• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      胰腺神經(jīng)內(nèi)分泌腫瘤微環(huán)境的形成機(jī)制及免疫/靶向治療研究進(jìn)展

      2023-04-29 00:20:36楊佳妮張海蓉
      臨床肝膽病雜志 2023年8期
      關(guān)鍵詞:治療學(xué)

      楊佳妮 張海蓉

      摘要:胰腺神經(jīng)內(nèi)分泌腫瘤微環(huán)境是由腫瘤細(xì)胞、免疫/免疫抑制細(xì)胞和細(xì)胞外基質(zhì)成分等共同構(gòu)建的促癌微環(huán)境,以免疫抑制為突出特征,不僅可以抑制抗腫瘤免疫反應(yīng)、促進(jìn)血管新生導(dǎo)致腫瘤細(xì)胞免疫逃逸和侵襲轉(zhuǎn)移,也是患者對(duì)抗腫瘤治療產(chǎn)生耐藥的主要原因。因此,從胰腺神經(jīng)內(nèi)分泌腫瘤微環(huán)境出發(fā),設(shè)計(jì)新的抗腫瘤治療策略以逆轉(zhuǎn)抑制性腫瘤微環(huán)境對(duì)提高胰腺神經(jīng)內(nèi)分泌腫瘤的療效有重要意義。本文綜述了胰腺神經(jīng)內(nèi)分泌腫瘤微環(huán)境的組成和作用及其靶向治療的最新研究進(jìn)展。關(guān)鍵詞:胰腺腫瘤; 神經(jīng)內(nèi)分泌瘤; 腫瘤微環(huán)境;? ?治療學(xué)

      Research advances in the mechanism of tumor microenvironment and targeted therapy for pancreatic neuroendocrine tumor

      YANG Jiani, ZHANG Hairong. (Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, National Key Clinical Specialty, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, China)

      Corresponding author:ZHANG Hairong, zhr919@sina.com (ORCID:0000-0002-9918-3673)

      Abstract:The tumor microenvironment of pancreatic neuroendocrine tumor is a tumor-promoting microenvironment composed of tumor cells, immune/immunosuppressive cells, and extracellular matrix and has the marked feature of immunosuppression. It can lead to the immune escape, invasion, and metastasis of tumor cells by inhibiting antitumor immune response and promoting angiogenesis and is also the main cause of drug resistance to antitumor treatment. Therefore, it is of great significance to design new therapeutic strategies from the perspective of the tumor microenvironment of pancreatic neuroendocrine tumor to reverse suppressive tumor microenvironment and improve the treatment outcome of pancreatic neuroendocrine tumor. This article reviews the latest research advances in the composition and role of the tumor microenvironment of pancreatic neuroendocrine tumor and related targeted therapy.

      Key words:Pancreatic Neoplasms; Neuroendocrine Tumors; Tumor Microenvironment; Therapeutics

      胰腺神經(jīng)內(nèi)分泌腫瘤(pancreatic neuroendocrine tumor,pNET)是一種相對(duì)罕見、起源于胰腺內(nèi)分泌細(xì)胞和肽能神經(jīng)元的腫瘤。近年來,pNET發(fā)病率呈上升趨勢(shì)[1]。根治性手術(shù)切除是目前唯一可治愈pNET的治療策略,然而pNET起病隱匿、早期診斷困難,很多患者至中晚期才能被確診以致失去根治性手術(shù)指征[2]。對(duì)于轉(zhuǎn)移性pNET患者,目前已有旨在控制癥狀和抑制腫瘤生長(zhǎng)的治療方式,但部分患者仍獲益有限。腫瘤微環(huán)境被認(rèn)為是決定腫瘤生物學(xué)的關(guān)鍵因素,近年來隨著對(duì)腫瘤微環(huán)境研究的深入,為pNET致病機(jī)理和靶向治療方面提供了新思路。

      1pNET的腫瘤微環(huán)境

      pNET腫瘤微環(huán)境主要由腫瘤細(xì)胞、腫瘤相關(guān)中性粒細(xì)胞(tumor-associated neutrophils,TAN)、腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophages,TAM)、腫瘤相關(guān)成纖維細(xì)胞(carcinoma-associated fibroblasts,CAF)、調(diào)節(jié)性T淋巴細(xì)胞(Treg)及骨髓來源抑制細(xì)胞(myeloid derived suppressor cells,MDSC)等細(xì)胞成分及細(xì)胞外基質(zhì)(ECM)等相互作用共同構(gòu)成。pNET腫瘤微環(huán)境主要表現(xiàn)為低免疫原性、高免疫抑制性特點(diǎn),即雖然有不同的免疫/免疫抑制細(xì)胞浸潤(rùn),但具有抗腫瘤作用的免疫效應(yīng)細(xì)胞多處于數(shù)量與功能失衡狀態(tài),而免疫抑制細(xì)胞則功能活躍且大量存在并分泌抑制性細(xì)胞因子誘導(dǎo)局部/全身免疫抑制。此外,高度血管化以及活躍的ECM重塑也是pNET免疫抑制性腫瘤微環(huán)境的重要促成因素,為pNET血管新生、細(xì)胞增殖、侵襲轉(zhuǎn)移及抗腫瘤治療耐藥創(chuàng)造了有利條件。

