李亞楠,張賢君,張寧,梁雅琳,張宇星,招華興,李紫聰,黃思秀
過表達組蛋白H3K9me3去甲基化酶對豬克隆胚胎發(fā)育的影響
李亞楠1,2,3,張賢君1,2,3,張寧1,2,3,梁雅琳1,2,3,張宇星1,2,3,招華興1,2,3,李紫聰1,2,3,黃思秀1,2,3
1. 華南農(nóng)業(yè)大學動物科學學院,國家生豬種業(yè)工程技術研究中心,廣州 510642 2. 畜禽育種國家地方聯(lián)合工程研究中心,廣州 510642 3. 廣東省農(nóng)業(yè)動物基因組學與分子育種重點實驗室,廣州 510642
組蛋白異常修飾是克隆胚胎發(fā)育的重要制約因素,組蛋白H3K9me3去甲基化酶KDM4家族的過表達可以有效提高克隆胚胎的發(fā)育效率。為探究過表達H3K9me3去甲基化酶對豬克隆胚胎發(fā)育的影響,本研究在豬克隆胚胎1-細胞期和2-細胞期分別注射mRNA和mRNA檢測胚胎的囊胚率;收集1-細胞期注射mRNA和胚胎注射水(對照組)的2-細胞期克隆胚胎檢測H3K9me3表達水平;此外,收集1-細胞期注射mRNA和胚胎注射水的4-細胞期克隆胚胎進行單細胞轉(zhuǎn)錄組測序,并對測序數(shù)據(jù)進行GO與KEGG富集分析。結(jié)果顯示:在1-細胞期注射mRNA 的豬克隆胚胎囊胚率顯著高于對照組(25.32 ± 0.74%14.78 ± 0.87%),注射mRNA對豬克隆胚胎囊胚率無明顯作用(16.27 ± 0.77%14.78 ± 0.87%);在2-細胞期注射mRNA和mRNA的克隆胚胎囊胚率與對照組相比均無顯著差異(32.18 ± 1.67%、30.04 ± 0.91%31.22 ± 1.40%)。在1-細胞期注射mRNA的克隆胚胎組蛋白H3K9me3表達水平低于對照組。通過測序,篩選出133個差異表達基因,其中上調(diào)基因52個、下調(diào)基因81個,GO分析主要富集到與蛋白質(zhì)定位相關的通路,KEGG分析富集到細胞衰老和急性髓細胞白血病等相關通路。本研究結(jié)果表明,過表達組蛋白H3K9me3去甲基化酶KDM4A可以顯著提高豬克隆胚胎的發(fā)育效率。
豬;克隆胚胎;H3K9me3;KDM4A;KDM4D
豬克隆技術已成功應用于優(yōu)良種群擴繁、瀕危物種的保護和生物醫(yī)學等領域,但目前豬()的克隆效率只有1%~5%左右[1],嚴重限制了豬克隆技術的發(fā)展。大量研究表明,異常的表觀遺傳修飾是導致克隆胚胎異常發(fā)育的關鍵原因[2],主要包括DNA甲基化、組蛋白修飾、X染色體失活、基因組印記和染色質(zhì)重塑等。
組蛋白甲基化是胚胎發(fā)育過程中十分重要的組蛋白修飾,涉及基因轉(zhuǎn)錄的激活和抑制。H3K9me3是轉(zhuǎn)錄抑制的組蛋白修飾標記,受組蛋白甲基轉(zhuǎn)移酶和組蛋白去甲基化酶的調(diào)節(jié),是引起克隆胚胎重編程障礙的關鍵表觀遺傳修飾[3]。KDM4是最大的去甲基化酶亞家族之一,該家族主要包含4個成員(KDM4A-D),其中KDM4A和KDM4D均能使H3K9me3去甲基化,激活基因表達。Chung等[4]發(fā)現(xiàn)過表達KDM4A能夠有效降低H3K9me3活性并顯著提高克隆胚胎的囊胚率,從而提高人類核移植衍生胚胎干細胞的生產(chǎn)效率。Matoba等[5]發(fā)現(xiàn)與小鼠()2-細胞期體外受精胚胎相比,克隆胚胎的重編程抗性區(qū)域存在高水平的H3K9me3,在1-細胞期注射mRNA對H3K9me3 進行去甲基化,重編程了大多數(shù)重編程抗性區(qū)域,并且大幅提高了克隆效率。過表達去甲基化酶從而提高克隆胚胎發(fā)育效率的研究在牛()[6]、綿羊()[7]和猴()[8]上也有報道。
轉(zhuǎn)錄組測序常用于基因表達水平的量化以識別差異表達基因,可揭示不同水平的細胞轉(zhuǎn)錄并協(xié)助推斷信號通路[9]。此外,研究人員利用轉(zhuǎn)錄組測序可以詳細分析表觀遺傳重編程過程中染色質(zhì)和表觀基因的變化[10]。單細胞轉(zhuǎn)錄組測序Smart-seq2擴增方法可檢測少量細胞或胚胎樣品中基因表達水平的變化。Liu等[11]通過單細胞轉(zhuǎn)錄組測序結(jié)合胚胎活檢獲得具有不同發(fā)育潛力的小鼠克隆胚胎轉(zhuǎn)錄譜,成功鑒定出組蛋白去甲基化酶KDM4B和KDM5B是導致克隆胚胎發(fā)育停滯的關鍵因素。目前,在豬上關于過表達基因以提高克隆效率的研究報道較少。本課題組吳霄等[12]在1-細胞期注射鼠源mRNA和mRNA未能去除H3K9me3甲基化修飾和有效提高豬克隆胚胎的發(fā)育效率。He等[13]發(fā)現(xiàn)4-細胞期克隆胚胎的和基因表達水平遠低于體內(nèi)受精胚胎。因此,本研究通過在豬克隆胚胎1-細胞期和2-細胞期注射豬源mRNA和mRNA,以期去除早期克隆胚胎基因組H3K9me3修飾和提高克隆胚胎發(fā)育效率。另外,本研究對1-細胞期注射mRNA和胚胎注射水的4-細胞期克隆胚胎進行單細胞轉(zhuǎn)錄組測序,以探究過表達H3K9me3去甲基化酶KDM4A對早期克隆胚胎發(fā)育的影響機制。
