• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      管板厚度對撓性薄管板溫度場及應(yīng)力場影響的有限元分析

      2023-01-15 07:39:56葉增榮
      石油化工設(shè)備技術(shù) 2023年1期
      關(guān)鍵詞:管區(qū)彎曲應(yīng)力撓性

      葉增榮

      (南京金凌石化工程設(shè)計有限公司,江蘇 南京 210042)

      管殼式余熱鍋爐通常采用帶圓弧過渡段的撓性薄管板結(jié)構(gòu)。撓性薄管板強(qiáng)度設(shè)計的理論基礎(chǔ)是將管板考慮為在管子固定支撐下的平板,計算管板厚度時僅考慮管板的無支撐區(qū)、無支撐區(qū)與支撐區(qū)交界處的強(qiáng)度。由于撓性薄管板厚度較薄,沿管板厚度方向不存在明顯的溫度梯度,因此管板厚度計算公式中不考慮溫差應(yīng)力的影響,相關(guān)設(shè)計規(guī)范也未規(guī)定允許的管板壁溫差及相關(guān)計算方法【1-3】。但是余熱鍋爐實際運(yùn)行過程中,撓性薄管板厚度對管板溫度,尤其是管板內(nèi)、外兩側(cè)金屬壁溫差影響很大。由于管板材料的許用應(yīng)力隨著管板溫度的升高而急劇下降,若管板應(yīng)力高于管板材料的許用應(yīng)力強(qiáng)度值,則不得不增加管板厚度,這可能導(dǎo)致管板溫度繼續(xù)升高【4】。因此,撓性薄管板設(shè)計時,需綜合考慮管板厚度對管板溫度和管板應(yīng)力水平的影響。

      為綜合研究撓性薄管板厚度變化對管板溫度場及應(yīng)力場的影響,本文以某硫磺回收裝置中的余熱鍋爐為研究對象,建立不同管板厚度值的分析模型,進(jìn)行溫度場及應(yīng)力場的有限元分析。

      1 結(jié)構(gòu)與參數(shù)

      某管殼式余熱鍋爐基本設(shè)計參數(shù)見表1,設(shè)備的主要幾何尺寸及主要受壓元件材質(zhì)見表2。圖1為撓性薄管板的布管。圖2為撓性薄管板的結(jié)構(gòu)尺寸及分析路徑示意,其中路徑1-1為管板布管區(qū)中心沿管板厚度方向的最短路徑;路徑2-2為管板非布管區(qū)沿管板厚度方向的最短路徑;路徑3-3為管板非布管區(qū)與圓弧過渡段交界處沿管板厚度方向的最短路徑;路徑4-4為管板圓弧過渡段中心處沿厚度方向的最短路徑;t為撓性薄管板厚度,mm;h為撓性薄管板圓弧過渡段內(nèi)外側(cè)圓弧中心的水平間距,mm。

      表1 某管殼式余熱鍋爐設(shè)計參數(shù)

      圖1 撓性薄管板布管

      表2 設(shè)備主要幾何尺寸及主要受壓元件材質(zhì)

      圖2 撓性薄管板的結(jié)構(gòu)尺寸及分析路徑示意

      2 撓性薄管板厚度計算

      該管殼式余熱鍋爐殼體直徑較大,超出GB/T 151—2014標(biāo)準(zhǔn)附錄M的適用范圍,因此管板最小計算厚度δmin參照SH/T 3158—2009標(biāo)準(zhǔn)中的公式計算,即:

      (1)

      式中:k——系數(shù),根據(jù)管板支撐型式,查SH/T 3518—2009標(biāo)準(zhǔn)中表11可得k=0.35;

      dJ——假想圓直徑,mm,通過作圖獲得dJ=167.5 mm;

      P——計算壓力,MPa,取4.9 MPa;

      [σ]t——許用應(yīng)力,MPa,等于基本許用應(yīng)力乘以SH/T 3518—2009標(biāo)準(zhǔn)中表9的應(yīng)力修正系數(shù),即[σ]t=112.8×0.85=95.88 MPa;

