• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      對(duì)數(shù)正態(tài)分布參數(shù)的最優(yōu)區(qū)間估計(jì)及應(yīng)用

      2022-12-22 03:30:00陳修素王君琦
      關(guān)鍵詞:駐點(diǎn)置信區(qū)間正態(tài)分布

      朱 海,陳修素,王君琦

      (重慶工商大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶 南岸 400067)

      1 引言

      正態(tài)分布作為數(shù)理統(tǒng)計(jì)中最重要的分布之一,其廣泛的應(yīng)用性使它成為眾多學(xué)者研究的目標(biāo),其衍生出的對(duì)數(shù)正態(tài)分布也在統(tǒng)計(jì)學(xué)中占有一席之地,被應(yīng)用于生物、金融、醫(yī)療等多個(gè)領(lǐng)域.多年來(lái),不斷有學(xué)者就對(duì)數(shù)正態(tài)分布的區(qū)間估計(jì)及應(yīng)用作出了一些研究,黃超[1]計(jì)算出了對(duì)數(shù)正態(tài)分布參數(shù)的矩估計(jì)、極大似然估計(jì)和貝葉斯估計(jì),并討論了參數(shù)的區(qū)間估計(jì);韓峰等人[2]針對(duì)產(chǎn)品抗輻射能力服從對(duì)數(shù)正態(tài)分布、實(shí)驗(yàn)樣本數(shù)據(jù)為成敗型實(shí)驗(yàn)數(shù)據(jù)的情形,運(yùn)用Bayes方法給出了在給定置信度下產(chǎn)品平均抗輻射能力置信下限的計(jì)算方法;李秀珍[3]利用Fisher的信仰推斷方法,給出了對(duì)數(shù)正態(tài)總體分布位置參數(shù)的信仰水平為1-α的信仰區(qū)間估計(jì).本文在前面學(xué)者的研究基礎(chǔ)上,研究了對(duì)數(shù)正態(tài)分布中尺度參數(shù)的最短區(qū)間估計(jì)問題.

      2 預(yù)備知識(shí)

      2.1 正態(tài)分布與對(duì)數(shù)正態(tài)分布定義

      定義1 若隨機(jī)變量X的概率密度函數(shù)為:

      (1)

      則稱隨機(jī)變量X服從均值為μ、方差為σ2的正態(tài)分布,記為X~N(μ,σ2).特別地,當(dāng)μ=0,σ=1時(shí),該分布稱為標(biāo)準(zhǔn)正態(tài)分布.正態(tài)分布(又稱高斯分布)是一種使用最為廣泛的對(duì)稱分布,圖像關(guān)于直線x=μ對(duì)稱,故μ又稱為位置參數(shù);σ為標(biāo)準(zhǔn)差,反映的是數(shù)據(jù)變量的離散程度,圖像上可以決定圖形的高矮胖瘦,故而稱為形狀參數(shù),又或叫尺度參數(shù).

      定義2 若隨機(jī)變量X取對(duì)數(shù)后服從正態(tài)分布,即存在Y=lnX~N(μ,σ2),則稱隨機(jī)變量X服從對(duì)數(shù)正態(tài)分布.根據(jù)定義1,可推出其概率密度為

      (2)

      2.2 正態(tài)分布與對(duì)數(shù)正態(tài)分布的比較

      由上述定義可知,正態(tài)分布和對(duì)數(shù)正態(tài)分布非常相似,一個(gè)是隨機(jī)變量本身服從正態(tài)分布,一個(gè)是隨機(jī)變量取對(duì)數(shù)后服從正態(tài)分布,對(duì)數(shù)正態(tài)分布相當(dāng)于正態(tài)分布經(jīng)指數(shù)變換后得到,故對(duì)數(shù)正態(tài)分布有效區(qū)間為(0,+∞);另外,對(duì)數(shù)正態(tài)分布不再是對(duì)稱分布,且總是右偏分布,其分布均值和方差均發(fā)生了變化.下面列舉一些這兩種分布的數(shù)字特征和常用統(tǒng)計(jì)量:

      ①對(duì)正態(tài)分布的總體X有:

      ②對(duì)數(shù)正態(tài)分布的總體X有:

      3 對(duì)數(shù)正態(tài)分布參數(shù)σ2的區(qū)間估計(jì)和最短區(qū)間估計(jì)

      眾所周知,對(duì)數(shù)正態(tài)分布是常見的一種右偏分布,由于它的非對(duì)稱性,平時(shí)所求的同等置信區(qū)間并不是最短區(qū)間,下面就針對(duì)對(duì)數(shù)正態(tài)分布的一種情形進(jìn)行討論.

      μ未知時(shí)求σ2的置信區(qū)間:

      (3)

      求解可得σ2的1-α等尾置信區(qū)間為:

      (4)

      (5)

      在討論最短置信區(qū)間之前,我們先引入幾個(gè)引理:

      引理2[6]若f(x)為單峰連續(xù)密度函數(shù),設(shè)其支撐區(qū)間為(a,b),x0∈(a,b)為極大值點(diǎn),由極大值點(diǎn)定義可知,當(dāng)x0;則對(duì)任意x1,x2∈(a,b),且滿足af′(x2)成立.

      引理3[6]在引理2成立的條件下,若x1x0(或x0>x2),使得f(x1)=f(x2).

