• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      代謝相關脂肪性肝病發(fā)生脂肪性肝炎的無創(chuàng)診斷模型構(gòu)建及分析

      2023-04-29 18:36:51陳智恒高博文桂蓓施梅姐蕭煥明謝玉寶黎勝池曉玲
      臨床肝膽病雜志 2023年8期
      關鍵詞:診斷模型性肝炎脂肪性

      陳智恒 高博文 桂蓓 施梅姐 蕭煥明 謝玉寶 黎勝 池曉玲

      摘要:目的通過臨床一般資料、血清學指標及肝臟彈性成像無創(chuàng)檢查手段,基于LASSO及Logistic回歸建立代謝相關脂肪性肝?。∕AFLD)發(fā)生脂肪性肝炎的診斷模型,并評估該模型的診斷價值。方法納入2018年1月—2021年12月于廣東省中醫(yī)院診斷為MAFLD且完善肝病理活檢的患者為研究對象299例,根據(jù)肝病理NAS評分將其分為脂肪性肝炎組(n=170)例和無脂肪性肝炎組(n=129)。先后通過LASSO回歸及多因素Logistic回歸篩選MAFLD發(fā)生脂肪性肝炎的影響因素,并建立無創(chuàng)診斷模型,利用列線圖形式可視化,采用加強Bootstrap法進行內(nèi)部驗證,繪制ROC曲線及Calibration曲線,并在MAFLD+NAFLD和MAFLD+cHBVi兩個亞組人群中觀察模型的診斷效能,并與其他診斷模型進行比較分析。計數(shù)資料組間比較采用χ2檢驗;符合正態(tài)分布的計量資料組間比較采用成組t檢驗,不符合正態(tài)分布的計量資料組間比較采用Mann-Whitney U檢驗。采用多因素Logistic回歸分析,篩選最佳診斷因素,構(gòu)建列線圖診斷模型,繪制受試者工作特征曲線(ROC曲線),計算ROC曲線下面積(AUC),并進一步采用加強Bootstrap法對模型進行內(nèi)部驗證,繪制Calibration曲線顯示校準度。結(jié)果兩組間BMI、ALT、AST、ADA、ALP、GGT、TBA、TCO2、UA、HbA1c比較差異均有統(tǒng)計學意義(P值均<0.05);FibroScan方面,兩組LSM及CAP比較提示差異具有統(tǒng)計學意義(P值均<0.001);病理學方面,兩組的纖維化等級、脂肪變積分、小葉炎癥積分、氣球樣變積分及NAS總分差異均有統(tǒng)計學意義(P值均<0.001)。亞組隊列方面,MAFLD+NAFLD有、無脂肪性肝炎組分別為63、48例,MAFLD+cHBVi有、無脂肪性肝炎組分別為90、71例。通過LASSO回歸及多因素Logistic回歸篩選出LSM、CAP、BMI、AST是判斷MAFLD患者是否發(fā)生脂肪性肝炎的最佳診斷因素,并以此構(gòu)建LCBA模型。LCBA模型結(jié)果提示,總MAFLD、MAFLD+NAFLD和MAFLD+cHBVi人群的AUC分別為0.816、0.866、0.764(P值均<0.001),ROC曲線對比顯示均優(yōu)于acNASH、HSI、NFS模型。結(jié)論LCBA模型用于診斷MAFLD患者是否發(fā)生脂肪性肝炎的效能穩(wěn)定,且優(yōu)于acNASH、HSI、NFS,值得臨床推廣。關鍵詞:非酒精性脂肪性肝?。?代謝相關脂肪性肝??; 診斷基金項目:國家“十三五”重大傳染病專項課題(2018ZX10725506-003, 2018ZX10725505-004); 廣東省中醫(yī)院院內(nèi)專項(YN2022DB04, YN10101903); 國家中醫(yī)藥管理局全國名老中醫(yī)藥專家池曉玲傳承工作室建設項目(國中醫(yī)藥人教函〔2022-75 號〕); 省部共建中醫(yī)濕證國家重點實驗室開放課題(SZ2021KF08)