和基因表達載體由南京金斯瑞生物科技有限公司合成;大白豬成體成纖維細胞采自廣東溫氏食品集團新興縣水臺原種場;豬克隆胚胎由廣東溫氏集團種豬公司克隆實驗室提供。
從NCBI上得到豬(XM_021096835.1)、(XM_003129775.5)基因的編碼區(qū)序列并進行密碼子優(yōu)化,利用SnapGene軟件確定雙酶切位點,將2個基因序列構建到空載體pcDNA3.1(+)-P2A-eGFP中,由南京金斯瑞生物科技有限公司合成2個質(zhì)粒。
合成得到含有質(zhì)粒的甘油菌,接種于氨芐抗性培養(yǎng)基平板中培養(yǎng)。挑取多個單克隆菌株于液體培養(yǎng)基中,擴增培養(yǎng)后進行菌液PCR鑒定,對鑒定出的菌液按照普通質(zhì)粒DNA小提試劑盒(Endo-free Plasmid Mini Kit II,廣州飛揚生物工程有限公司)說明書進行質(zhì)粒抽提,再用限制性內(nèi)切酶dIII/I (美國Thermo Fisher公司)對質(zhì)粒進行雙酶切鑒定。經(jīng)過電泳驗證的質(zhì)粒送深圳華大基因進行測序,利用SnapGene軟件比對序列確定合格的質(zhì)粒。
用限制性內(nèi)切酶I(美國Thermo Fisher公司)使質(zhì)粒線性化,純化回收線性化DNA后再使用體外轉(zhuǎn)錄試劑盒(mMESSAGE mMGACHINETMT7 UItra,美國Thermo Fisher公司)對RNA進行加帽和加尾,回收體外轉(zhuǎn)錄產(chǎn)物,進行電泳和濃度鑒定,確定mRNA樣品的質(zhì)量后將濃度調(diào)整至1000 ng/μL。
通過胞漿顯微注射的方法將mRNA和mRNA注射入豬克隆胚胎。本研究進行兩種注射:一種是在胚胎激活后4~6 h的1-細胞期進行注射;另一種是在胚胎激活后28~30 h的2-細胞期進行注射。注射胚胎分為4組:組、組、+組(混合注射mRNA和mRNA)、胚胎注射水(美國Sigma公司)組即對照組,注射濃度為1000 ng/μL[8,14],每個胚胎注射的體積為10 pL。體外培養(yǎng)豬克隆胚胎,統(tǒng)計培養(yǎng)48 h的胚胎卵裂率、148 h的胚胎囊胚率和囊胚細胞數(shù)。
收集在豬1-細胞期注射mRNA和胚胎注射水的2-細胞期克隆胚胎,用操作液洗3次后轉(zhuǎn)移到固定液中,室溫固定10 min;操作液洗3次后轉(zhuǎn)移到通透液中,室溫通透20 min;操作液洗3次后轉(zhuǎn)移到封閉液中,常溫封閉1 h;操作液洗3次后轉(zhuǎn)移到一抗稀釋液(北京安諾倫生物科技有限公司)中,4℃孵育過夜。操作液洗3次后轉(zhuǎn)移到二抗稀釋液(廣州康龍生物科技有限公司)中,室溫避光孵育1 h;操作液洗3次轉(zhuǎn)移到Hoechst 33342(美國Sigma公司)中,室溫避光孵育5 min;在載玻片中央滴上20 μL抗熒光猝滅封片液,操作液洗3次后將胚胎轉(zhuǎn)移到載玻片上,蓋上蓋玻片后轉(zhuǎn)移到熒光顯微鏡下拍照。
本研究采用單細胞轉(zhuǎn)錄組測序Smart-seq2擴增方法,由廣州永極生物科技有限公司完成。收集在豬1-細胞期注射mRNA和胚胎注射水的4-細胞期克隆胚胎,放入含裂解液和RNase Inhibitor的收集管中,隨后快速放入液氮??偣彩占痬RNA注射組和對照組2組克隆胚胎樣品,每組3管,每管4個胚胎。
將收集的樣品采用Smart-seq2方法擴增生成cDNA,并檢測cDNA樣品片段分布情況,根據(jù)檢測結(jié)果將合格的cDNA進行文庫構建。質(zhì)量檢測合格的文庫在HiSeq Xten測序儀上進行測序以獲得每個樣本的原始數(shù)據(jù),過濾掉低質(zhì)量及接頭污染的數(shù)據(jù)獲取高質(zhì)量的原始數(shù)據(jù)(clean reads),并將其比對到參考基因組序列上。采用THseq軟件根據(jù)比對的文件對基因進行reads統(tǒng)計并計算對應的RPKM (reads per kilobase per million mapped reads),RPKM代表每百萬reads中來自某基因每千堿基長度的reads數(shù)。采用DESeq2軟件計算值和值,比較基因的RPKM值得到FoldChange值,以|log2(fold change)|>1,-value<0.05為標準篩選差異表達基因。
