• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      打通關聯(lián)類比遷移進階思維
      ——以“分數(shù)乘除法”串講復習為例

      2022-12-21 06:27:48文|周
      小學教學設計(數(shù)學) 2022年11期
      關鍵詞:水果店倍數(shù)小數(shù)

      文|周 良

      一、在多元表征中溝通分數(shù)乘除法的算理

      分數(shù)乘除法的算理和法則歷來是學習的難點,學生會按照法則進行計算,但對算理的理解和法則的得出不理解。因此,在復習時讓學生再次理解算理并溝通分數(shù)乘除法之間的聯(lián)系顯得很有必要。

      1.復習分數(shù)乘法計算。

      師:你是怎么想到被除數(shù)和除數(shù)要同時乘除數(shù)的倒數(shù),而不是乘另外的數(shù)呢?

      生:因為只有除數(shù)乘它的倒數(shù),這樣算式中的除數(shù)才能變?yōu)?,這樣就可以看成除以一個數(shù)等于乘這個數(shù)的倒數(shù)了。

      二、在題組類比遷移中明晰分數(shù)乘除法的數(shù)量關系模型

      1.教材分析。

      分數(shù)乘法計算教學后,教材安排了“求一個數(shù)的幾分之幾是多少”和“求比一個數(shù)多(少)幾分之幾是多少”與之對應,分數(shù)除法計算教學后,教材安排了“已知一個數(shù)的幾分之幾是多少,求這個數(shù)”和“已知比一個數(shù)多(少)幾分之幾是多少,求這個數(shù)”與之對應。

      2.本質(zhì)聯(lián)系。

      分數(shù)乘除法的數(shù)量關系本質(zhì)上是倍數(shù)關系,與之前的學習區(qū)別在于以前學生遇到的是整數(shù)倍、小數(shù)倍,現(xiàn)在改為了分數(shù)倍,其實質(zhì)不變。這幾組關系中,最本源的是“求一個數(shù)的幾分之幾是多少”,“求比一個數(shù)多(少)幾分之幾”是在其基礎上多了一步計算。而分數(shù)除法的兩種類型從方程意義上來理解,它的數(shù)量關系還是分數(shù)乘法關系。因此,我們完全可以借助倍數(shù)讓學生理解分率含義,遷移倍數(shù)的數(shù)量關系模型而建立分數(shù)乘除法的數(shù)量關系模型。

      3.模型建立。

      (1)從“求幾倍是多少”到“求幾分之幾是多少”再到“已知幾分之幾是多少,求這個數(shù)”。

      ①水果店有蘋果60 千克,香蕉是蘋果的2 倍,香蕉有多少千克?

      ②水果店有蘋果60 千克,香蕉是蘋果的1.2 倍,香蕉有多少千克?

      從整數(shù)倍數(shù)得到“一倍數(shù)×倍數(shù)=幾倍數(shù)”這一數(shù)量關系模型。接著變整數(shù)倍為小數(shù)倍數(shù)、分數(shù)倍數(shù),溝通倍數(shù)與分率的內(nèi)在聯(lián)系,遷移建立“一個數(shù)的幾分之幾是多少”的模型。

      從整數(shù)到小數(shù)到分數(shù),學生頓悟:原來換湯不換藥,其實質(zhì)都是“香蕉的質(zhì)量=蘋果的質(zhì)量×幾倍”,這里的“幾倍”有可能是整數(shù)、小數(shù),也有可能是分數(shù),當它是分數(shù)時,一般都說誰的幾分之幾,“倍”字省略而已。

      師:這一題與前面題目有什么異同?

      生:不同的是前面三題都是告訴我們蘋果的質(zhì)量,求香蕉的質(zhì)量,這題是告訴香蕉質(zhì)量,求蘋果的質(zhì)量。

      生:這四題都告訴我們“香蕉是蘋果的x 倍”,也就是“香蕉的質(zhì)量=蘋果的質(zhì)量×x”,數(shù)量關系式都一樣。

      (2)從“求多幾倍是多少”到“求多幾分之幾是多少”再到“已知多幾分之幾是多少,求這個數(shù)”。

      ①水果店有蘋果60 千克,香蕉比蘋果多2 倍,香蕉有多少千克?

      ②水果店有蘋果60 千克,香蕉比蘋果多1.2 倍,香蕉有多少千克?

      從整數(shù)多2 倍開始,畫出線段圖,從圖示中容易看出,“香蕉比蘋果多2 倍”換句話說就是“香蕉是蘋果的3 倍”,同理,小數(shù)、分數(shù)也是這樣道理。因此,提煉出如下等量關系:

      師:(小結(jié))萬變不離其宗,關鍵是我們要抓住兩個量之間的等量關系。

      復習課不是簡單的“整理知識+配套練習”,要在知識的相互關聯(lián)上下功夫,幫助學生把這些知識有機串聯(lián)起來,著力發(fā)展和提升學生的思維能力,實現(xiàn)思維進階。

      猜你喜歡
      水果店倍數(shù)小數(shù)
      說說“倍數(shù)”
      巧用“倍數(shù)的和”
      同樣是倍數(shù),為啥還不同
      小數(shù)加減“四不忘”
      豬八戒開水果店
      趣味(語文)(2021年3期)2021-07-16 06:46:18
      我國古代的小數(shù)
      小數(shù)的認識
      小數(shù)的認識
      水果店的生意經(jīng)
      水果店
      幼兒畫刊(2017年9期)2017-09-26 02:48:10
      苍南县| 富顺县| 鸡西市| 喜德县| 静安区| 道孚县| 五寨县| 汽车| 长兴县| 河源市| 淮北市| 四会市| 云和县| 龙南县| 九寨沟县| 尖扎县| 松溪县| 涟源市| 道孚县| 阜新市| 望江县| 谷城县| 新乐市| 苍溪县| 嘉荫县| 荔浦县| 高台县| 鄄城县| 新沂市| 霍城县| 桂林市| 桐乡市| 荔浦县| 峨眉山市| 枞阳县| 新建县| 苏尼特右旗| 灌南县| 甘肃省| 伊川县| 荥经县|