      Construction and analysis of a noninvasive diagnostic model for steatohepatitis in metabolic associated fatty liver disease

      CHEN Zhiheng GAO Bowen GUI Bei SHI Meijie XIAO Huanming XIE Yubao LI Sheng CHI Xiaoling(1. The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; 2. Department of Hepatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, China; 3. The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; 4. State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine Jointly Built by Province and Ministry, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China)

      Corresponding author:CHI Xiaoling, chixiaolingqh@163.com (ORCID:0000-0003-3193-1943)

      Abstract:ObjectiveTo establish a diagnostic model for steatohepatitis in metabolic associated fatty liver disease (MAFLD) based on LASSO and logistic regression analyses by using general clinical data, serological parameters, and noninvasive liver elastography, and to evaluate the diagnostic value of this model. MethodsA total of 299 patients who were diagnosed with MAFLD and underwent liver biopsy in Guangdong Provincial Hospital of Traditional Chinese Medicine from January 2018 to December 2021 were enrolled as subjects, and according to NAS score, they were divided into steatohepatitis group with 170 patients and non-steatohepatitis group with 129 patients. The LASSO regression analysis and the multivariate logistic regression analysis were used to identify the influencing factors for steatohepatitis in MAFLD, and a noninvasive diagnostic model was established, visualized in the form of nomogram, and internally validated by the enhanced Bootstrap method. The receiver operating characteristic (ROC) curve and the calibration curve were plotted for the model, and its diagnostic efficacy was observed in the MAFLD+NAFLD and MAFLD+cHBVi subgroups, which was then compared with other diagnostic models. The chi-square test was used for comparison of categorical data between groups; the independent-samples t test was used for comparison of normally distributed continuous data between groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups. A multivariate logistic regression analysis was used to determine optimal diagnostic factors, and a nomogram diagnostic model was established; the ROC curve was plotted, and the area under the ROC curve (AUC) was calculated; the enhanced Bootstrap method was used for internal validation of the model, and the calibration curve was plotted to show the level of calibration. ResultsThere were significant differences between the two groups in body mass index (BMI), alanine aminotransferase, aspartate aminotransferase (AST), adenosine deaminase, alkaline phosphatase, gamma-glutamyl transpeptidase, total bile acid, total carbon dioxide concentration, uric acid, HbA1c (all P<0.05). As for FibroScan, there were significant differences between the two groups in liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) (both P<0.001); as for pathology, there were significant differences between the two groups in fibrosis degree, steatosis score, lobular inflammation score, ballooning degeneration score, and total NAS score (all P<0.001). In the subgroup analysis, there were 63 patients with steatohepatitis and 48 patients without steatohepatitis in the MAFLD+NAFLD group, and there were 90 patients with steatohepatitis and 71 patients without steatohepatitis in the MAFLD+cHBVi group. The LASSO regression analysis showed that LSM, CAP, BMI, and AST were the best diagnostic factors for the presence or absence of steatohepatitis in MAFLD patients, and the LCBA model was established based on these indices. The LCBA model showed an AUC of 0.816 in the total MAFLD population, 0.866 in the MAFLD+NAFLD population, and 0.764 in the MAFLD+cHBVi population (all P<0.001), and comparisons based on the ROC curve showed that they were superior to the acNASH, HSI, and NFS models. ConclusionThe LCBA model has a stable performance in the diagnosis of steatohepatitis in patients with MAFLD and is superior to acNASH, HSI, and NFS. Therefore, it holds promise for clinical application.

