán)的C=C拉伸振動(dòng),1 712 cm的峰為C=O振動(dòng)[22].ANF的紅外光譜中位于817和1 302 cm的峰分別源自C-N/N-H拉伸耦合和ph-N的伸縮以及平面外的C-H伸縮振動(dòng).1 640和3 310 cm的峰分別屬于C=O和N-H的伸縮振動(dòng)[20,23].在TiCT/TA/ANF膜的紅外光譜中位于1 325和1 712 cm出現(xiàn)的特征峰說明材料中含有酯基和竣基基團(tuán),表明TA與TiCT成功復(fù)合,位于1 302和3 312cm的峰說明材料中存在C-N/N-H拉伸振動(dòng)以及N-H伸縮振動(dòng),表明TiCT與ANF成功復(fù)合.根據(jù)FTIR分析,TiCT/TA/ANF復(fù)合膜被成功制備.圖3(b)是不同膜材料的XRD圖譜.由圖可知,隨著TA和ANF力口入TiCT,TiCT/TA和TiCT/TA/ANF中(002)晶面對(duì)應(yīng)的峰相比于TiCT的峰逐漸向低角度偏移,表明TiCT層間距增加,這意味著TA和ANF成功插入TiCT層間,其共同作用使得TiCT片層結(jié)構(gòu)更為蓬松,這與掃描電鏡的結(jié)果是一致的[24].
圖4是各樣品的XPS總譜圖.所有的樣品都能觀察到C 1s和O 1s的特征峰,分別位于-282和~532 eV.此外,TiCT中位于~455和~681.7 eV處的峰為Ti 2p和F 1s的特征峰,ANF中位于~400 eV的峰為N 1s的特征峰[25-26].TiCT/TA/ANF中能觀察到Ti 2p、F 1s以及N 1s,表明TiCT與ANF成功復(fù)合,為了進(jìn)一步探究TA與TiCT的復(fù)合情況,對(duì)TiCT和TiCT/TA/ANF的C 1s峰譜進(jìn)行了分峰處理.TiCT的C 1s譜可以被分為5種碳峰,分別為C-Ti(282.5eV)、C-O/C-Ti(283.5 eV)、C-C/C-F(284.9 eV)、C- O(286.4)以及O-C-O/C-F(289.7 eV)[24,27].對(duì)于Ti3C2Tx/TA/ANF,其C-O/C-Ti以及C-O/C-N的峰強(qiáng)大幅提升,此外出現(xiàn)額外的C=O/C-F(288.1 eV)峰,這可歸結(jié)于TA的引入帶來了大量的含氧官能團(tuán)[27].表1列舉了各薄膜的元素組成和摩爾分?jǐn)?shù),TiCT/TA/ANF的碳元素摩爾分?jǐn)?shù)高于純TiCT而Ti的摩爾分?jǐn)?shù)有所下降,這是由于ANF和TA的加入會(huì)引入大量的碳,而由于總質(zhì)量是一定的,因此ANF和TA的質(zhì)量分?jǐn)?shù)增加相應(yīng)地降低了TiCT的質(zhì)量分?jǐn)?shù),因此其Ti的摩爾分?jǐn)?shù)相應(yīng)降低.此外TiCT/TA/ANF和ANF含有少量的S,這來源于少量殘余的二甲基亞砜溶劑.因此通過XPS分析進(jìn)一步證明TiCT與TA和ANF成功的復(fù)合.
圖5(a)為不同薄膜的拉伸應(yīng)力應(yīng)變曲線,由圖可知,純TiCT膜在應(yīng)變?yōu)?.9%時(shí)拉伸強(qiáng)度為17.0 MPa.當(dāng)加入一定量的TA(TiCT:TA質(zhì)量比9:1),TiCT/TA復(fù)合膜的強(qiáng)度提升到20.4 MPa,這是由于TiCT與TA之間形成了較強(qiáng)的氫鍵提高了界面結(jié)合力[28].隨著ANF的引入,TiCT/TA/ANF復(fù)合膜的強(qiáng)度進(jìn)一步提高到36.2 MPa.可見復(fù)合膜的強(qiáng)度隨著ANF質(zhì)量分?jǐn)?shù)的增加而逐漸增加.這是由于ANF纖維自身是由高度有序排列的聚對(duì)苯二甲酰對(duì)苯二胺分子鏈緊密堆砌而成,具有超高的抗拉強(qiáng)度和抗拉模量,可作為納米增強(qiáng)相提高復(fù)合膜材料的力學(xué)性能[18].同時(shí)ANF與MXene和TA之間能夠形成較強(qiáng)的氫鍵以及π-π作用,增加鏈間的相互作用[19].因此ANF的引入可進(jìn)一步增加復(fù)合膜的強(qiáng)度.圖5(b)展示出TiCT/TA/ANF復(fù)合膜受到彎曲、卷曲、扭轉(zhuǎn)以及折疊作用,并且保持膜的形態(tài)完整,顯現(xiàn)出優(yōu)異的柔韌性.