使用軟件SPSS25.0對卵裂率、囊胚率、囊胚細胞數(shù)進行單因素方差分析(ANOVA),數(shù)據(jù)以平均值±標準誤(Mean ± SEM)的形式表示,不同大寫字母表示差異極顯著(<0.01),不同小寫字母表示差異顯著(0.05)。
從NCBI獲得豬(XM_021096835.1)和(XM_003129775.5)的基因序列,編碼區(qū)大小分別為3201 bp和1929 bp。和編碼區(qū)經(jīng)過密碼子優(yōu)化后全長序列分別為3210 bp和1938 bp,構建到空載體pcDNA3.1(+)-P2A-eGFP(由南京金斯瑞公司提供)中(圖1A),得到pcDNA(+)- P2A-eGFP-和pcDNA(+)-P2A-eGFP-2個基因表達載體,長度分別為9410 bp和8138 bp。pcDNA(+)-P2A-eGFP-表達載體中的CDS序列用的是亞型XP_020952494.1。本研究對兩個載體進行dIII/I雙酶切鑒定,雙酶切后pcDNA(+)-P2A-eGFP-長度分別為3210 bp和6200 bp,pcDNA(+)-P2A-eGFP-長度分別為1938 bp和6200 bp(圖1B)。這些結(jié)果表明,過表達載體構建成功。
本研究利用限制性內(nèi)切酶I對pcDNA(+)- P2A-eGFP-和pcDNA(+)-P2A-eGFP-進行單酶切處理,純化回收線性化質(zhì)粒后進行體外轉(zhuǎn)錄合成mRNA和mRNA。對體外轉(zhuǎn)錄獲得的mRNA進行凝膠電泳,結(jié)果顯示mRNA和mRNA已成功轉(zhuǎn)錄(圖1C)。
在豬克隆胚胎1-細胞期和2-細胞期注射mRNA和mRNA,培養(yǎng)克隆胚胎并觀察記錄其發(fā)育情況。1-細胞期注射的結(jié)果(表1)表明,3個實驗組(、和+)的卵裂率和囊胚細胞數(shù)與對照組相比無顯著差異。組的囊胚率相較于對照組和組都有極顯著的提高(0.01);組和+組的囊胚率與對照組相比均有提升趨勢但不顯著。由以上的結(jié)果可知,在1-細胞期注射mRNA能顯著提高豬克隆胚胎的囊胚率,注射mRNA有提升作用。2-細胞期注射的結(jié)果(表2)表明,3個實驗組的囊胚率與對照組相比均無顯著差異;+組與組相比,囊胚細胞數(shù)顯著增加(0.05)。
在豬克隆胚胎1-細胞期注射mRNA和胚胎注射水,培養(yǎng)克隆胚胎至2-細胞期,隨后對mRNA注射組和對照組的2-細胞期克隆胚胎進行免疫熒光實驗,檢測組蛋白H3K9me3的表達水平。結(jié)果顯示,mRNA注射組與對照組相比,H3K9me3熒光信號強度更弱(圖2),這表明過表達基因可以降低豬克隆胚胎組蛋白H3K9me3的表達水平。
圖1 KDM4A和KDM4D過表達載體的構建與體外轉(zhuǎn)錄結(jié)果
A:空載體圖譜。B:pcDNA(+)-P2A-eGFP-和pcDNA(+)-P2A-eGFP-雙酶切電泳鑒定結(jié)果。MI:8K DNA Marker;1:pcDNA(+)-P2A-eGFP-雙酶切的電泳條帶;2:未進行酶切的質(zhì)粒;3:pcDNA(+)-P2A-eGFP-雙酶切電泳條帶;4:未進行酶切的質(zhì)粒。C:mRNA和mRNA體外轉(zhuǎn)錄結(jié)果。MI和MII:5K DNA Marker;1:體外轉(zhuǎn)錄加帽產(chǎn)物;2:體外轉(zhuǎn)錄加尾產(chǎn)物;3:體外轉(zhuǎn)錄加帽產(chǎn)物;4:體外轉(zhuǎn)錄加尾產(chǎn)物。
表1 1-細胞期注射KDM4A mRNA和KDM4D mRNA對豬克隆胚胎發(fā)育效率的影響
表示實驗重復數(shù);囊胚率=囊胚數(shù)/克隆胚胎總數(shù);不同的大寫字母表示差異極顯著(<0.01),不同的小寫字母表示差異顯著(0.05)。
表2 2-細胞期注射KDM4A mRNA和KDM4D mRNA對豬克隆胚胎發(fā)育效率的影響
表示實驗重復數(shù);囊胚率=囊胚數(shù)/2-細胞期克隆胚胎總數(shù);不同的小寫字母表示差異顯著(0.05)。