      C——厚度附加量,mm,取0.3 mm。

      由式(1)計算得到管板最小計算厚度δmin為13.5 mm??紤]到該設(shè)備的殼體直徑較大,換熱管的數(shù)量較多,換熱管與管板焊接工作量大,為保證焊接過程中撓性管板不會產(chǎn)生過大的變形量,將管板的最小計算厚度增加到20 mm。

      3 計算工況

      管殼式余熱鍋爐主要承受殼程壓力Ps、管程壓力Pt、管殼程溫差載荷ΔT的作用。

      不計入溫差載荷ΔT時,由于Ps、Pt均為正壓力,兩者同時作用造成的管板變形方向相反,可使管板產(chǎn)生的應(yīng)力部分抵消,因此Ps+Pt工況不需要作為計算工況。而Pt壓力非常小,其單獨(dú)作用的工況也不需要作為計算工況。因此僅需將Ps單獨(dú)作用的工況作為計算工況。

      計入溫差載荷ΔT時,當(dāng)Pt與ΔT同時作用時,兩者所造成的管板變形方向相反,也可使管板產(chǎn)生的應(yīng)力部分抵消;而當(dāng)Ps與ΔT同時作用時,兩者造成的管板變形方向相同,管板產(chǎn)生的應(yīng)力將發(fā)生疊加,因此僅需將Ps+ΔT工況作為計算工況。

      綜上,管殼式余熱鍋爐的計算工況僅考慮Ps單獨(dú)作用的工況和Ps+ΔT工況即可。

      4 有限元模型

      4.1 幾何模型的建立

      有限元模型進(jìn)行如下簡化【5-9】:

      1) 根據(jù)結(jié)構(gòu)對稱性及承載特性,有限元模型取該余熱鍋爐前端周向的1/4,殼程筒體與換熱管長度取殼程總長度的1/2, 忽略接管開孔及鞍座;

      2) 管板與換熱管為全焊透結(jié)構(gòu),單元是相互連接的,不考慮接觸關(guān)系;

      3) 陶瓷保護(hù)內(nèi)套管與換熱管之間不存在間隙;

      4) 應(yīng)力計算時不考慮高溫?zé)岱雷o(hù)結(jié)構(gòu)與余熱鍋爐承壓元件間變形不一致問題。

      4.2 單元的選取

      溫度場分析均采用8節(jié)點(diǎn)熱分析單元SOLID70,熱應(yīng)力場分析均采用8節(jié)點(diǎn)結(jié)構(gòu)分析單元SOLID185。有限元模型的網(wǎng)格劃分見圖3,共劃分165 834個單元。

      圖3 有限元模型

      5 溫度場分析結(jié)果

      在其他條件不變的情況下,分別取管板厚度t=20、24、28、32和36 mm,建立有限元模型進(jìn)行溫度場分析。圖4~圖5分別為t=20 mm和t=36 mm時撓性薄管板的溫度場云圖(橫坐標(biāo)為有限元溫度場計算的溫度,℃)。圖6(a)~圖6(b)為不同管板厚度情況下?lián)闲员」馨逶诓煌窂教幍臏囟惹€。