      Key words:Non-alcoholic Fatty Liver Disease; Metabolic Associated Fatty Liver Disease; Diagnosis

      Research funding:The Thirteenth Five-Year Plan for Major and Special Programs of the National Science and Technology of China (2018ZX10725506-003, 2018ZX10725505-004); The Specific Research Fund for TCM Science and Technology of Guangdong Provincial Hospital of Chinese Medicine (YN2022DB04,YN10101903); Chi Xiaoling National Famous Traditional Chinese Medicine Expert Inheritance Studio (Teaching Letter from State Traditional Chinese Medicine Office (2022-75)); Open Project of State Key Laboratory of Dampness Syndrome of Chinese Medicine(SZ2021KF08)

      代謝相關脂肪性肝?。∕AFLD)是于2020年經(jīng)國際專家組共識聲明,由非酒精性脂肪性肝?。∟AFLD)更名而來[1],更加強調(diào)了MAFLD可能伴隨的糖脂代謝紊亂、胰島素抵抗、血壓升高、肥胖等代謝異常特征。脂肪性肝炎(NASH)是介導MAFLD疾病進展的主要途徑,將進一步導致肝纖維化、肝硬化甚至肝衰竭、肝癌[2-3]。而抑制脂肪性肝炎是阻止纖維化進展的有力治療手段[5],所以及早識別脂肪性肝炎是臨床聚焦的重要領域[4]。目前識別評估脂肪性肝炎的“金標準”仍是肝穿刺病理活檢,但因存在費用成本高、并發(fā)癥風險高、重復評估難等缺點,不適合定期監(jiān)測。所以開發(fā)MAFLD的脂肪性肝炎無創(chuàng)診斷模型是臨床迫切所需。然而現(xiàn)有的大部分無創(chuàng)脂肪性肝炎診斷模型,如CA index、NAFIC score、G-NASH model、ClinLipMet score、Index of NASH等,大都依托于特殊的血清學檢測,臨床推廣性差;而一些本用于診斷NAFLD或判別NAFLD纖維化程度的無創(chuàng)模型,用于脂肪性肝炎時,診斷效能明顯下降[6-7]。且目前脂肪性肝炎的診斷模型,多是依據(jù)NAFLD診斷標準構(gòu)建,對MAFLD的診斷效能尚未可知。因此,本研究將基于臨床常用指標,構(gòu)建準確性強、可重復性高的無創(chuàng)診斷模型,用于MAFLD患者預測發(fā)生脂肪性肝炎的風險,對臨床有重要意義。

      1資料與方法

      1.1研究對象選取2018年1月—2021年12月于廣東省中醫(yī)院就診并診斷為MAFLD的患者為研究對象。MAFLD診斷標準參照2020年發(fā)布的《亞太地區(qū)肝病協(xié)會代謝相關脂肪性肝病診斷與處理臨床實踐指南》[8],存在影像學(彩超/CT/MR)脂肪肝證據(jù)或肝穿病理提示存在>5%肝細胞脂肪變者,合并BMI≥23.0 kg/m2、2型糖尿病、代謝功能異常三者之一,即可診斷為MAFLD。其中代謝功能異常定義為滿足以下7項之2項或以上:(1)男性腰圍≥90 cm,女性腰圍≥80 cm;(2)血壓≥130 mmHg/85 mmHg或使用降壓藥物;(3)甘油三酯≥1.70 mmol;(4)男性HDL-C<1.0 mmol/L,女性HDL-C<1.3 mmol/L;(5)糖尿病前期(即空腹血糖5.6~6.9 mmol/L,餐后2 h血糖7.8~11.0 mmol/L,糖化血紅蛋白5.7%~6.4%);(6)胰島素抵抗穩(wěn)態(tài)模型(HOMA-IR)指數(shù)≥2.5;(7)超敏C反應蛋白≥2.0 mg/L。納入標準:(1)符合MAFLD診斷的18~70歲患者,性別不限;(2)行肝穿刺病理活檢及FibroScan檢查,并在肝穿刺病理活檢前后1個月內(nèi)存在經(jīng)影像學證實的脂肪肝。排除標準:(1)肝穿刺前已經(jīng)確診肝硬化或肝癌,或存在嚴重肝功能不全;(2)合并急性感染、嚴重心肺腎等重要臟器功能障礙或其他惡性腫瘤史;(3)孕婦或哺乳期婦女;(4)重要數(shù)據(jù)缺失者。