在豬克隆胚胎1-細胞期注射mRNA和胚胎注射水,培養(yǎng)豬克隆胚胎至4-細胞期,隨后收集mRNA注射組和對照組的4-細胞期克隆胚胎,進行RNA-seq,對測序數(shù)據(jù)進行表達量分析。結(jié)果顯示,在注射mRNA后的4-細胞期克隆胚胎中,的RPKM(reads per kilobase million)高于對照組(圖3),說明本研究注射mRNA過表達了,同時表明注射mRNA提高了豬克隆胚胎中的表達量。
通過對轉(zhuǎn)錄組測序數(shù)據(jù)進行質(zhì)量評估和基因組比對,確定測序數(shù)據(jù)是可信的。利用R軟件DESeq2包對兩組樣本的基因轉(zhuǎn)錄本進行差異顯著性分析,以|log2(fold change)|>1和-value<0.05為篩選標準,共篩選出133個差異表達基因(differentially expressed genes, DEGs),其中上調(diào)表達基因52個,下調(diào)表達基因81個(圖4A),差異基因具體信息見附表1。
為進一步了解DEGs的功能和探究過表達基因?qū)?-細胞期克隆胚胎DEGs相關信號通路的影響,本研究利用ClusterProfiler包和Gene Ontology數(shù)據(jù)庫對DEGs進行了GO與KEGG(Kyoto Encyclopedia of Genes and Genomes)富集分析。結(jié)果表明,在DEGs顯著富集程度最高的前20條GO條目中,DEGs數(shù)量最多的前5條包括:定位(localization)、細胞對化學刺激的反應(cellular response to chemical stimulus)、細胞定位(cellular localization)、細胞質(zhì)溶膠(cytosol)、細胞器定位(organelle localization)(圖4B)。在DEGs富集程度最高的前20條KEGG信號通路中,7條顯著富集的信號通路分別是:晝夜節(jié)律(circadian rhythm)、細胞衰老(cellular senescence)、MAPK信號通路(MAPK signaling pathway)、急性髓細胞白血病(acute myeloid leukemia)、Rap1信號通路(Rap1 signaling pathway)、Ras信號通路(Ras signaling pathway)、糖尿病并發(fā)癥中的AGE-RAGE信號通路(AGE-RAGE signaling pathway in diabetic complications) (圖4C)。
圖3 KDM4A基因差異表達分析
圖4 過表達KDM4A基因?qū)ωi克隆胚胎影響的轉(zhuǎn)錄組基因表達分析
A:差異表達基因火山圖;B:差異表達基因GO富集分析;C:差異表達基因KEGG富集分析。
組蛋白H3K9me3是克隆胚胎有效重編程的主要表觀遺傳屏障,降低H3K9me3異常表達水平增強克隆胚胎發(fā)育能力被大量研究。去甲基化酶KDM4A對于雌性哺乳動物早期胚胎植入及克隆胚胎發(fā)育至關重要[15,16],Ruan等[17]和Weng等[18]在豬1-細胞期克隆胚胎中注射mRNA有效降低了H3K9me3
表達水平,提高克隆胚胎的囊胚率。研究指出過表達可顯著提高植入后胚胎中的表達水平,導致克隆豬植入后死亡[17]。這表明對克隆胚胎早期發(fā)育能力有增強作用,但不能增強克隆胚胎體內(nèi)長期發(fā)育能力。過表達可以挽救H3K9me3引起的體細胞核染色質(zhì)結(jié)構缺陷,提高克隆胚胎發(fā)育能力[19]。Feng等[20]和Zhang等[7]對牛和羊克隆胚胎顯微注射mRNA,發(fā)現(xiàn)胚胎中H3K9me3水平降低,多功能相關基因表達水平提高,從而促進克隆胚胎的發(fā)育。本研究在豬克隆胚胎1-細胞期和2-細胞期注射mRNA對克隆胚胎囊胚率均無顯著提升,2-細胞期+共注射組囊胚細胞數(shù)卻得到顯著提高,說明去甲基化酶KDM4D可能存在物種特異性,在豬上KDM4D酶活性較低。此外,小鼠和豬序列的Jmj C結(jié)構域中存在一定差異[18],這可能是注射mRNA在豬克隆胚胎上幾乎不發(fā)揮作用的重要原因。本研究在豬克隆胚胎2-細胞期注射mRNA和mRNA均無法提高克隆胚胎的囊胚率,可能是因為2-細胞期注射相較于1-細胞期對豬克隆胚胎造成更大的機械損傷,從而對胚胎發(fā)育產(chǎn)生不利影響。