      圖4 t=20 mm時撓性薄管板的溫度場云圖

      圖5 t=36 mm時撓性薄管板的溫度場云圖

      圖6(a)為不同管板厚度情況下?lián)闲员」馨逶诼窂?-1處的溫度曲線。由圖6(a)可以看出:隨著管板厚度的增大,管板布管區(qū)管程側(cè)的表面溫度不斷升高,由t=20 mm時的364 ℃逐漸升高至t=36 mm時的412 ℃,增加了48 ℃;而管板布管區(qū)殼程側(cè)的表面溫度變化相對較小,由t=20 mm時的315 ℃逐漸升高至t=36 mm時的323 ℃,增加了8 ℃。管板布管區(qū)在管殼程兩側(cè)的壁溫差也隨著管板厚度增加而不斷增大。t=20 mm時,管板布管區(qū)兩側(cè)的溫度范圍為364~315 ℃;t=36 mm時,管板布管區(qū)兩側(cè)的溫度范圍為412~323 ℃。由圖6(a)還可以看出:隨著管板厚度增加,兩側(cè)壁溫差由49 ℃逐漸增大至89 ℃,表明隨著管板厚度的增加,管板布管區(qū)在管程側(cè)表面溫度的明顯升高,使得管板布管區(qū)在管板兩側(cè)的壁溫差也明顯增大。

      圖6(b)為不同管板厚度情況下?lián)闲员」馨逶诼窂?-2的溫度曲線。由圖6(b)可以看出:隨著管板厚度的增大,管板非布管區(qū)在管程側(cè)表面溫度由276 ℃增大至295 ℃,增加了19 ℃;而管板非布管區(qū)在殼程側(cè)表面溫度由270 ℃增大至276 ℃,增加了6 ℃。管板非布管區(qū)在管板兩側(cè)的壁溫差由6 ℃逐漸增大至19 ℃,表明隨著管板厚度的增加,管板非布管區(qū)在管程側(cè)表面的溫度有所升高,使得管板非布管區(qū)在管板兩側(cè)的壁溫差也有所增大。但是管板厚度增加對管板非布管區(qū)溫度曲線的影響明顯減小。

      圖6(c)為不同管板厚度情況下?lián)闲员」馨逶诼窂?-3的溫度曲線。由圖6(c)可以看出:隨著管板厚度的增大,管板非布管區(qū)與圓弧過渡段交界處在管程側(cè)表面的溫度由266 ℃增大至272 ℃,增加了6 ℃;在殼程側(cè)表面的溫度由262 ℃ 增大至264 ℃,僅增加了2 ℃。管板非布管區(qū)與圓弧過渡段交界處在管板兩側(cè)的壁溫差僅由2 ℃增大至8 ℃。圖6(c)表明,管板厚度增加對管板非布管區(qū)與圓弧過渡段交界處的溫度曲線的影響進(jìn)一步減弱。

      圖6(d)為不同管板厚度情況下?lián)闲员」馨逶诼窂?-4的溫度曲線。由圖6(d)可以看出,隨著管板厚度的增大,不同管板厚度對應(yīng)的管板圓弧過渡段中心處的溫度曲線非常接近,近乎重合,表明管板厚度增加對管板圓弧過渡段中心處溫度曲線幾乎沒有影響。

      圖6 不同管板厚度情況下?lián)闲员」馨逶诓煌窂教幍臏囟惹€

      綜上可知:撓性薄管板厚度變化對管板布管區(qū)的溫度曲線影響最大,管板厚度增加可使管板布管區(qū)的管程側(cè)表面溫度不斷升高,使得管板布管區(qū)在管板兩側(cè)的壁溫差不斷增大;撓性薄管板的厚度變化對管板的非布管區(qū)、非布管區(qū)與圓弧過渡段交界處、管板周邊圓弧過渡段處溫度曲線的影響則不斷減弱。

      6 應(yīng)力場分析結(jié)果

      6.1 撓性薄管板厚度對管板整體應(yīng)力水平的影響

      Ps和Ps+ΔT工況下,不同管板厚度對應(yīng)的撓性薄管板的最大應(yīng)力強(qiáng)度值對比見表3。圖7(a)~圖7(d)為Ps和Ps+ΔT工況下,撓性薄管板厚度分別取t=20 mm及t=36 mm時對應(yīng)的撓性薄管板應(yīng)力強(qiáng)度云圖(圖7中橫坐標(biāo)為有限元應(yīng)力場計算的應(yīng)力強(qiáng)度,MPa)。