      1.1pNET腫瘤微環(huán)境中主要的抗腫瘤免疫成分pNET 腫瘤微環(huán)境中的免疫細(xì)胞(尤其是T淋巴細(xì)胞)是介導(dǎo)抗腫瘤免疫的主要細(xì)胞成分。研究[3]顯示,pNET 腫瘤微環(huán)境中存在不同的T淋巴細(xì)胞群,包括CD4+T淋巴細(xì)胞、CD8+T淋巴細(xì)胞、CD45RO+T淋巴細(xì)胞及CD3+T淋巴細(xì)胞,但抗腫瘤免疫反應(yīng)受到不同程度的限制,使pNET細(xì)胞能夠逃避免疫監(jiān)控。pNET中豐富的TAM、MDSC等免疫抑制細(xì)胞可產(chǎn)生T淋巴細(xì)胞激活負(fù)調(diào)控因子如程序性死亡配體1(programmed death ligand-1,PD-L1)抑制效應(yīng)T淋巴細(xì)胞的活化和功能[4-5]。此外,pNET細(xì)胞本身也可通過多種機(jī)制抑制免疫細(xì)胞的抗腫瘤作用:(1)表達(dá)程序性死亡受體1(programmed death 1,PD-1)以及細(xì)胞毒T淋巴細(xì)胞相關(guān)抗原4(cytotoxic T-lymphocyte antigen 4,CTLA-4)的相關(guān)配體以誘導(dǎo)效應(yīng)T淋巴細(xì)胞凋亡、失活和耗竭[3,6];(2)抑制pNET中人類白細(xì)胞抗原Ⅰ的成分(如β2-微球蛋白)的表達(dá),阻礙抗原呈遞以抑制CD8+T淋巴細(xì)胞免疫應(yīng)答[7];(3)通過腫瘤細(xì)胞和CAF過表達(dá)的吲哚胺2,3-雙加氧酶和色氨酸2,3-雙加氧酶消耗腫瘤微環(huán)境中對(duì)T淋巴細(xì)胞增殖至關(guān)重要的色氨酸,生成犬尿氨酸及其衍生物,促進(jìn)Treg生成及抑制樹突狀細(xì)胞的免疫原性[8]。

      三級(jí)淋巴樣結(jié)構(gòu)(tertiary lymphoid structures,TLS)是在非淋巴組織中形成的免疫細(xì)胞的有組織聚集體,可招募免疫細(xì)胞流入腫瘤部位,推動(dòng)免疫反應(yīng)對(duì)抗腫瘤的發(fā)生和進(jìn)展。Allen等[9]發(fā)現(xiàn)在RIP1-Tag2小鼠模型中,PD-L1阻斷聯(lián)合抗血管內(nèi)皮生長(zhǎng)因子受體(vascular endothelial growth factor,VEGFR)2抗體DC101可誘導(dǎo)高內(nèi)皮小靜脈形成并激活淋巴素β受體信號(hào)通路促進(jìn)淋巴細(xì)胞浸潤(rùn)及TLS形成,從而抑制pNET腫瘤生長(zhǎng)及轉(zhuǎn)移。在Zhang等[10]的研究中超過1/3的非功能pNET存在TLS浸潤(rùn),其中最大的TLS亞群是CD45RO+T淋巴細(xì)胞(39.35%),其次是CD20+B淋巴細(xì)胞(36.61%)、CD4+T淋巴細(xì)胞(20.05%)、CD8+T淋巴細(xì)胞(3.99%),而免疫抑制細(xì)胞(CD68+巨噬細(xì)胞和Treg)則浸潤(rùn)較低,與患者更好的臨床預(yù)后如淋巴結(jié)陰性、無血管和神經(jīng)侵犯、TNM分期及WHO分級(jí)較低有關(guān),所以,誘導(dǎo)TLS形成有望成為未來pNET治療新的研究方向。

      1.2免疫抑制細(xì)胞

      1.2.1TAN腫瘤組織可產(chǎn)生趨化因子趨化中性粒細(xì)胞通過血管壁進(jìn)入腫瘤組織形成TAN,分泌基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)9等誘導(dǎo)血管生成、降解ECM和促進(jìn)腫瘤發(fā)生,還能減弱CD8+T淋巴細(xì)胞的抗腫瘤作用并募集TAM和Tregs浸潤(rùn)促進(jìn)腫瘤進(jìn)展[11],與pNET分級(jí)增加、肝臟轉(zhuǎn)移、淋巴結(jié)及周圍神經(jīng)浸潤(rùn)顯著相關(guān),是預(yù)后不良的危險(xiǎn)因素[12]。與TAM類似,與原發(fā)性腫瘤相比TAN浸潤(rùn)在肝臟轉(zhuǎn)移性病變中更常見并可能與活躍的補(bǔ)體通路有關(guān)[13]。除了浸潤(rùn)狀態(tài),中性粒細(xì)胞死亡過程中產(chǎn)生的細(xì)胞外陷阱也影響pNET患者的生存結(jié)局。細(xì)胞外陷阱是以核內(nèi)或線粒體內(nèi)DNA為骨架,負(fù)載彈性蛋白酶和水解酶等組成的網(wǎng)狀結(jié)構(gòu),可阻止腫瘤細(xì)胞與CD8+T淋巴細(xì)胞和自然殺傷細(xì)胞的接觸及調(diào)節(jié)腫瘤微環(huán)境中的CAF。在pNET中就細(xì)胞外陷阱促腫瘤相關(guān)機(jī)制的研究還尚少,但最近Xu等[11]發(fā)現(xiàn)中性粒細(xì)胞、巨噬細(xì)胞細(xì)胞外陷阱陽性是腫瘤預(yù)后不良的獨(dú)立危險(xiǎn)因素,與無復(fù)發(fā)生存率降低相關(guān)。