      引理4(介值定理[7]) 設(shè)f(x)為[a,b]上的連續(xù)函數(shù),如f(m)為f(x)的最小值,f(n)為f(x)的最大值,對(duì)滿足f(m)<μ

      以下討論對(duì)數(shù)正態(tài)分布的未知參數(shù)σ2的最短置信區(qū)間問題:

      (6)

      現(xiàn)考慮引入a、b,使得

      3.精讀。精讀,就是潛心地讀,反復(fù)地讀。常言說(shuō)得好:讀書百遍,其義自見。精讀的目的是從讀中獲得情感體驗(yàn)和創(chuàng)造性的理解,教師要引導(dǎo)學(xué)生學(xué)會(huì)抓住文章中的重點(diǎn)句、段進(jìn)行朗讀體會(huì)。

      (7)

      (8)

      其中f(x,n-1)為χ2(n-1)的概率密度函數(shù),為:

      (9)

      下面應(yīng)用拉格朗日乘數(shù)法求解上述問題(8)的條件最值:

      首先,建立拉格朗日函數(shù)為:

      令L(a,b,λ)對(duì)a,b,λ求一階偏導(dǎo)數(shù)令其等于0,可得其駐點(diǎn),即:

      化簡(jiǎn)得:

      (10)

      (11)

      聯(lián)立(10)、(11)可求得的解A(a*,b*),即是所要求的駐點(diǎn).

      下面證明A點(diǎn)的存在性和唯一性:

      (12)

      對(duì)f(x,n-1)求一階導(dǎo)數(shù),得:

      (13)

      令上式(13)等于0,得x**=n-3;同時(shí)可得當(dāng)x∈(0,n-3)時(shí),f′>0,函數(shù)單調(diào)遞增,當(dāng)x∈(n-3,+∞)時(shí),f′<0,函數(shù)單調(diào)遞減,故x**也為函數(shù)的最大值點(diǎn),即有:

      (14)

      故對(duì)于1-a∈(0,1)(0

      成立.

      4 實(shí)證對(duì)比研究

      取2009-2018年10年內(nèi)滬市上市公司股票市盈率(%)的數(shù)據(jù)(數(shù)據(jù)來(lái)源于EPS數(shù)據(jù)庫(kù))X如下:

      28.73,21.61,13.40,12.30,10.99,15.99,17.63,15.94,18.16,12.49.

      將這些樣本數(shù)據(jù)取對(duì)數(shù)(Y=lnX)后如下:

      3.36,3.07,2.60,2.51,2.40,2.77,2.87,2.77,2.90,2.52.

      通過R語(yǔ)言進(jìn)行正態(tài)性檢驗(yàn),發(fā)現(xiàn)Y服從正態(tài)分布.現(xiàn)求尺度參數(shù)σ2的傳統(tǒng)區(qū)間估計(jì)和最短區(qū)間估計(jì)(α=0.05).

      (15)

      代入數(shù)值得[0.03997361061,0.28159161606],區(qū)間長(zhǎng)度為0.24161800545.而采用(4)、(5)求得的駐點(diǎn),通過MATLAB軟件計(jì)算得A=(3.3226357,3.3275426),進(jìn)而計(jì)算最短置信區(qū)間為[0.02285199895,0.22885746999],區(qū)間長(zhǎng)度為0.20600547104.

      通過結(jié)果對(duì)比可知,運(yùn)用最短置信區(qū)間法所計(jì)算的區(qū)間長(zhǎng)度比運(yùn)用傳統(tǒng)區(qū)間估計(jì)法所計(jì)算的區(qū)間長(zhǎng)度縮短了0.0356125344.綜上研究,對(duì)于股票收益率來(lái)講,區(qū)間縮短了0.0356125344,這樣的估計(jì)結(jié)果更精準(zhǔn),說(shuō)明文章所研究的最優(yōu)區(qū)間估計(jì)法的實(shí)用價(jià)值.當(dāng)然,對(duì)數(shù)正態(tài)分布在實(shí)際生活中的應(yīng)用越來(lái)越廣泛,當(dāng)需要研究參數(shù)的最優(yōu)區(qū)間估計(jì)時(shí),上述最優(yōu)區(qū)間估計(jì)法具有廣泛的應(yīng)用價(jià)值.

      猜你喜歡
      駐點(diǎn)置信區(qū)間正態(tài)分布
      定數(shù)截尾場(chǎng)合三參數(shù)pareto分布參數(shù)的最優(yōu)置信區(qū)間
      p-范分布中參數(shù)的置信區(qū)間
      多個(gè)偏正態(tài)總體共同位置參數(shù)的Bootstrap置信區(qū)間
      列車定位中置信區(qū)間的確定方法
      基于游人游賞行為的留園駐點(diǎn)分布規(guī)律研究
      基于對(duì)數(shù)正態(tài)分布的出行時(shí)長(zhǎng)可靠性計(jì)算
      正態(tài)分布及其應(yīng)用
      利用遠(yuǎn)教站點(diǎn),落實(shí)駐點(diǎn)干部帶學(xué)
      正態(tài)分布題型剖析
      利用遠(yuǎn)教站點(diǎn),落實(shí)駐點(diǎn)干部帶學(xué)
      三穗县| 灵山县| 庄河市| 繁峙县| 泉州市| 上虞市| 墨玉县| 邵阳市| 惠东县| 张家界市| 电白县| 金堂县| 加查县| 北海市| 双流县| 桦川县| 土默特左旗| 招远市| 江西省| 洞头县| 抚顺县| 万宁市| 南城县| 屯留县| 河间市| 马公市| 嵊泗县| 山西省| 手游| 资源县| 漾濞| 武平县| 翁牛特旗| 定西市| 开化县| 西华县| 突泉县| 准格尔旗| 中方县| 蚌埠市| 台北县|