      1.2研究方法

      1.2.1病理學標準及分組根據(jù)美國NASH臨床研究網(wǎng)絡病理協(xié)會提出的改良Brunt標準及NAS評分[9],將肝纖維化等級分為0~4級,對肝脂肪變性、肝小葉炎癥及肝細胞氣球樣變程度分別賦予0~3分、0~3分、0~2分,三個維度得分相加為NAS總得分,本研究將NAS≥5分歸為脂肪性肝炎組,NAS<5分歸為無脂肪性肝炎組。

      1.2.2亞組設置將本研究中同時符合MAFLD和NAFLD診斷的人群,以及同時符合MAFLD和慢性乙型肝炎病毒感染(cHBVi)診斷的人群分別設置為亞組(即MAFLD+NAFLD組與MAFLD+cHBVi組),其中NAFLD診斷參考《非酒精性脂肪性肝病防治指南(2018更新版)》[10],cHBVi診斷參考《慢性乙型肝炎防治指南(2019年版)》[11]。

      1.2.3資料收集收集患者的一般資料,包括性別、年齡、BMI、吸煙史、飲酒情況、高血壓情況、糖尿病情況、合并肝病情況等,其中過量飲酒定義為平均酒精攝入≥20 g/d(女)及≥30 g/d(男)。收集患者的血清學檢驗數(shù)據(jù),包括肝功能(ALT、AST、Alb、ALP、GGT、TBil、DBil、TBA、ADA),腎功能(Urea、Cr、UA、TCO2、eGFR),糖代謝指標(GLU、HbA1c),脂代謝指標(TG、TC、HDL-C、LDL-C、Apo-A1、Apo-B)及PLT、CK-MB、TSH等。

      1.2.4FibroScan數(shù)據(jù)采集肝臟硬度值(LSM)及受控衰減參數(shù)(CAP)由Echosens公司生產(chǎn)的FibroScan-502機型進行測量,由經(jīng)驗豐富的醫(yī)生進行測量,保證每次測量均≥10次有效激發(fā),成功率≥60%且IQR/M≤0.30[12]。

      1.2.5其他對比模型本研究構(gòu)建模型將與acNASH、肝臟脂肪變指數(shù)(HSI)、NAFLD纖維化評分(NFS)三種無創(chuàng)診斷模型進行對比,公式如下[6,13]:acNASH=AST/SCr×10;HSI=8×(ALT/AST)+BMI(女性,+2;2型糖尿病,+2);NFS=-1.675+(0.037×年齡)+(0.094×BMI)+[1.13×T2DM(yes=1,no=0)]+(0.99×AST/ALT)-(0.013×PLT)-(0.66×Alb)。

      1.3統(tǒng)計學方法應用SPSS 22.0軟件進行統(tǒng)計學分析。計數(shù)資料組間比較采用χ2檢驗;符合正態(tài)分布的計量資料以x±s表示,兩組間比較采用成組t檢驗,不符合正態(tài)分布的計量資料以M(P25~P75)表示,兩組間比較采用Mann-Whitney U檢驗?;赗語言軟件及相關程序包,利用LASSO回歸對變量進行降維處理,篩選具有非零系數(shù)特征的變量,并進一步將其納入多因素Logistic回歸分析,篩選出最佳診斷因素,構(gòu)建列線圖診斷模型,繪制受試者工作特征曲線(ROC曲線),計算ROC曲線下面積(AUC),并進一步采用加強Bootstrap法對模型進行內(nèi)部驗證,繪制Calibration曲線顯示校準度。最后分析模型在開發(fā)隊列與MAFLD+NAFLD、MAFLD+cHBVi兩個亞組隊列人群中的表現(xiàn),采用MedCalc軟件與其他模型進行ROC曲線對比。P<0.05表示差異有統(tǒng)計學意義。