      1.2.2TAMTAM可分為M1型巨噬細(xì)胞(經(jīng)典激活)和M2型巨噬細(xì)胞(替代激活)。腫瘤組織中浸潤(rùn)的TAM大部分通過腫瘤細(xì)胞和基質(zhì)細(xì)胞產(chǎn)生的細(xì)胞因子和趨化因子從外周血募集并完成M2極化,從而分泌多種促血管生成因子和侵襲性介質(zhì)調(diào)節(jié)腫瘤微環(huán)境。在pNET中,原發(fā)及轉(zhuǎn)移性病灶均存在數(shù)量豐富的TAM,抑制了CD8+T淋巴細(xì)胞的浸潤(rùn)及腫瘤殺傷功能并分泌VEGF及血管生成素受體Tie-2,介導(dǎo)腫瘤血管生成轉(zhuǎn)換及腫瘤生長(zhǎng)、轉(zhuǎn)移,是不良預(yù)后的標(biāo)志[4,6,14]。此外,pNET細(xì)胞及TAM均可產(chǎn)生組織蛋白酶Z,并通過RGD(Arg-Gly-Asp)模體、整合素的參與及隨后在腫瘤細(xì)胞中激活FAK-Src信號(hào)介導(dǎo)pNET細(xì)胞的侵襲及遷移[15]。

      1.2.3CAF腫瘤細(xì)胞和CAF之間復(fù)雜的相互作用是病理性ECM重塑和結(jié)締組織增生的主要原因,被認(rèn)為是某些腫瘤的不良預(yù)后因素及治療的重要靶點(diǎn)。在pNET中,腫瘤細(xì)胞可分泌TGF-β等可溶性因子刺激成纖維細(xì)胞的增殖和激活[16],而CAF又可通過分泌TGF-β1、結(jié)締組織生長(zhǎng)因子和成纖維生長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF)限制T淋巴細(xì)胞浸潤(rùn)及募集、促進(jìn)基質(zhì)纖維化和血管新生[17-18],或通過激活致瘤mTOR信號(hào)參與促進(jìn)pNET的增殖、遷移及侵襲[19]。

      1.2.4TregTreg是一類具有顯著免疫抑制作用的CD4+T淋巴細(xì)胞亞群,在生理?xiàng)l件下的免疫耐受維持中起著重要的作用,但也可通過分泌TGF-β、IL-10及CTLA-4、PD-1與T淋巴細(xì)胞受體結(jié)合,抑制CD4+輔助性T淋巴細(xì)胞1、CD8+T淋巴細(xì)胞以及自然殺傷細(xì)胞的增殖及活化從而驅(qū)動(dòng)腫瘤細(xì)胞免疫逃逸。正常胰腺組織中Treg含量極少,但NET的發(fā)展伴隨著激活的Treg逐漸積累,如研究顯示高達(dá)97%的肝轉(zhuǎn)移胃腸胰NET(GEP-NET)被Treg浸潤(rùn),并在表面高表達(dá)PD-1、PD-L1[20-21],Treg也是pNET患者疾病進(jìn)展及肝轉(zhuǎn)移的獨(dú)立預(yù)后因素,浸潤(rùn)密度增加與總生存期的縮短顯著相關(guān)[20,22]。

      1.2.5MDSCMDSC是由未成熟髓樣細(xì)胞組成的異質(zhì)性群體,包括單核型(M-MDSC)、粒細(xì)胞型(G-MDSC)和多核型(PMN-MDSC)亞群。在GEP-NET中,較高的循環(huán)和組織浸潤(rùn)M-MDSC可通過過表達(dá)PD-L1干擾抗腫瘤T淋巴細(xì)胞效應(yīng),促使腫瘤免疫逃逸,與腫瘤的分期增加和轉(zhuǎn)移顯著相關(guān),具有鑒別轉(zhuǎn)移亞組甚至對(duì)潛在的早期轉(zhuǎn)移作出預(yù)測(cè)的作用[5]。

      1.2.6肥大細(xì)胞腫瘤組織中的肥大細(xì)胞活化后能分泌多種介質(zhì)參與腫瘤微環(huán)境的重塑及誘導(dǎo)血管新生[23]。Soucek等[24]研究表明胰島β細(xì)胞內(nèi)轉(zhuǎn)錄因子Myc的激活通過釋放IL-1β等介質(zhì)招募肥大細(xì)胞、巨噬細(xì)胞及中性粒細(xì)胞快速涌入腫瘤及其鄰近間質(zhì),從而構(gòu)建有利于胰島素瘤血管生成及生長(zhǎng)的微環(huán)境,而抑制肥大細(xì)胞脫顆?;騽?chuàng)建肥大細(xì)胞缺陷小鼠模型可誘導(dǎo)腫瘤和內(nèi)皮細(xì)胞缺氧和凋亡,使腫瘤增殖受抑。然而一項(xiàng)對(duì)187例pNET患者常見免疫細(xì)胞的綜合分析研究[25]顯示,肥大細(xì)胞在pNET中有潛在抗腫瘤作用,是無進(jìn)展生存期(progression free survival,PFS)延長(zhǎng)的獨(dú)立預(yù)測(cè)因子。因此,肥大細(xì)胞浸潤(rùn)與預(yù)后的好壞相關(guān),其在pNET中的作用機(jī)制及效應(yīng)還需要進(jìn)一步研究。

      1.3pNET微環(huán)境中的細(xì)胞外成分

      1.3.1ECM及ECM降解腫瘤相關(guān)ECM可阻止藥物擴(kuò)散并促進(jìn)腫瘤細(xì)胞的增殖、遷移和血管生成。Naba等[26]用定量蛋白質(zhì)組學(xué)方法證實(shí)RIP1-Tag2小鼠胰島素瘤模型ECM蛋白表達(dá)組成明顯改變,纖維蛋白-3、纖維蛋白原和激肽原顯著上調(diào),而飾膠蛋白、半椎蛋白、凝集素、半乳糖凝集素-1等則表達(dá)下調(diào),促進(jìn)了胰島素瘤血管生成轉(zhuǎn)換和微血管生成。上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是腫瘤細(xì)胞由上皮細(xì)胞向間充質(zhì)細(xì)胞轉(zhuǎn)化的過程,是腫瘤細(xì)胞實(shí)現(xiàn)轉(zhuǎn)移前獲得侵襲性表型的關(guān)鍵步驟。在TGF-β等EMT誘導(dǎo)信號(hào)作用下[19],Twist等轉(zhuǎn)錄因子表達(dá)升高可誘導(dǎo)細(xì)胞黏附分子E-cadherin下調(diào),促使上皮細(xì)胞失去極性和細(xì)胞間黏附作用,轉(zhuǎn)化為間充質(zhì)表型,從而促進(jìn)膠原合成及啟動(dòng)pNET浸潤(rùn)和轉(zhuǎn)移[27]。