小鼠克隆胚胎中基因表達異常始于2-細胞期,這對應著小鼠體外受精胚胎的合子基因組激活[5]。Wang等[21]探索發(fā)現(xiàn)原始生殖細胞中H3K9me3水平較高,而合子形成過程中基因組H3K9me3修飾大量丟失,此后在植入前胚胎發(fā)育過程中H3K9me3標記的基因相對較少且穩(wěn)定,這種H3K9me3修飾的動態(tài)模式與Cao等[22]對豬克隆胚胎的研究結(jié)果相似。研究發(fā)現(xiàn)豬2-細胞期和4-細胞期克隆胚胎中H3K9me3水平遠高于體外受精胚胎[18]。這些研究表明H3K9me3異常水平可能導致胚胎基因組激活不成功和晚期發(fā)育所需的調(diào)節(jié)因子合成不足,最終導致克隆胚胎效率低下。因此,本研究在豬克隆胚胎1-細胞期過表達,降低H3K9me3異常水平,促使胚胎中H3K9me3修飾更接近正常胚胎,從而改善豬克隆胚胎的發(fā)育效率。本研究在分析豬克隆胚胎轉(zhuǎn)錄組差異表達基因時發(fā)現(xiàn)、、、、、、基因在H3K9me3調(diào)控、胚胎發(fā)育及細胞增殖方面具有一定作用。晝夜節(jié)律調(diào)節(jié)因子基因的轉(zhuǎn)錄抑制與H3K9甲基化有關。啟動子區(qū)異染色質(zhì)標記H3K9me3表達降低時,人胃癌細胞中的表達增加,說明受到H3K9me3調(diào)控[23]。轉(zhuǎn)錄受到組蛋白甲基化的影響,Zhao等[24]研究表明通過組蛋白甲基化調(diào)節(jié)因子與H3K9me3結(jié)合介導的異染色質(zhì)形成被轉(zhuǎn)錄抑制,從而促進細胞增殖。主要與異染色質(zhì)區(qū)域相關,異染色質(zhì)區(qū)域與核纖層蛋白相互作用。敲除基因?qū)е录毎械漠惾旧|(zhì)標記H3K9me3在核內(nèi)發(fā)生錯誤定位[25],從而影響核纖層。據(jù)報道,(真核生物翻譯起始因子4 E結(jié)合蛋白1)通過抑制細胞周期蛋白D1表達導致細胞周期阻滯,影響胚胎發(fā)育[26]。、、在卵母細胞和胚胎中表達,其中基因的缺失將導致小鼠胚胎死亡[27];通過調(diào)節(jié)磷酸化,維持細胞代謝平衡,促進胚胎發(fā)育[28]。此外,本研究GO富集分析發(fā)現(xiàn),mRNA注射組與對照組的豬克隆胚胎差異表達基因功能主要集中在定位,可能是去甲基化酶行使功能前的細胞定位。據(jù)報道,定位于卵母細胞、顆粒細胞及卵泡膜細胞上的基因表達可能影響體外受精胚胎發(fā)育,影響妊娠結(jié)果[29]。KDM4D蛋白在染色質(zhì)上的定位促進H3K9me3的甲基化[30]。KEGG富集分析發(fā)現(xiàn),差異表達基因集中在細胞衰老和急性髓細胞白血病相關通路,表明可能通過去甲基化操控細胞增殖,改善克隆胚胎的發(fā)育能力。Zhang等[31]發(fā)現(xiàn)減少H3K9me3甲基化,保持細胞周期停滯從而減少細胞衰老。在急性髓細胞白血病患者細胞系中敲低基因顯著抑制白血病細胞增殖,說明對急性髓細胞白血病細胞自我更新和存活具有重要作用[32]。
表觀遺傳重編程障礙是限制克隆技術實際應用的一個難題,異常的表觀遺傳修飾大大降低克隆胚胎效率。研究發(fā)現(xiàn)通過組蛋白去乙?;敢种苿┨幚韀33,34]、過表達組蛋白去甲基化酶[35]、敲除或者干擾基因的表達[36,37]等方法可修復異常表觀遺傳修飾,提高克隆胚胎的發(fā)育效率。然而,重編程障礙往往是由多個異常表觀遺傳修飾導致,因此有研究通過聯(lián)合多種修復手段以加強修復效果。Matoba等[5]發(fā)現(xiàn)TSA與聯(lián)合處理小鼠克隆胚胎比TSA單獨處理克隆胚胎能更大幅度地提高囊胚率(87.5%53.8%)。隨后Matoba等[38]使用突變體的供體細胞和mRNA注射聯(lián)合處理小鼠克隆胚胎,極大地提高了克隆小鼠出生率(1.2%~1.8%18.7%~23.5%)。由此可見,通過聯(lián)合多種修復手段提高克隆效率是一種可取的研究策略。
總之,本研究通過過表達組蛋白H3K9me3去甲基化酶KDM4A顯著提高了豬克隆胚胎的發(fā)育效率,這對于體外胚胎生產(chǎn)具有重大意義。另一方面,由于去甲基化酶的mRNA獲得成本較高,這種方法在實際生產(chǎn)中不能得到大規(guī)模應用。因此,利用其他更高效的策略修復克隆胚胎異常表觀遺傳修飾以提高克隆胚胎發(fā)育能力仍待進一步研究。
附錄:
附加材料見文章電子版www.chinagene.cn。
[1] Liu Y, Li J, L?vendahl P, Schmidt M, Larsen K, Callesen H.manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets., 2015, 27(3): 429–439.