圖6(a)為TiCT/TA/ANF基柔性固態(tài)超級(jí)電容器在不同窗口電壓下的循環(huán)伏安(CV)曲線.由圖可知,超級(jí)電容器的CV曲線具有類矩形的形狀,且當(dāng)窗口電壓由0~0.7 V增加到0~1.0 V時(shí),CV曲線沒有發(fā)生明顯的變形,且能夠較好地包裹低窗口電壓下的曲線,因此選擇0~1.0 V作為測(cè)試電壓窗口.圖6(b)為不同電流密度下的恒電流充放電曲線(GCD),其具有非線性類三角形的形狀,表明其存在贗電容. TiCT/TA/ANF基超級(jí)電容器在電流密度為1 A g時(shí)質(zhì)量比電容為252 F g,高于純TiCT超級(jí)電容器的電容值(220 F g).由于具有較高的密度(3.28 g cm),TiCT/TA/ANF基超級(jí)電容器體積比電容高達(dá)826.56 F cm,其性能優(yōu)于文獻(xiàn)報(bào)道的TiCT基超級(jí)電容器,如TiCT薄膜基超級(jí)電容器(183 F cm,0.23 mA cm)[29]、TiCT/PVA-KOH超級(jí)電容器(530 F cm,2 mV s)[30]和TiCT/rGO全固態(tài)超級(jí)電容器(586.4 F cm,10 mV s)[31]等.TiCT/TA/ANF基超級(jí)電容器在電流密度為1~20 A g的范圍內(nèi)電容保持率為63.5%,相比于純TiCT也有明顯的提升(45.5%).TiCT/TA/ANF優(yōu)異的電化學(xué)性能可歸結(jié)于TA具有電活性,可提供一定的贗電容[22].同時(shí)TA與ANF插入TiCT可提高材料孔隙率,促進(jìn)離子的快速傳輸.此外,TiCT具有良好的導(dǎo)電率[32-33],有利于電荷的轉(zhuǎn)移.TiCT/TA/ANF基超級(jí)電容器在電流密度為10 A g下循環(huán)充放電6 500的電容保持率高達(dá)89%,說明TiCT/TA/ANF具有優(yōu)異的結(jié)構(gòu)穩(wěn)定性.圖6(e)為TiCT/TA/ANF基超級(jí)電容器的Ragone圖.由圖可知,TiCT/TA/ANF基超級(jí)電容器在功率密度為1640 W L時(shí)具有高達(dá)28.7 Wh L的能量密度.其性能優(yōu)于文獻(xiàn)報(bào)道的部分柔性超級(jí)電容器,如石墨烯/TiCT復(fù)合膜(3.4 W L,200 W L)[34]、PEDOT/TiCT纖維(7.13 W L,142.16 W L)[35]、Fe(OH)/TiCT(20.7 W L,184.8 W L)[36].為了進(jìn)一步探究TiCT/TA/ANF超級(jí)電容器在外力作用下的電化學(xué)穩(wěn)定性,測(cè)試了該電容器在不同彎曲角度下的電化學(xué)性能.由圖6(f)可知,該柔性超級(jí)電容器在不同彎曲角度下CV曲線基本保持不變,表明其在外力作用下具有良好的電化學(xué)穩(wěn)定性.