      ECM的降解及重塑也是腫瘤浸潤(rùn)性生長(zhǎng)及轉(zhuǎn)移的重要促成部分。在腫瘤微環(huán)境中,被降解的ECM成分碎片可招募炎癥細(xì)胞浸潤(rùn)創(chuàng)造有利于腫瘤生長(zhǎng)的局部微環(huán)境,而重塑后的ECM可促進(jìn)腫瘤細(xì)胞穿越宿主組織屏障并誘導(dǎo)生長(zhǎng)因子釋放和促進(jìn)腫瘤血管新生。pNET中ECM的動(dòng)態(tài)變化主要?dú)w因于肝素酶和MMP家族。肝素酶是一種內(nèi)源性β-葡萄糖醛酸酯酶,主要來源于腫瘤微環(huán)境中的Gr1+/Mac1+先天免疫細(xì)胞(如巨噬細(xì)胞),在RIP1-Tag2小鼠胰島素瘤的多階段進(jìn)展過程中不斷增加,可裂解ECM糖蛋白的肝素硫酸鹽側(cè)鏈導(dǎo)致基質(zhì)松動(dòng),并動(dòng)員VEGF等促血管生成分子誘導(dǎo)血管、腫瘤周圍淋巴管生成,促進(jìn)腫瘤進(jìn)展及遠(yuǎn)處轉(zhuǎn)移[28-29]。MMP屬于鋅依賴性蛋白酶家族,在IL-1β等的作用下,MMP9于腫瘤微環(huán)境中積累可降解ECM并促進(jìn)pNET細(xì)胞增殖和遷移[30],但抑制pNET中MMP9表達(dá)可改變腫瘤微環(huán)境中蛋白酶譜,使半胱氨酸組織蛋白酶尤其組織蛋白酶B表達(dá)上升,從而參與降解纖連蛋白、Ⅰ/Ⅳ型膠原蛋白、層粘連蛋白等ECM成分以及E-鈣黏蛋白,加速腫瘤進(jìn)展[31]。

      1.3.2血管生成pNET是一種高度血管化的腫瘤,其血管生成由以下多種途徑介導(dǎo):(1)促血管生成因子產(chǎn)生增多。在pNET中腫瘤細(xì)胞及基質(zhì)細(xì)胞可分泌血小板源性生長(zhǎng)因子、信號(hào)素、神經(jīng)纖毛蛋白2及Tie-2、c-kit、VEGF等促血管生成因子參與促進(jìn)pNET血管生成[6,14,32-33]。(2)ECM中基質(zhì)蛋白誘導(dǎo)。骨膜蛋白可促進(jìn)人pNET中M2-TAM的募集及極化并使FGF表達(dá)升高,直接促進(jìn)血管內(nèi)皮細(xì)胞增殖、血管成熟及調(diào)節(jié)腫瘤細(xì)胞和基質(zhì)細(xì)胞產(chǎn)生其他促血管生成分子,誘導(dǎo)pNET血運(yùn)重建[34-35]。(3)乏氧微環(huán)境誘導(dǎo)。在快速增殖的pNET小鼠腫瘤缺氧區(qū)域缺氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)控制酶CYP46A1過表達(dá),可通過激活HIF-1α-24S-HC軸使促血管生成中性粒細(xì)胞在CYP46A1+胰島附近定位,誘導(dǎo)血管生成轉(zhuǎn)換及腫瘤增長(zhǎng)[36]。

      2pNET微環(huán)境的靶向及免疫治療進(jìn)展

      2.1靶向腫瘤血管生成抗血管生成藥物主要包括酪氨酸激酶抑制劑(tyrosine kinases inhibitor,TKI)和非酪氨酸激酶抑制劑。繼舒尼替尼之后,包括帕唑替尼、卡博替尼等在內(nèi)的多靶點(diǎn)TKI已被證實(shí)在pNET中可獲得良好療效,其在pNET治療中的應(yīng)用及研究進(jìn)展主要體現(xiàn)在一些新藥的研究成果。索凡替尼是國產(chǎn)小分子多靶點(diǎn)TKI,SANET-p Ⅲ期研究[37]顯示,索凡替尼治療延長(zhǎng)了晚期pNET患者的中位PFS(10.9個(gè)月)且具有可接受的安全性,有望成為pNET晚期患者的一種治療選擇。侖伐替尼主要作用于VEGFR 1~3、成纖維生長(zhǎng)因子受體(FGFR)1~4及kit。Ⅱ期TALENT臨床研究[38]中侖伐替尼治療pNET患者的客觀緩解率(objective response rate,ORR)為44.2%,可顯著延長(zhǎng)中位PFS(15.7個(gè)月),但疲勞、高血壓和腹瀉等不良反應(yīng)較嚴(yán)重,高達(dá)93.7%的患者需要減少或中斷劑量。除了一系列TKI藥物,傳統(tǒng)的非TKI藥物還包括VEGF人源化單抗貝伐珠單抗。最近發(fā)表的一項(xiàng)Ⅱ期研究(CALGB 80701)[39]顯示,依維莫司聯(lián)合貝伐珠單抗治療晚期pNET患者有較高的ORR(31%)且顯著延長(zhǎng)了PFS(16.7個(gè)月),但治療相關(guān)毒性反應(yīng)也更為常見。