[2] Yang XQ, Wu ZF, Li ZC. Advances in epigenetic repro-gram-ming of somatic cells nuclear transfer in mammals., 2019, 41(12): 1099–1109.
楊旭瓊, 吳珍芳, 李紫聰. 哺乳動物體細胞核移植表觀遺傳重編程研究進展. 遺傳, 2019, 41(12): 1099–1109.
[3] Huang XW, Cheng XR, Wang N, Zhang YW, Liao C, Jin LH, Lei L. Histone variant H3.3 and its functions in repro-gramming., 2018, 40(3): 186–196.
黃星衛(wèi), 程香榮, 王楠, 張雨薇, 廖辰, 金連弘, 雷蕾. 組蛋白H3變體H3.3及其在細胞重編程中的作用. 遺傳, 2018, 40(3): 186–196.
[4] Chung YG, Matoba S, Liu YT, Eum JH, Lu F, Jiang W, Lee JE, Sepilian V, Cha KY, Lee DR, Zhang Y. Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells., 2015, 17(6): 758–766.
[5] Matoba S, Liu YT, Lu FL, Iwabuchi KA, Shen L, Inoue A, Zhang Y. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation., 2014, 159(4): 884–895.
[6] Meng FL, Stamms K, Bennewitz R, Green A, Oback F, Turner P, Wei JW, Oback B. Targeted histone demethylation improves somatic cell reprogramming into cloned blas-tocy-sts but not postimplantation bovine concepti., 2020, 103(1): 114–125.
[7] Zhang YM, Wang QQ, Liu KL, Gao EE, Guan H, Hou J. Treatment of donor cells with recombinant KDM4D protein improves preimplantation development of cloned ovine embryos., 2018, 70(5): 1469–1477.
[8] Liu Z, Cai YJ, Wang Y, Nie YH, Zhang CC, Xu YT, Zhang XT, Lu Y, Wang ZY, Poo M, Sun Q. Cloning of macaque monkeys by somatic cell nuclear transfer., 2018, 172(4): 881–887.
[9] Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, Vieth B, Vick B, Jeremias I, Ziegenhain C, Hellmann I, Enard W. Prime-seq, efficient and powerful bulk RNA sequencing., 2022, 23(1): 88.
[10] Matoba S, Zhang Y. Somatic cell nuclear transfer repro-gramming: mechanisms and applications.,2018, 23(4): 471–485.
[11] Liu WQ, Liu XY, Wang CF, Gao YW, Gao R, Kou XC, Zhao YH, Li JY, Wu Y, Xiu WC, Wang S, Yin JQ, Liu W, Cai T, Wang H, Zhang Y, Gao SR. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing., 2016, 2: 16010.
[12] Wu X, Li G, Ao Z, Shi JS, Cai GY, Liu DW, Wu ZF, Li ZC. Effects of overexpression of H3K9me3 demethylase on thedevelopmental efficiency of cloned porcine embryos., 2017, 44(10): 96–101.
吳霄,李果,敖政,石俊松,蔡更元,劉德武,吳珍芳,李紫聰. 過表達H3K9me3去甲基化酶對豬克隆胚胎體外發(fā)育效率的影響. 廣東農(nóng)業(yè)科學, 2017, 44(10): 96–101.
[13] He XY, Tan C, Li ZC, Zhao CF, Shi JS, Zhou R, Wang XW, Jiang GL, Cai GY, Liu DW, Wu ZF. Characterization and comparative analyses of transcriptomes of cloned andfertilized porcine pre-implantation embryos., 2019, 8(4): bio039917.
[14] Liu X, Chen L, Wang T, Zhou JL, Li ZK, Bu GW, Zhang JJ, Yin SY, Wu DY, Dou CL, Xu T, He HN, Zhu W, Yu LT, Liu ZT, Zhang X, Chen ZX, Miao YL. TDG is a pig-specific epigenetic regulator with insensitivity to H3K9 and H3K27 demethylation in nuclear transfer embryos., 2021, 16(11): 2674–2689.
[15] Sankar A, Kooistra SM, Gonzalez JM, Ohlsson C, Poutanen M, Helin K. Maternal expression of the histone demethylase KDM4A is crucial for pre-implantation deve-lop-ment.,2017, 144(18): 3264–3277.