      圖7 Ps和Ps+ΔT工況下,不同管板厚度對應(yīng)的撓性薄管板應(yīng)力強(qiáng)度云圖

      從表3中可以看出,Ps和Ps+ΔT工況下,隨著管板厚度的增加,撓性薄管板中的最大應(yīng)力強(qiáng)度值均不斷下降。

      表3 不同工況下,不同管板厚度對應(yīng)的管板最大應(yīng)力強(qiáng)度

      由表3可見:Ps工況下,隨著表3中的撓性薄管板厚度由t=20 mm不斷增大至t=36 mm,撓性薄管板中的最大應(yīng)力強(qiáng)度由t=20 mm時的239.3 MPa逐漸下降至t=36 mm時的179.4 MPa,下降了59.9 MPa;Ps+ΔT工況下,隨著表3 中的撓性管板厚度由t=20 mm不斷增大至t=36 mm,撓性薄管板中的最大應(yīng)力強(qiáng)度由t=20 mm時的384.0 MPa逐漸下降至t=36 mm時的318.2 MPa,下降了65.8 MPa。

      上述結(jié)果表明,在Ps和Ps+ΔT兩種工況下,管板厚度的增加使撓性薄管板中最大應(yīng)力強(qiáng)度值存在不同程度的下降,但是在此兩種工況下,管板厚度的增加對撓性薄管板不同部位處各類應(yīng)力水平降低的影響程度仍需做進(jìn)一步分析。

      6.2 撓性薄管板厚度對管板不同路徑處各分類應(yīng)力的影響

      進(jìn)一步分析在Ps和Ps+ΔT工況下,撓性薄管板厚度變化對管板不同路徑處的各分類應(yīng)力的影響,結(jié)果見圖8~圖11。

      需要說明的是:Ps工況下,除管板圓弧過渡段處的彎曲應(yīng)力可歸為一次加二次應(yīng)力外,管板其余部位的彎曲應(yīng)力均歸為一次薄膜加一次彎曲應(yīng)力;Ps+ΔT工況時,管板中的彎曲應(yīng)力均歸為一次加二次應(yīng)力。

      由圖8(a)可見,Ps工況下,隨著管板厚度的增加,路徑1-1處的一次薄膜加一次彎曲應(yīng)力PL+Pb不斷下降,由70 MPa逐漸降低至44.6 MPa,下降25.4 MPa,說明該工況下,管板厚度增加使得管板布管區(qū)中心處的一次薄膜加一次彎曲應(yīng)力值有所降低。

      由圖8(b)可見,Ps+ΔT工況下, 隨著管板厚度的增加,路徑1-1處的一次加二次應(yīng)力PL+Pb+Q先由94.5 MPa降低至85.99 MPa,而后基本保持不變,說明該工況下,增加管板厚度對管板布管區(qū)中心處的一次加二次應(yīng)力的影響較小。

      圖8 不同工況下,管板厚度對撓性薄管板路徑 1-1處各分類應(yīng)力的影響

      由圖9(a)可見:Ps工況下,隨著管板厚度的增加,路徑2-2處一次局部薄膜應(yīng)力PL值由71.95 MPa逐漸降低至43.84 MPa,下降28.1 MPa;而一次薄膜加一次彎曲應(yīng)力PL+Pb值則由216.6 MPa逐漸降低至112.6 MPa,下降104 MPa。說明在該工況下,增加管板厚度可使管板非布管區(qū)內(nèi)的一次薄膜加一次彎曲應(yīng)力顯著降低。

      由圖9(b)可見:Ps+ΔT工況下,隨著管板厚度的增加,路徑2-2處一次局部薄膜應(yīng)力PL由135.8 MPa逐漸降低至130.6 MPa;而一次加二次應(yīng)力PL+Pb+Q則先由258.8 MPa降低至197.5 MPa,下降61.3 MPa,而后保持在192.8 MPa不變。說明在該工況下,當(dāng)管板厚度較小時,增加管板厚度可使管板非布管區(qū)內(nèi)的一次加二次應(yīng)力明顯減小,當(dāng)厚度增大到一定值后,繼續(xù)增加管板厚度對管板非布管區(qū)內(nèi)的一次加二次應(yīng)力的影響很小。