      2.2缺氧激活前藥抗血管生成治療的主要缺點(diǎn)是在缺氧條件可誘導(dǎo)其他替代性促血管生成因子的產(chǎn)生并激活逃逸機(jī)制從而介導(dǎo)治療耐藥。缺氧激活前藥與抗血管生成治療聯(lián)合使用可能通過在腫瘤缺氧區(qū)域內(nèi)局部發(fā)揮細(xì)胞毒性作用而克服這一限制。如Evofosfamide(TH-302)可在缺氧的腫瘤區(qū)域選擇性激活并進(jìn)一步轉(zhuǎn)化為細(xì)胞毒性效應(yīng)劑:DNA烷化劑溴代異磷酰胺氮芥從而殺死腫瘤細(xì)胞。在pNET中,SUNEVO Ⅱ期研究[40]顯示舒尼替尼聯(lián)合TH-302治療可使17.6%的患者達(dá)到完全或部分緩解,PFS為10.4個(gè)月,但全身毒性較高致使88.2%的患者停止治療而不具可行性,提示未來研究中應(yīng)嘗試用其他更安全的療法克服pNET對(duì)抗血管生成藥物的耐藥性。

      2.3抗免疫抑制性細(xì)胞治療腫瘤微環(huán)境中異常的免疫抑制細(xì)胞組分為pNET的治療提供了靶點(diǎn)。Tie-2+巨噬細(xì)胞是促血管生成和組織重塑功能極強(qiáng)的TAM亞群,能促進(jìn)血管淋巴管生長(zhǎng)、抑制抗腫瘤免疫從而驅(qū)動(dòng)腫瘤發(fā)生發(fā)展及治療耐藥。有研究[14]顯示Rebastinib治療減少了Tie-2+巨噬細(xì)胞募集、浸潤(rùn)和血管生成素的生成,顯著抑制了pNET小鼠模型腫瘤的生長(zhǎng)和轉(zhuǎn)移。氯膦酸鹽脂質(zhì)體是一種巨噬細(xì)胞清除劑,可通過巨噬細(xì)胞內(nèi)吞作用進(jìn)入TAM并誘導(dǎo)其凋亡。在RIP1-Tag2小鼠胰島素瘤模型中,氯膦酸鹽脂質(zhì)體可顯著消耗巨噬細(xì)胞,增強(qiáng)抗腫瘤CD3+T淋巴細(xì)胞浸潤(rùn)比例,導(dǎo)致腫瘤血管生成受抑并抑制了腫瘤侵襲性生長(zhǎng)和惡性轉(zhuǎn)化[4]。伊布替尼是一種布魯頓TKI,可抑制肥大細(xì)胞脫顆粒使pNET動(dòng)物模型血管塌陷和腫瘤消退,然而2019年最新公布的一項(xiàng)驗(yàn)證伊布替尼抗GEP-NET作用的Ⅱ期臨床試驗(yàn)中并沒有達(dá)到客觀治療反應(yīng)[41]。因此,靶向腫瘤微環(huán)境的免疫抑制細(xì)胞,恢復(fù)抗腫瘤免疫細(xì)胞活性及功能是一種極具潛力的pNET治療方法,進(jìn)一步研究有望為pNET患者帶來新的突破。

      2.4免疫檢查點(diǎn)抑制劑免疫檢查點(diǎn)抑制劑(immune checkpoint inhibitors,ICI)是通過靶向阻斷腫瘤細(xì)胞及基質(zhì)細(xì)胞上過表達(dá)的免疫檢查點(diǎn)分子,逆轉(zhuǎn)免疫抑制信號(hào)進(jìn)而增強(qiáng)抗腫瘤免疫反應(yīng)的治療手段。ICI的出現(xiàn)改進(jìn)了腫瘤治療方案。然而,有研究[42-43]表明在pNET中ICI單藥如派姆單抗和斯巴達(dá)珠單抗(PD-1抑制劑)治療pNET的ORR分別為6.3%、3.0%,均未達(dá)到有效的客觀緩解(≥10%)。分析其療效可能受限于pNET中PD-L1表達(dá)較少、腫瘤突變負(fù)荷低、微衛(wèi)星不穩(wěn)定及DNA錯(cuò)配修復(fù)缺陷少見、對(duì)T淋巴細(xì)胞殺傷內(nèi)在不敏感等特性。根據(jù)pNET 腫瘤微環(huán)境的特點(diǎn)及其對(duì)免疫治療的影響,將不同的糾正免疫抑制腫瘤微環(huán)境的策略聯(lián)合應(yīng)用可能有助于改善pNET的治療效果。如CA209-538研究[44]顯示伊匹木單抗(CTLA-4抑制劑)和納武利尤單抗(PD-1抑制劑)聯(lián)合治療在高級(jí)別pNET患者中ORR高達(dá)43%,改善了pNET患者PFS和總生存期。此外,可放大抗腫瘤應(yīng)答的溶瘤病毒是正在評(píng)估的可增加對(duì)免疫檢查點(diǎn)阻斷易感性的治療方式之一。研究[45]顯示mpJX-594聯(lián)合PD-1單抗可協(xié)同誘導(dǎo)CD8+T淋巴細(xì)胞及自然殺傷細(xì)胞內(nèi)流促進(jìn)抗腫瘤免疫,顯著抑制腫瘤增殖及肝轉(zhuǎn)移,延長(zhǎng)了pNET小鼠模型的生存時(shí)間。