      2結(jié)果

      2.1一般資料共納入MAFLD患者299例,無脂肪性肝炎組129例,脂肪性肝炎組170例。兩組間BMI、ALT、AST、ADA、ALP、GGT、TBA、TCO2、UA、HbA1c比較差異均有統(tǒng)計學意義(P值均<0.05);FibroScan方面,兩組LSM及CAP比較提示差異均具有統(tǒng)計學意義(P值均<0.001);病理學方面,兩組的纖維化等級、脂肪變積分、小葉炎癥積分、氣球樣變積分及NAS總分差異均有統(tǒng)計學意義(P值均<0.001)。亞組隊列方面,MAFLD+NAFLD有、無脂肪性肝炎組分別為63、48例,MAFLD+cHBVi有、無脂肪性肝炎組分別為90、71例(表1)。

      2.2MAFLD脂肪性肝炎的LASSO回歸分析將一般資料、血清學指標及FibroScan數(shù)據(jù)共39個變量納入LASSO回歸分析,進行降維處理后篩選出6個具有非零系數(shù)特征的變量,即LSM、CAP、BMI、ALT、AST、UA(圖1)。

      2.3MAFLD脂肪性肝炎的多因素Logistic回歸分析

      對LASSO回歸所篩變量進一步納入多因素Logistic回歸分析,結(jié)果顯示:LSM(OR=1.148)、CAP(OR=1.301)、BMI(OR=1.015)、AST(OR=1.023)是MAFLD患者發(fā)生脂肪性肝炎的最佳診斷因素(P值均<0.05)(表2)。

      2.4MAFLD發(fā)生脂肪性肝炎的診斷模型構(gòu)建及內(nèi)部驗證根據(jù)多因素Logistic回歸分析結(jié)果,將LSM、CAP、BMI、AST及其對應權(quán)重系數(shù),采用R軟件進行模型構(gòu)建及列線圖可視化(圖2),將模型命名為LCBA,繪制ROC曲線。結(jié)果顯示,LCBA模型診斷MAFLD脂肪性肝炎概率的AUC為0.816(95%CI:0.768~0.858)(P<0.001),敏感度為78.24%,特異度為71.32%(表3),提示診斷模型區(qū)分度良好。進一步使用加強Bootstrap法對模型開發(fā)隊列數(shù)據(jù)進行 1 000次有放回的重抽樣,獲得1 000個與開發(fā)隊列樣本量相等的數(shù)據(jù)集作為內(nèi)部驗證集,結(jié)果顯示,AUC的高估值調(diào)整值為0.006 36,用原始模型的模型表現(xiàn)——高估值調(diào)整值,獲得內(nèi)部驗證后的模型表現(xiàn),故AUC內(nèi)部驗證=0.810,提示內(nèi)部驗證后的LCBA模型區(qū)分度依舊良好。繪制Calibration校準曲線(圖3),Hosmer-Lemeshow擬合優(yōu)度檢驗P=0.058,提示LCBA模型校準度良好,診斷概率與真實概率擬合一致性優(yōu)。

      2.5LCBA模型在MAFLD+NAFLD和MAFLD+cHBVi亞組人群中的表現(xiàn)結(jié)果顯示,LCBA模型在MAFLD+NAFLD及MAFLD+CHB亞組人群中診斷概率的AUC分別為0.866(95%CI:0.788~0.923)、0.764(95%CI:0.691~0.827),統(tǒng)計學有意義(P值均<0.001)(表3)。

      2.6LCBA模型與其他模型比較將LCBA模型分別在MAFLD、MAFLD+NAFLD、MAFLD+CHB人群中與acNASH、HSI、NFS三種模型進行比較,繪制ROC曲線,結(jié)果顯示,LCBA模型在三種人群中的診斷概率AUC均高于另外三種模型(表4、圖4),提示LCBA模型區(qū)分度更優(yōu)。

      3討論

      目前,MAFLD在全球范圍內(nèi)患病率逐年上升,正成為全球第一慢性肝病,據(jù)統(tǒng)計,亞洲人群的MAFLD患病率為15%~40%[14],而因MAFLD轉(zhuǎn)診的行病理檢查的亞洲患者中,脂肪性肝炎的發(fā)生率高達58%~63.45%[15-16]。本研究結(jié)果顯示,在總MAFLD人群及MAFLD+NAFLD、MAFLD+cHBVi兩個亞組中脂肪性肝炎的發(fā)生率分別為56.86%(170/299)、56.77%(63/111)、55.90%(90/161),與文獻報道脂肪性肝炎的發(fā)生率相近。脂肪性肝炎是MAFLD疾病進展的主要途徑,隨著炎癥的持續(xù)存在,可進展為肝硬化、肝細胞癌和終末期肝?。?7-18]。然而,目前尚無可供準確判別MAFLD脂肪性肝炎的單項指標,故探索準確可靠的無創(chuàng)診斷模型尤為必要。