      圖9 不同工況下,管板厚度對撓性薄管板路徑 2-2處各分類應(yīng)力的影響

      由圖10(a)可見:Ps工況下,隨著管板厚度的增加,路徑3-3處一次局部薄膜應(yīng)力PL由77.89 MPa逐漸降低至50.81 MPa;一次薄膜加一次彎曲應(yīng)力PL+Pb則由107.9 MPa逐漸降低至62.96 MPa。說明該工況下,增加管板厚度可以使得管板非布管區(qū)與圓弧過渡段交界處的一次薄膜加一次彎曲應(yīng)力有所下降,但其影響程度相比管板非布管區(qū)相對減弱。

      圖10 不同工況下,管板厚度對撓性薄管板路徑 3-3處各分類應(yīng)力的影響

      由圖10(b)可見:Ps+ΔT工況下,隨著管板厚度的增加,路徑3-3處一次局部薄膜應(yīng)力PL先由195.2 MPa逐漸降低至184 MPa,而后保持在181 MPa不變;而一次加二次應(yīng)力PL+Pb+Q則先由225.8 MPa降低至211.4 MPa,而后保持在208 MPa不變。計算結(jié)果表明,Ps+ΔT工況下,增加管板厚度對管板非布管區(qū)與圓弧過渡段交界處的各分類應(yīng)力的影響程度相比管板非布管區(qū)均減小。

      由圖11(a)可見:Ps工況下,隨著管板厚度的增加,路徑4-4處一次局部薄膜應(yīng)力PL由54.43 MPa逐漸降低至33.58 MPa,一次加二次應(yīng)力PL+Pb+Q則由216.8 MPa逐漸降低至168.9 MPa。說明該工況下,增加管板厚度可以降低管板周邊圓弧過渡段處的一次薄膜加一次彎曲應(yīng)力,但其影響程度相比管板非布管區(qū)進(jìn)一步減弱。

      由圖11(b)可見:Ps+ΔT工況下,隨著管板厚度的增加,路徑4-4處一次局部薄膜應(yīng)力PL由135.2 MPa逐漸降低至118.7 MPa;一次加二次應(yīng)力PL+Pb+Q則先由331.2 MPa降低至301.8 MPa,此后基本保持不變。說明該工況下,僅當(dāng)管板厚度較小時,增加管板厚度可使管板周邊圓弧過渡段處的一次加二次應(yīng)力有所下降,當(dāng)厚度增大到一定值后,繼續(xù)增加管板厚度,對該處的一次加二次應(yīng)力幾乎沒有影響。

      圖11 不同工況下,管板厚度對撓性薄管板路徑 4-4處各分類應(yīng)力的影響

      綜上所述,Ps和Ps+ΔT工況下,增加管板厚度主要是影響管板非布管區(qū)內(nèi)的彎曲應(yīng)力,對其他位置處的各分類應(yīng)力的影響均較小。Ps工況下,增加管板厚度可使管板非布管區(qū)內(nèi)的各分類應(yīng)力顯著降低。而Ps+ΔT工況下,僅當(dāng)管板厚度較小時,增加管板厚度可使管板非布管區(qū)內(nèi)的一次加二次應(yīng)力明顯減小,當(dāng)厚度增大到一定值后, 繼續(xù)增加管板厚度,其影響程度不斷減弱。

      7 結(jié)論

      有限元分析的結(jié)果表明撓性薄管板厚度的變化對管板的溫度場分布及不同工況下管板不同部位處的應(yīng)力分布均存在較大的影響:

      1) 撓性薄管板厚度增加對管板布管區(qū)的溫度分布有較明顯的影響,對管板周邊非布管區(qū)及圓弧過渡段處的溫度影響則較小。隨著管板厚度的增加,管板布管區(qū)位于管程側(cè)表面的溫度不斷升高,管板布管區(qū)兩側(cè)溫度差持續(xù)增大。溫度場分析的結(jié)果表明撓性薄管板厚度的增加可能導(dǎo)致管板管程側(cè)表面的溫度超出材料允許的溫度范圍的風(fēng)險。