[16] Lee JE, Chung YG, Eum JH, Lee Y, Lee DR. An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks., 2016, 49(4): 197–198.
[17] Ruan DG, Peng JY, Wang XS, Ouyang Z, Zou QJ, Yang Y, Chen FB, Ge WK, Wu H, Liu ZM, Zhao Y, Zhao BT, Zhang QJ, Lai CD, Fan NN, Zhou ZW, Liu QS, Li N, Jin Q, Shi H, Xie JK, Song H, Yang XY, Chen JK, Wang KP, Li XP, Lai LX. XIST derepression in active X chromo-some hinders pig somatic cell nuclear transfer., 2018, 10(2): 494–508.
[18] Weng XG, Cai MM, Zhang YT, Liu Y, Liu C, Liu ZH. Improvement in thedevelopment of cloned pig embryos after KDM4A overexpression and an H3K9me3 methyltransferase inhibitor treatment., 2020, 146: 162–170.
[19] Chen M, Zhu QS, Li C, Kou XC, Zhao YH, Li YH, Xu RM, Yang L, Yang LY, Gu L, Wang H, Liu XY, Jiang CZ, Gao SR. Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos., 2020, 11(1): 1813.
[20] Feng Y, Zhao X, Li ZD, Luo C, Ruan ZY, Xu J, Shen PL, Deng YF, Jiang JR, Shi DS, Lu FH. Histone demethylase KDM4D could improve the developmental competence of buffalo () somatic cell nuclear transfer (SCNT) embryos., 2021, 27(2): 409–419.
[21] Wang CF, Liu XY, Gao YW, Yang L, Li C, Liu WQ, Chen C, Kou XC, Zhao YH, Chen JY, Wang YX, Le RR, Wang H, Duan T, Zhang Y, Gao SR. Reprogramming of H3K9me3- dependent heterochromatin during mammalian embryo development., 2018, 20(5): 620–631.
[22] Cao ZB, Li YS, Chen Z, Wang H, Zhang ML, Zhou NR, Wu RH, Ling YH, Fang FG, Li N, Zhang YH. Genome- wide dynamic profiling of histone methylation during nuclear transfer-mediated porcine somatic cell reprogram-ming., 2015, 10(12): e0144897.
[23] Hernández-Rosas F, Hernández-Oliveras A, Flores-Peredo L, Rodríguez G, Zarain-Herzberg á, Caba M, Santiago- García J. Histone deacetylase inhibitors induce the expres-sion of tumor suppressor genes Per1 and Per2 in human gastric cancer cells., 2018, 16(2): 1981–1990.
[24] Zhao Y, Huang SY, Tan XR, Long LF, He QM, Liang XY, Bai JW, Li QJ, Lin JY, Li YQ, Liu N, Ma J, Chen YP. N6-methyladenosine-modified CBX1 regulates nasophar-yn-geal carcinoma progression through heterochromatin formation and STAT1 activation., 2022, 30: e2205091.
[25] Divisato G, Chiariello AM, Esposito A, Zoppoli P, Zam-belli F, Elia MA, Pesole G, Incarnato D, Passaro F, Piscitelli S, Oliviero S, Nicodemi M, Parisi S, Russo T. Hmga2 protein loss alters nuclear envelope and 3D chromatin structure., 2022, 20(1): 171.
[26] Dong GZ, Zhang R, Hu Q, Martin EM, Qin YF, Lu CC, Xia YK, Wang XR, Du GZ. Prothioconazole induces cell cycle arrest by up-regulation of EIF4EBP1 in extravillous trophoblast cells., 2022, 96(2): 559–570.
[27] Mahdipour M, Leitoguinho AR, Zacarias Silva RA, van Tol HT, Stout TA, Rodrigues G, Roelen BA. TACC3 is important for correct progression of meiosis in bovine oocytes., 2015, 10(7): e0132591.
[28] Heinemann-Yerushalmi L, Bentovim L, Felsenthal N, Vinestock RC, Michaeli N, Krief S, Silberman A, Cohen M, Ben-Dor S, Brenner O, Haffner-Krausz R, Itkin M, Malitsky S, Erez A, Zelzer E. BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development., 2021, 56(8): 1182–1194.e6.
[29] Krieg AJ, Mullinax SR, Grimstad F, Marquis K, Constance E, Hong Y, Krieg SA, Roby KF. Histone demethylase KDM4A and KDM4B expression in granulosa cells from women undergoingfertilization., 2018, 35(6): 993–1003.
[30] Zoabi M, Nadar-Ponniah PT, Khoury-Haddad H, Usaj M, Budowski-Tal I, Haran T, Henn A, Mandel-Gutfreund Y, Ayoub N. RNA-dependent chromatin localization of KDM4D lysine demethylase promotes H3K9me3 demethylation., 2014, 42(21): 13026–13038.
[31] Zhang BY, Long QL, Wu SS, Xu QX, Song SL, Han L, Qian M, Ren XH, Liu HX, Jiang J, Guo JM, Zhang XL, Chang X, Fu Q, Lam EWF, Campisi J, Kirkland JL, Sun Y. KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phe-no-type., 2021, 1(5): 454–472.