      2.5嵌合抗原受體T淋巴細(xì)胞免疫療法嵌合抗原受體T淋巴細(xì)胞(chimeric antigen receptor-modified T-cell,CAR-T)是利用基因編輯技術(shù)將改裝的T淋巴細(xì)胞回輸?shù)交颊唧w內(nèi)從而精準(zhǔn)靶向殺傷腫瘤細(xì)胞的一種新型細(xì)胞免疫療法,可為腫瘤患者提供持久有效的抗腫瘤免疫能力。生長(zhǎng)抑素受體(somatostatin receptor,SSTR)在GEP-NET中廣泛表達(dá)且與腫瘤分化程度和預(yù)后相關(guān)[46],因此靶向SSTR的CAR-T淋巴細(xì)胞為SSTR+GEP-NET提供了新的免疫干預(yù)措施,且在體內(nèi)外研究中都顯示出了高度特異性的抗腫瘤活性[47]。CDH17又名LI鈣黏蛋白,是重鏈單域抗體(variable domain of heavy chain of heavy-chainantibody)的靶點(diǎn),既可在NET腫瘤細(xì)胞表達(dá),也表達(dá)于健康組織如腸上皮細(xì)胞之間側(cè)膜。最近Feng等[48]研發(fā)了靶向CDH17的納米抗體VHH1驅(qū)動(dòng)CAR-T(CDH17CAR-T),通過體外研究發(fā)現(xiàn),CDH17CAR-T能特異性殺傷人和小鼠pNET腫瘤細(xì)胞,且進(jìn)一步在異種移植瘤或原發(fā)小鼠模型中避免攻擊同樣表達(dá)CDH17正常細(xì)胞的同時(shí)根除表達(dá)CDH17的pNET細(xì)胞。因此,CAR-T療法在pNET治療中有巨大潛力,對(duì)CAR-T及相關(guān)靶點(diǎn)進(jìn)一步研究有希望為pNET治療開展新篇章。

      3小結(jié)

      在pNET中,免疫抑制腫瘤微環(huán)境的形成不僅為腫瘤的發(fā)生發(fā)展及遠(yuǎn)處轉(zhuǎn)移創(chuàng)造了有利條件,也為pNET的治療帶來了難度。因此闡明腫瘤微環(huán)境中更全面、完整的免疫浸潤(rùn)的促/抗腫瘤機(jī)制、識(shí)別潛在治療靶點(diǎn)可為進(jìn)一步了解pNET的發(fā)生發(fā)展機(jī)制及合理設(shè)計(jì)成功的臨床試驗(yàn)改善患者預(yù)后奠定基礎(chǔ)。目前,針對(duì)pNET微環(huán)境的ICI、CAR-T免疫療法等已成為pNET治療的研究熱點(diǎn)并在臨床前研究中取得了新的進(jìn)展,有待進(jìn)一步的臨床驗(yàn)證。總之,根據(jù)腫瘤微環(huán)境的特點(diǎn)設(shè)計(jì)合理的治療策略,清除TAN、TAM等過多的免疫抑制細(xì)胞、增加效應(yīng)T淋巴細(xì)胞的浸潤(rùn)及其抗腫瘤活性以逆轉(zhuǎn)免疫抑制性腫瘤微環(huán)境,有望為更高效、精確的治療pNET帶來新的突破。

      利益沖突聲明:本文不存在任何利益沖突。 作者貢獻(xiàn)聲明:楊佳妮負(fù)責(zé)收集、分析文獻(xiàn),撰寫論文; 張海蓉負(fù)責(zé)擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。

      參考文獻(xiàn):

      [1]DASARI A, SHEN C, HALPERIN D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States[J]. JAMA Oncol, 2017, 3(10): 1335-1342. DOI: 10.1001/jamaoncol.2017.0589.

      [2]BUICKO JL, FINNERTY BM, ZHANG T, et al. Insights into the biology and treatment strategies of pancreatic neuroendocrine tumors[J]. Ann Pancreat Cancer, 2019, 2: 12. DOI: 10.21037/apc.2019.06.02.

      [3]DA SILVA A, BOWDEN M, ZHANG S, et al. Characterization of the neuroendocrine tumor immune microenvironment[J]. Pancreas, 2018, 47(9): 1123-1129. DOI: 10.1097/MPA.0000000000001150.

      [4]KRUG S, ABBASSI R, GRIESMANN H, et al. Therapeutic targeting of tumor-associated macrophages in pancreatic neuroendocrine tumors[J]. Int J Cancer, 2018, 143(7): 1806-1816. DOI: 10.1002/ijc.31562.

      [5]LIU M, ZHANG Y, CHEN L, et al. Myeloid-derived suppressor cells in gastroenteropancreatic neuroendocrine neoplasms[J]. Endocrine, 2021, 71(1): 242-252. DOI: 10.1007/s12020-020-02467-2.

      [6]CAI L, MICHELAKOS T, DESHPANDE V, et al. Role of tumor-associated macrophages in the clinical course of pancreatic neuroendocrine tumors (PanNETs)[J]. Clin Cancer Res, 2019, 25(8): 2644-2655. DOI: 10.1158/1078-0432.CCR-18-1401.

      [7]RYSCHICH E, AUTSCHBACH F, EISOLD S, et al. Expression of HLA class I/II antigens and T cell immune response in human neuroendocrine tumors of the pancreas[J]. Tissue Antigens, 2003, 62(1): 48-54. DOI: 10.1034/j.1399-0039.2003.00075.x.

      [8]de HOSSON LD, TAKKENKAMP TJ, KATS-UGURLU G, et al. Neuroendocrine tumours and their microenvironment[J]. Cancer Immunol Immunother, 2020, 69(8): 1449-1459. DOI: 10.1007/s00262-020-02556-1.

      [9]ALLEN E, JABOUILLE A, RIVERA LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation[J]. Sci Transl Med, 2017, 9(385): eaak9679. DOI: 10.1126/scitranslmed.aak9679.

      [10]ZHANG WH, WANG WQ, HAN X, et al. Infiltrating pattern and prognostic value of tertiary lymphoid structures in resected non-functional pancreatic neuroendocrine tumors[J]. J Immunother Cancer, 2020, 8(2): e001188. DOI: 10.1136/jitc-2020-001188.