3結(jié)論
本文將二維導(dǎo)電材料TiCT與電活性生物質(zhì)單寧酸以及高強(qiáng)度的芳綸納米纖維復(fù)合并通過真空抽濾制備了柔性TiCT/TA/ANF復(fù)合薄膜,系統(tǒng)研究了TiCT/TA/ANF復(fù)合薄膜的力學(xué)和電化學(xué)性能,并得到了以下主要結(jié)果:
1)TiCT/TA/ANF復(fù)合薄膜具有良好的柔性,可被任意彎曲、扭曲和折疊,薄膜的拉伸強(qiáng)度高達(dá)36.2 MPa,相比于純TiC薄膜(17 MPa)有大幅提高.
2)TA和ANF有效插入TiCT片層中增加孔隙率,有利于提高離子的傳輸速率.因此,TiCT/TA/ANF復(fù)合薄膜具有高達(dá)252 F g的比電容,優(yōu)異的循環(huán)穩(wěn)定性.TiCT/TA/ANF復(fù)合薄膜所組裝的對(duì)稱超級(jí)電容器具有高達(dá)28.7 Wh L的體積能量密度,且在不同彎曲作用下能保持穩(wěn)定的電化學(xué)性能.
參考文獻(xiàn)
[1] LI L,LOU Z,cHEN D,et al. Recent advances in flexible/stretch- able supercapacitors for wearable electronics [J]. Small,2018,14 (43):1702829.
[2] ZHANG D D,HUANG T Y,DUAN L. Emerging self-emissive technologies for flexible displays [J]. Advanced Materials,2020,32(15):1902391.
[3] MA Y J,ZHANG Y c,cAI S S,et al. Flexible hybrid electronics for digital healthcare[J]. Advanced Materials,2020,32(15):1902062.
[4]郭坤琨,陳鵬,李柱.氮摻雜多孔碳的制備及其電化學(xué)性能研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45(6):78-84.
GUO K K,cHEN P,LI Z. Study on preparation and electrochemical performance of nitrogen-doped porous carbon[J]. Journal of Hunan University(Natural Sciences),2018,45(6):78-84.(In chinese)
[5] LAI E P,YUE X X,NING W E,et al. Three-dimensional graphene-based composite hydrogel materials for flexible supercapacitor electrodes[J].Frontiers in chemistry,2019,7:660.
[6] YAO B,ZHANG J,KOU T Y,et al. Paper-based electrodes for flexible energy storage devices[J]. Advanced Science,2017,4 (7):1700107.
[7] ZHANG YZ,EL-DEMELLAWIJ KJIANGQ,et al. MXene hy- drogels:fundamentals and applications[J]. chemical Society Re- views,2020,49(20):7229-7251.
[8] DILLON A D,GHIDIU M J,KRIcK A L,et al. Highly conductive optical quality solution-processed films of 2D titanium carbide [J].Advanced Functional Materials,2016,26(23):4162-4168.
[9] GHIDIU M,LUKATSKAYA M R,ZHAO MQ,et al. conductive two-dimensional titanium carbide i clay,with high volumetric ca- pacitance[J].Nature,2014,516:78-81.
[10] PEIYY,ZHANG XL,HUIZ Y,et al. Ti c:TxMXeneforsensing applications:recent progress,design principles,and future per- spectives[J].AcS Nano,2021,15(3):3996-4017.
[11] PENG Q M,GUO J X,ZHANG Q R,et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. Journal of the American chemical Society,2014,136(11):4113-4116.
[12] DUTTA P,SIKDAR A,MAJUMDAR A,et al.Graphene aided gelation of MXene with oxidation protected surface for supercapacitor electrodes with excellent gravimetric performance[J]. car- bon,2020,169:225-234.
[13] ZHOU Y,ZOU Y B,PENG Z Y,et al. Arbitrary deformable and high-strength electroactive polymer/MXene anti-exfoliative composite films assembled into high performance,flexible all-solidstate supercapacitors[J]. Nanoscale,2020,12(40):20797- 20810.
[14] cHANG L B,PENG Z Y,ZHANG T,et al. Nacre-inspired composite films with high mechanical strength constructed from MX- enes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors[J]. Nanoscale,2021,13(5):3079-3091.
[15] FAN H L,WANG J H,ZHANG Q Y,et al. Tannic acid-based multifunctional hydrogels with facile adjustable adhesion and cohesion contributed by polyphenol supramolecular chemistry[J]. AcS Omega,2017,2(10):6668-6676.