[32] Massett ME, Monaghan L, Patterson S, Mannion N, Bunschoten RP, Hoose A, Marmiroli S, Liskamp RMJ, J?rgensen HG, Vetrie D, Michie AM, Huang X. A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal and survival., 2021, 12(6): 573.
[33] Zhao JG, Hao YH, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. Histone deacetylase inhibitors improveanddevelopmental competence of somatic cell nuclear transfer porcine embryos., 2010, 12(1): 75–83.
[34] Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui HT, Wakayama T. Significant improve-ment of mouse cloning technique by treatment with tri-chos-tatin a after somatic nuclear transfer., 2006, 340(1): 183–189.
[35] Wang FC, Kou ZH, Zhang Y, Gao SR. Dynamic repro-gramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos., 2007, 77(6): 1007–1016.
[36] Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte AP, Tian XC, Yang XZ, Ishino F, Abe K, Ogura A. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer., 2010, 330(6003): 496–499.
[37] Li GL, Zhong CL, Ni S, Liu DW, Cai GY, Li ZC, Yang HQ, Wu ZF. Establishment of porcine Xist knockout model using CRISPR/Cas9 system., 2016, 38(12): 1081–1089.
李國玲, 鐘翠麗, 倪生, 劉德武, 蔡更元, 李紫聰, 楊化強, 吳珍芳. 利用CRISPR/Cas9系統(tǒng)建立基因敲除豬模型. 遺傳, 2016, 38(12): 1081–1089.
[38] Matoba S, Wang HH, Jiang L, Lu FL, Iwabuchi KA, Wu XJ, Inoue K, Yang L, Press W, Lee JT, Ogura A, Shen L, Zhang Y. Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation deve-lop-ment., 2018, 23(3): 343–354.
Effects of overexpression of histone H3K9me3 demethylase on development of porcine cloned embryos
Yanan Li1,2,3, Xianjun Zhang1,2,3, Ning Zhang1,2,3, Yalin Liang1,2,3, Yuxing Zhang1,2,3, Huaxing Zhao1,2,3, Zicong Li1,2,3, Sixiu Huang1,2,3
The abnormal modification of histone is an important factor restricting development of porcine cloned embryos. Overexpression of histone H3K9me3 demethylase KDM4 family can effectively improve the developmental efficiency of cloned embryos. In order to explore the effects of overexpression of H3K9me3 demethylase on the development of porcine cloned embryos,mRNA andmRNA were injected respectively into porcine cloned embryos at the 1-cell stage and 2-cell stage to detect the blastocyst rate; 2-cell stage cloned embryos injected withmRNA and embryo injection water (the control group) at the 1-cell stage were collected to detect the expression level of H3K9me3, and 4-cell stage cloned embryos were collected for single cell transcriptome sequencing, then the sequencing data was analyzed with KEGG and GO. The results showed that the blastocyst rate of porcine cloned embryos injected withmRNA at 1-cell stage was significantly higher than that of the control group (25.32 ± 0.74%14.78 ± 0.87%), while cloned embryos injected withmRNA had a similar blastocyst rate with cloned embryos in control group (16.27 ± 0.77%14.78 ± 0.87%). Porcine cloned embryos injected withmRNA andmRNA at 2-cell stage had a similar blastocyst rate with cloned embryos in control group (32.18 ± 1.67%, 30.04 ± 0.91%31.22 ± 1.40%). The expression level of H3K9me3 in cloned embryos injected withmRNA at 1-cell stage was lower than that in control group. There were 133 differentially expressed genes detected by transcriptome sequencing, including 52 up-regulated genes and 81 down-regulated genes. Pathways enriched by GO analyses were mainly related to protein localization. Pathways enriched by KEGG analyses were related to cellular senescence and acute myeloid leukemia. These results suggest that overexpression of histone H3K9me3 demethylase KDM4A can significantly improve the developmental efficiency of porcine cloned embryos.
pig; cloning embryo; H3K9me3; KDM4A; KDM4D
2022-07-18;
2022-11-08;
2022-11-28
廣東省自然科學基金項目(編號:2019B1515210027),廣東特支計劃本土創(chuàng)新創(chuàng)業(yè)團隊項目(編號:2019BT02N630)和廣東省畜禽地方品種保護與開發(fā)利用提升工程項目資助[Supported by the Natural Science Foundation of Guangdong Province (No. 2019B1515210027), Guangdong Special Support Plan Local Innovation and Entrepreneurship Team (No. 2019BT02N630) and Guangdong Province Livestock and poultry Local Breed Protection and Development and Utilization Promotion Project]
李亞楠,在讀碩士研究生,專業(yè)方向:動物遺傳育種與繁殖。E-mail: li321736803@163.com
黃思秀,碩士,助理研究員,研究方向:動物遺傳育種與繁殖。E-mail: sxhuang815@scau.edu.cn
10.16288/j.yczz.22-244
(責任編委: 李明洲)