      [11]XU SS, LI H, LI TJ, et al. Neutrophil extracellular traps and macrophage extracellular traps predict postoperative recurrence in resectable nonfunctional pancreatic neuroendocrine tumors[J]. Front Immunol, 2021, 12: 577517. DOI: 10.3389/fimmu.2021.577517.

      [12]ZHANG WH, WANG WQ, GAO HL, et al. Tumor-infiltrating neutrophils predict poor survival of non-functional pancreatic neuroendocrine tumor[J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa196. DOI: 10.1210/clinem/dgaa196.

      [13]DEBIEN V, DAVIDSON G, BALTZINGER P, et al. Involvement of Neutrophils in Metastatic Evolution of Pancreatic Neuroendocrine Tumors[J]. Cancers (Basel), 2021, 13(11): 2771. DOI: 10.3390/cancers13112771.

      [14]HARNEY AS, KARAGIANNIS GS, PIGNATELLI J, et al. The selective Tie2 inhibitor rebastinib blocks recruitment and function of Tie2Hi macrophages in breast cancer and pancreatic neuroendocrine tumors[J]. Mol Cancer Ther, 2017, 16(11): 2486-2501. DOI: 10.1158/1535-7163.MCT-17-0241.

      [15]AKKARI L, GOCHEVA V, KESTER JC, et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix[J]. Genes Dev, 2014, 28(19): 2134-2150. DOI: 10.1101/gad.249599.114.

      [16]BEAUCHAMP RD, COFFEY RJ Jr, LYONS RM, et al. Human carcinoid cell production of paracrine growth factors that can stimulate fibroblast and endothelial cell growth[J]. Cancer Res, 1991, 51(19): 5253-5260.

      [17]MARIATHASAN S, TURLEY SJ, NICKLES D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. DOI: 10.1038/nature25501.

      [18]SVEJDA B, KIDD M, GIOVINAZZO F, et al. The 5-HT(2B) receptor plays a key regulatory role in both neuroendocrine tumor cell proliferation and the modulation of the fibroblast component of the neoplastic microenvironment[J]. Cancer, 2010, 116(12): 2902-2912. DOI: 10.1002/cncr.25049.

      [19]CUNY T, van KOETSVELD PM, MONDIELLI G, et al. Reciprocal interactions between fibroblast and pancreatic neuroendocrine tumor cells: putative impact of the tumor microenvironment[J]. Cancers (Basel), 2022, 14(14): 3481. DOI: 10.3390/cancers14143481.

      [20]KATZ SC, DONKOR C, GLASGOW K, et al. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases[J]. HPB (Oxford), 2010, 12(10): 674-683. DOI: 10.1111/j.1477-2574.2010.00231.x.

      [21]KIM ST, HA SY, LEE S, et al. The impact of PD-L1 expression in patients with metastatic GEP-NETs[J]. J Cancer, 2016, 7(5): 484-489. DOI: 10.7150/jca.13711.

      [22]de REUVER PR, MEHTA S, GILL P, et al. Immunoregulatory forkhead box protein p3-positive lymphocytes are associated with overall survival in patients with pancreatic neuroendocrine tumors[J]. J Am Coll Surg, 2016, 222(3): 281-287. DOI: 10.1016/j.jamcollsurg.2015.12.008.

      [23]KOMI D, REDEGELD FA. Role of mast cells in shaping the tumor microenvironment[J]. Clin Rev Allergy Immunol, 2020, 58(3): 313-325. DOI: 10.1007/s12016-019-08753-w.

      [24]SOUCEK L, BUGGY JJ, KORTLEVER R, et al. Modeling pharmacological inhibition of mast cell degranulation as a therapy for insulinoma[J]. Neoplasia, 2011, 13(11): 1093-1100. DOI: 10.1593/neo.11980.

      [25]MO S, ZONG L, CHEN X, et al. High mast cell density predicts a favorable prognosis in patients with pancreatic neuroendocrine neoplasms[J]. Neuroendocrinology, 2022, 112(9): 845-855. DOI: 10.1159/000521651.

      [26]NABA A, CLAUSER KR, MANI DR, et al. Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression[J]. Sci Rep, 2017, 7: 40495. DOI: 10.1038/srep40495.

      [27]GUADAGNO E, CAMPIONE S, PIGNATIELLO S, et al. Epithelial-mesenchymal transition proteins in neuroendocrine neoplasms: differential immunohistochemical expression in different sites and correlation with clinico-pathological features[J]. Diagnostics (Basel), 2020, 10(6): 351. DOI: 10.3390/diagnostics10060351.

      [28]JOYCE JA, FREEMAN C, MEYER-MORSE N, et al. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer[J]. Oncogene, 2005, 24(25): 4037-4051. DOI: 10.1038/sj.onc.1208602.

      [29]HUNTER KE, PALERMO C, KESTER JC, et al. Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors[J]. Oncogene, 2014, 33(14): 1799-1808. DOI: 10.1038/onc.2013.142.

      [30]JIAO H, ZENG L, ZHANG J, et al. THBS2, a microRNA-744-5p target, modulates MMP9 expression through CUX1 in pancreatic neuroendocrine tumors[J]. Oncol Lett, 2020, 19(3): 1683-1692. DOI: 10.3892/ol.2020.11273.

      [31]SHCHORS K, NOZAWA H, XU J, et al. Increased invasiveness of MMP-9-deficient tumors in two mouse models of neuroendocrine tumorigenesis[J]. Oncogene, 2013, 32(4): 502-513. DOI: 10.1038/onc.2012.60.

      [32]CARRASCO P, ZUAZO-GAZTELU I, CASANOVAS O. Sprouting strategies and dead ends in anti-angiogenic targeting of NETs[J]. J Mol Endocrinol, 2017, 59(1): R77-R91. DOI: 10.1530/JME-17-0029.