[16] LEI Y D,TANG Z H,LIAO R J,et al. Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide [J].Green chemistry,2011,13(7):1655.
[17] MUKHOPADHYAY A,JIAO Y c,KATAHIRA R,et al. Heavy metal-free tannin from bark for sustainable energy storage [J]. Nano Letters,2017,17(12):7897-7907.
[18] HAN X S,LVLL,YUDY,et al. conductivecore-shell aramid nanofibrils:compromising conductivity with mechanical robustness for organic wearable sensing[J]. A(:S Applied Materials & Interfaces,2019,11(3):3466-3473.
[19] YANG M,cAO K Q,SUI L,et al.Dispersions of aramid nanofi- bers:a newnanoscale building block[J].AcS Nano,2011,5(9):6945-6954.
[20] MA T B,ZHAO Y S,RUAN K P,et al.Highly thermal conduc- tivities,excellent mechanical robustness and flexibility,and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures[J].AcS Applied Materials & Interfaces,2020,12(1):1677-1686.
[21] LIU J,ZHANG H B,SUN R H,et al. Hydrophobic,flexible,and lightweight MXene foams for high-performance electromagnetic- interference shielding[J]. Advanced Materials,2017,29(38):1702367.
[22] XIONG C L,ZOU Y B,PENG Z Y,et al. Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors [J]. Nanoscale,2019,11(15):7304-7316.
[23] XIE F,JIA F F,ZHUO L H,et al. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding [J]. Nanoscale,2019,11(48):23382-23391.
[24] YAN J,REN C E,MALESKI K,et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J].Advanced Functional Materials,2017,27(30):1701264.
[25] KWON SR,ELINSKI MB,BATTEAS J D,et al. Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes[J].ACS Applied Materials & Interfaces,2017,9(20):17125-17135.
[26]鐘文斌,高月.功能化多孔碳納米球的制備及電化學(xué)性能[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45(6):56-61.
ZHONG W B,GAO Y.Preparation and electrochemical performance of functionalized porous carbon nanospheres [J]. Journal of Hunan University(Natural Sciences),2018,45(6):56-61.(In Chinese).
[27] ZHAO S,ZHANG H B,LUO J Q,et al. Highly electrically conductive three-dimensional TiCT MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J].ACS Nano,2018,12(11):11193- 11202.
[28] GUAN Y,LI W,ZHANG Y L,et al.Aramid nanofibers and poly (vinyl alcohol)nanocomposites for ideal combination of strengthand toughness via hydrogen bonding interactions[J].Composites Science and Technology,2017,144:193-201.
[29] HUANG H C,SU H,ZHANG H T,et al.Extraordinary areal and volumetric performance of flexible solid-state microsupercapacitors based on highly conductive freestanding TiCT films[J].Advanced Electronic Materials,2018,4(8):1800179.
[30] LING Z,REN C E,ZHAO M Q,et al.Flexible and conductive MXene films and nanocomposites with high capacitance[J].Pro- ceedings of the National Academy of Sciences of the United States of America,2014,111(47):16676-16681.
[31] YANG Q Y,XU Z,F(xiàn)ANG B,et al.MXene/graphene hybrid fibers for high performance flexible supercapacitors[J].J Mater Chem A,2017,5(42):22113-22119.
[32] YANG C H,TANG Y,TIAN Y P,et al.Achieving of flexible,free-standing,ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric super- capacitors[J].Advanced Functional Materials,2018,28(15):1705487.
[33] ZHOU B,ZHANG Z,LI Y L,et al.Flexible,robust,and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J].ACS Applied Materials & Interfaces,2020,12(4):4895-4905.
[34] LI H Y,HOU Y,WANG F X,et al.Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene [J]. Advanced Energy Materials,2017,7(4):1601847.
[35] ZHANG J Z,SEYEDIN S,QIN S,et al.Highly conductive TiCT MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors[J].Small,2019,15(8):1804732.
[36] FAN Z M,WANG Y S,XIE Z M,et al.A nanoporous MXene film enables flexible supercapacitors with high energy storage[J]. Nanoscale,2018,10(20):9642-9652.