      本研究中,脂肪性肝炎組肝功能指標中的ALT、AST、ALP、GGT、ADA及代謝異常指標中的BMI、HbA1c、TG、UA均比無脂肪性肝炎組高(P值均<0.05);病理學方面,脂肪性肝炎組纖維化、脂肪變、小葉炎癥、氣球樣變程度也均高于無脂肪性肝炎組(P值均<0.05)。本研究先后通過LASSO回歸及多因素Logistic回歸,進行MAFLD脂肪性肝炎診斷變量的篩選,在降低自變量間共線性的影響下,最終篩選出LSM、CAP、BMI、AST四個最佳診斷變量,通過列線圖形式構(gòu)筑LCBA無創(chuàng)診斷模型,模型提示當LSM=10 kPa時對應積20分,CAP=330 dB/m積17.5分,BMI=28 kg/m2積12.5分,AST=80 U/L積14分,相加為64分,此時對應風險>0.95,提示出現(xiàn)脂肪性肝炎風險極高。

      瞬時彈性成像技術(shù)是近年來最有前景的量化肝臟纖維化及脂肪變的無創(chuàng)測量手段, 已廣泛用于臨床且數(shù)據(jù)易得,其所測量的LSM和CAP在分別反映纖維化及肝脂肪變性程度方面已被證實具有較高的準確性與敏感度[17],故可作為肝臟病理活檢的部分替代手段。一項綜合646例肝臟病理的研究[19]指出,NAS評分上升與纖維化等級增加具有高度共線性,表明脂肪性肝炎與纖維化進展密不可分,故在MAFLD發(fā)生脂肪性肝炎時,常表現(xiàn)為LSM與CAP均有所升高,與本研究結(jié)果一致。

      BMI 作為體內(nèi)脂肪的替代度量之一[20],是診斷肥胖癥的關鍵指標。BMI升高是包括MAFLD在內(nèi)的多種代謝疾病的主要危險因素,一項全球性研究[13]中指出,在單純脂肪肝和脂肪性肝炎人群中的肥胖比例分別為51.34%和81.83%,說明BMI升高與脂肪肝的形成和脂肪性肝炎的發(fā)生均具有高度相關性。BMI升高引起肝臟脂肪蓄積,并進一步形成脂毒性,導致線粒體功能障礙和氧化應激,是MAFLD發(fā)生脂肪性肝炎的關鍵機制[21-22],而AST主要存在于肝細胞的線粒體中,當肝細胞出現(xiàn)炎癥損傷甚至壞死時,線粒體中的AST將釋放出來,導致血清AST升高[23],故AST是反映脂肪性肝炎的可靠靈敏指標之一[13,16]。

      綜上,基于病理學證實的LCBA模型,作為診斷MAFLD發(fā)生脂肪性肝炎的風險量化工具,數(shù)據(jù)易得,操作簡便,診斷效能良好,且優(yōu)于acNASH、HSI、NFS模型,符合臨床實際所需,值得推廣應用。但不可否認,本研究也存在一定的局限性,例如樣本量有限,且數(shù)據(jù)為單中心,僅進行了內(nèi)部驗證,缺少外部驗證評估模型的泛化能力,未來期望可進一步通過多中心研究、擴大樣本量等方法來對LCBA模型進一步優(yōu)化。

      倫理學聲明:本研究方案于2022年2月14日經(jīng)由廣東省中醫(yī)院倫理委員會審批,批號為YE2022-035-01。利益沖突聲明:本文不存在任何利益沖突。作者貢獻聲明:陳智恒、施梅姐、池曉玲負責課題設計,擬定寫作思路,資料分析,撰寫論文;高博文、桂蓓、蕭煥明、謝玉寶、黎勝參與收集并核對數(shù)據(jù),修改論文;池曉玲指導撰寫文章并最后定稿。

      參考文獻:

      [1]ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.