      [33]CUNY T, de HERDER W, BARLIER A, et al. Role of the tumor microenvironment in digestive neuroendocrine tumors[J]. Endocr Relat Cancer, 2018, 25(11): R519-R544. DOI: 10.1530/ERC-18-0025.

      [34]KEKLIKOGLOU I, KADIOGLU E, BISSINGER S, et al. Periostin limits tumor response to VEGFA inhibition[J]. Cell Rep, 2018, 22(10): 2530-2540. DOI: 10.1016/j.celrep.2018.02.035.

      [35]ALLEN E, WALTERS IB, HANAHAN D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition[J]. Clin Cancer Res, 2011, 17(16): 5299-5310. DOI: 10.1158/1078-0432.CCR-10-2847.

      [36]SONCINI M, CORNA G, MORESCO M, et al. 24-Hydroxycholesterol participates in pancreatic neuroendocrine tumor development[J]. Proc Natl Acad Sci USA, 2016 , 113(41): E6219-E6227. DOI: 10.1073/pnas.1613332113.

      [37]XU J, SHEN L, BAI C, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(11): 1489-1499. DOI: 10.1016/S1470-2045(20)30493-9.

      [38]CAPDEVILA J, FAZIO N, LOPEZ C, et al. Lenvatinib in patients with advanced grade 1/2 pancreatic and gastrointestinal neuroendocrine tumors: results of the phase II TALENT trial (GETNE1509)[J]. J Clin Oncol, 2021, 39(20): 2304-2312. DOI: 10.1200/JCO.20.03368.

      [39]KULKE MH, OU FS, NIEDZWIECKI D, et al. Everolimus with or without bevacizumab in advanced pNET: CALGB 80701 (Alliance)[J]. Endocr Relat Cancer, 2022, 29(6): 335-344. DOI: 10.1530/ERC-21-0239.

      [40]GRANDE E, RODRIGUEZ-ANTONA C, LPEZ C, et al. Sunitinib and evofosfamide (TH-302) in systemic treatment-nave patients with grade 1/2 metastatic pancreatic neuroendocrine tumors: The GETNE-1408 trial[J]. Oncologist, 2021, 26(11): 941-949. DOI: 10.1002/onco.13885.

      [41]AL-TOUBAH T, SCHELL MJ, CIVES M, et al. A phase II study of ibrutinib in advanced neuroendocrine neoplasms[J]. Neuroendocrinology, 2020, 110(5): 377-383. DOI: 10.1159/000502383.

      [42]MEHNERT JM, BERGSLAND E, O'NEIL BH, et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study[J]. Cancer, 2020, 126(13): 3021-3030. DOI: 10.1002/cncr.32883.

      [43]YAO JC, STROSBERG J, FAZIO N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms[J]. Endocr Relat Cancer, 2021. DOI: 10.1530/ERC-20-0382. [Online ahead of print]

      [44]KLEIN O, KEE D, MARKMAN B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers[J]. Clin Cancer Res, 2020, 26(17): 4454-4459. DOI: 10.1158/1078-0432.CCR-20-0621.

      [45]INOUE M, KIM M, INOUE T, et al. Oncolytic vaccinia virus injected intravenously sensitizes pancreatic neuroendocrine tumors and metastases to immune checkpoint blockade[J]. Mol Ther Oncolytics, 2022, 24: 299-318. DOI: 10.1016/j.omto.2021.12.016.

      [46]KAEMMERER D, PETER L, LUPP A, et al. Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2011, 38(9): 1659-1668. DOI: 10.1007/s00259-011-1846-5.

      [47]MANDRIANI B, PELL E, MANNAVOLA F, et al. Development of anti-somatostatin receptors CAR T cells for treatment of neuroendocrine tumors[J]. J Immunother Cancer, 2022, 10(6): e004854. DOI: 10.1136/jitc-2022-004854.

      [48]FENG Z, HE X, ZHANG X, et al. Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues[J]. Nat Cancer, 2022, 3(5): 581-594. DOI: 10.1038/s43018-022-00344-7.

      收稿日期:2022-10-26;錄用日期:2022-11-29

      本文編輯:王瑩

      引證本文:YANG JN, ZHANG HR.? Research advances in the mechanism of tumor microenvironment and targeted therapy for pancreatic neuroendocrine tumor[J]. J Clin Hepatol, 2023, 39(8): 2005-2011.

      猜你喜歡
      治療學(xué)
      基于產(chǎn)教融合創(chuàng)新康復(fù)治療學(xué)人才培養(yǎng)模式的構(gòu)建
      急性鏈球菌感染后腎小球腎炎研究進(jìn)展
      龍湖
      長(zhǎng)白山之行
      腎肉瘤樣癌1例報(bào)告并文獻(xiàn)復(fù)習(xí)
      更正
      一部治療帶狀皰疹的創(chuàng)新之作——讀《帶狀皰疹治療學(xué)》有感
      案例教學(xué)法在神經(jīng)康復(fù)治療學(xué)教學(xué)中的應(yīng)用
      中醫(yī)藥院??祻?fù)治療學(xué)專業(yè)人才培養(yǎng)模式探討
      三段一體化教學(xué)應(yīng)用于針灸治療學(xué)的體會(huì)
      花垣县| 新建县| 门源| 公安县| 双辽市| 衡水市| 时尚| 林口县| 洛浦县| 荃湾区| 永丰县| 枣强县| 游戏| 宁明县| 当雄县| 体育| 监利县| 石柱| 蓬安县| 海原县| 望都县| 新竹县| 明光市| 河津市| 灵山县| 宜黄县| 宣威市| 永顺县| 岐山县| 腾冲县| 襄城县| 淳安县| 新兴县| 宿松县| 务川| 连城县| 水城县| 永平县| 龙胜| 嘉义市| 托克逊县|