      2)Ps工況下,撓性薄管板厚度的增加主要影響管板周邊非布管區(qū)內(nèi)的彎曲應(yīng)力,對管板其它部位包括圓弧過渡段處的應(yīng)力影響很小。Ps工況下,隨著管板厚度的增加,管板周邊非布管區(qū)內(nèi)的彎曲應(yīng)力不斷降低。

      3)Ps+ΔT工況下,撓性薄管板厚度的增加可以使管板布管區(qū)最外側(cè)管孔處的最大應(yīng)力強(qiáng)度值不斷下降,但對降低管板周邊非布管區(qū)及圓弧過渡段處的一次加二次應(yīng)力的效果則是迅速遞減的。Ps+ΔT工況下,持續(xù)增加撓性薄管板厚度無法改善管板周邊非布管區(qū)及圓弧過渡段處的應(yīng)力分布。

      綜上所述:增加撓性薄管板的厚度,一方面可能導(dǎo)致管板管程側(cè)的表面溫度不斷升高,管板布管區(qū)兩側(cè)的溫度差相應(yīng)增大;另一方面在Ps+ΔT工況下,管板厚度的增加對降低管板周邊非布管區(qū)及圓弧過渡段處一次加二次應(yīng)力的效果又是迅速遞減的。因此不斷增加撓性薄管板的厚度,并不能持續(xù)提高撓性薄管板在正常操作條件下的安全性。特別是管板的高應(yīng)力位于管板周邊非布管區(qū)及圓弧過渡段處時,增加撓性薄管板的厚度并不能顯著改善上述部位的應(yīng)力分布,相反還可能導(dǎo)致管板材料的許用應(yīng)力隨著管板溫度的升高而急劇下降。最終如何確定撓性薄管板的厚度,應(yīng)依據(jù)有限元溫度場及不同工況下的應(yīng)力場分析結(jié)果進(jìn)行綜合判斷更為合理。

      猜你喜歡
      管區(qū)彎曲應(yīng)力撓性
      非正式治理的制度化運(yùn)作:管區(qū)制與鄉(xiāng)鎮(zhèn)治理現(xiàn)代化的路徑選擇
      20世紀(jì)30年代警管區(qū)制在無錫的實踐*
      國產(chǎn)690TT合金U形管彎管區(qū)性能測定
      圓柱殼大開孔接管連接處彎曲應(yīng)力性質(zhì)和評定準(zhǔn)則的探討及論證
      行政包干制:鄉(xiāng)鎮(zhèn)“管區(qū)”治理的邏輯與機(jī)制
      理論與改革(2021年5期)2021-09-16 11:56:36
      鼓形修形和偏載對直齒輪強(qiáng)度的影響研究*
      什么是撓性轉(zhuǎn)子軸承
      剛性轉(zhuǎn)子和撓性轉(zhuǎn)子的區(qū)別
      撓性航天器退步自適應(yīng)姿態(tài)機(jī)動及主動振動控制
      基于ANSYS的齒輪彎曲應(yīng)力、接觸應(yīng)力以及模態(tài)分析
      包头市| 桦甸市| 台安县| 信阳市| 醴陵市| 肃宁县| 远安县| 绩溪县| 清水河县| 军事| 新津县| 延边| 乐山市| 钟祥市| 肥西县| 攀枝花市| 沙湾县| 芦山县| 伊吾县| 航空| 朔州市| 奇台县| 铁岭市| 临潭县| 沧源| 左权县| 长治市| 湘乡市| 澄江县| 义乌市| 漳浦县| 鸡西市| 伊金霍洛旗| 霍州市| 明水县| 阿瓦提县| 抚远县| 尚义县| 盐亭县| 五河县| 济阳县|