      [2]KOLAKOWSKI A, DZIEMITKO S, CHMIELECKA A, et al. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis[J]. Int J Mol Sci, 2022, 23(19): 11380. DOI: 10.3390/ijms231911380.

      [3]MA YQ, XIE YP, LAING XY, et al. Study on the expression characteristics of serum leptin and receptor genes in patients with non-alcoholic fatty liver disease and cirrhosis[J]. Clin J Med Offic, 2021, 49(8): 930-932. DOI: 10.16680/j.1671-3826.2021.08.28.馬艷芹, 謝永鵬, 梁旭陽, 等. 非酒精性脂肪肝轉(zhuǎn)歸肝硬化患者血清瘦素及受體基因表達特征研究[J]. 臨床軍醫(yī)雜志, 2021, 49(8): 930-932. DOI: 10.16680/j.1671-3826.2021.08.28.

      [4]DOU KF, YANG XS. Surgeons should attach importance to the understanding of metabolic associated fatty liver disease[J]. Chin J Dig Surg, 2021, 20(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.竇科峰, 楊西勝. 外科醫(yī)師應重視對代謝相關脂肪性肝病的認識[J]. 中華消化外科雜志, 2021, 20(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.

      [5]Chinese Society of Hepatology, Chinese Medical Association; Chiese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and therapy of hepatic fibrosis(2019)[J]. J CIin HepatoI, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007.中華醫(yī)學會肝病學分會, 中華醫(yī)學會消化病學分會, 中華醫(yī)學會感染病學分會. 肝纖維化診斷及治療共識(2019年)[J]. 臨床肝膽病雜志, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007.

      [6]NL? S, VARELA-CHINCHILLA CD, TRINIDAD-CALDER?N PA. MAFLD/NAFLD biopsy-free scoring systems for hepatic steatosis, NASH, and fibrosis diagnosis[J]. Front Med (Lausanne), 2021, 8: 774079. DOI: 10.3389/fmed.2021.774079.

      [7]OTGONSUREN M, ESTEP MJ, HOSSAIN N, et al. Single non-invasive model to diagnose non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)[J]. J Gastroenterol Hepatol, 2014, 29(12): 2006-2013. DOI: 10.1111/jgh.12665.

      [8]ESLAM M, SARIN SK, WONG VW, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease[J]. Hepatol Int, 2020, 14(6): 889-919. DOI: 10.1007/s12072-020-10094-2.

      [9]KLEINER DE, BRUNT EM, van NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313-1321. DOI: 10.1002/hep.20701

      [10]National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease:a 2018 update[J]. J CIin HepatoI, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中華醫(yī)學會肝病學分會脂肪肝和酒精性肝病學組, 中國醫(yī)師協(xié)會脂肪性肝病專家委員會. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 臨床肝膽病雜志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

      [11]Chinese Society of Infectious Diseases, Chinese Medical Association; Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J CIin HepatoI, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.中華醫(yī)學會感染病學分會, 中華醫(yī)學會肝病學分會. 慢性乙型肝炎防治指南(2019年版)[J]. 臨床肝膽病雜志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.

      [12]Consensus expert committee on clinical application of transient elastography(TE). Expert consensus on clinical application of transient elastography (TE) (2015)[J/CD]. Chin J Liver Dis: Electronic Edition, 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002.瞬時彈性成像技術(shù)(TE)臨床應用共識專家委員會. 瞬時彈性成像技術(shù)(TE)臨床應用專家共識(2015年)[J/CD]. 中國肝臟病雜志(電子版), 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002.

      [13]WU XX, ZHENG KI, BOURSIER J, et al. acNASH index to diagnose nonalcoholic steatohepatitis: a prospective derivation and global validation study[J]. EClinicalMedicine, 2021, 41: 101145. DOI: 10.1016/j.eclinm.2021.101145.

      [14]YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.

      [15]YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.

      [16]NEWSOME PN, SASSO M, DEEKS JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4): 362-373. DOI: 10.1016/S2468-1253(19)30383-8.

      [17]CAO YT, XIANG LL, QI F, et al. Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. EClinicalMedicine, 2022, 51: 101547. DOI: 10.1016/j.eclinm.2022.101547.

      [18]TAYLOR RS, TAYLOR RJ, BAYLISS S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Gastroenterology, 2020, 158(6): 1611-1625. e12. DOI: 10.1053/j.gastro.2020.01.043.

      [19]HAGSTRM H, NASR P, EKSTEDT M, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD[J]. J Hepatol, 2017, 67(6): 1265-1273. DOI: 10.1016/j.jhep.2017.07.027.

      [20]VILALTA A, GUTI?RREZ JA, CHAVES S, et al. Adipose tissue measurement in clinical research for obesity, type 2 diabetes and NAFLD/NASH[J]. Endocrinol Diabetes Metab, 2022, 5(3): e00335. DOI: 10.1002/edm2.335.

      [21]HORN CL, MORALES AL, SAVARD C, et al. Role of cholesterol-associated steatohepatitis in the development of NASH[J]. Hepatol Commun, 2022, 6(1): 12-35. DOI: 10.1002/hep4.1801.

      [22]LIM S, KIM JW, TARGHER G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease[J]. Trends Endocrinol Metab, 2021, 32(7): 500-514. DOI: 10.1016/j.tem.2021.04.008.

      [23]KWO PY, COHEN SM, LIM JK. ACG clinical guideline: evaluation of abnormal liver chemistries[J]. Am J Gastroenterol, 2017, 112(1): 18-35. DOI: 10.1038/ajg.2016.517.

      收稿日期:2022-12-30;錄用日期:2023-02-13

      本文編輯:林姣

      引證本文:CHEN ZH, GAO BW, GUI B, et al. Construction and analysis of a noninvasive diagnostic model for steatohepatitis in metabolic associated fatty liver disease[J]. J Clin Hepatol, 2023, 39(8): 1857-1866.

      猜你喜歡
      診斷模型性肝炎脂肪性
      非酒精性脂肪性肝病,需要治療嗎?
      肝博士(2024年1期)2024-03-12 08:38:22
      非酒精性脂肪性肝病的中醫(yī)治療
      肝博士(2022年3期)2022-06-30 02:49:06
      成軍:非酒精性脂肪性肝病新藥的研發(fā)
      肝博士(2021年1期)2021-03-29 02:32:02
      中醫(yī)適宜技術(shù)治療老年非酒精性脂肪性肝炎合并糖尿病1例
      CD4細胞計數(shù)聯(lián)合IGRA預測AIDS/Ⅲ型TB影像診斷模型分析
      甘肅科技(2020年20期)2020-04-13 00:30:56
      芒果苷對大鼠酒精性肝炎的保護作用研究
      一種電網(wǎng)通信網(wǎng)絡的故障檢測方法及系統(tǒng)
      異甘草酸鎂對酒精性肝炎患者TNF和IL-6的影響
      中西醫(yī)結(jié)合治療非酒精性脂肪性肝病
      對于電站鍋爐燃燒經(jīng)濟性診斷模型的研究
      临夏市| 成都市| 自治县| 汕尾市| 隆昌县| 延寿县| 舒城县| 龙口市| 乐陵市| 海安县| 乌拉特前旗| 荔波县| 平湖市| 陵水| 株洲市| 汤原县| 龙州县| 扎赉特旗| 桑日县| 沁源县| 平利县| 安仁县| 长武县| 乐陵市| 公主岭市| 万全县| 阳谷县| 肥东县| 沙雅县| 库尔勒市| 同江市| 左权县| 新竹县| 凤城市| 蕉岭县| 定结县| 卢氏县| 章丘市| 宝山区| 石棉县| 梅河口市|