馬明艷 陳雪蓮 王淑霞 李明陽 胡繼宏
摘 要:研究發(fā)現(xiàn),腸道微生物與肥胖之間相關(guān)作用機(jī)理主要為慢性炎癥反應(yīng)、腸道微生物代謝產(chǎn)物及瘦素表達(dá)等。本文對腸道微生物與肥胖關(guān)系的研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:腸道微生物;腸道菌群;高脂肪飲食;肥胖
腸道菌群在維持宿主健康穩(wěn)態(tài)中起著重要作用,由于腸道微生物群落的多樣性及其功能的復(fù)雜性,很多學(xué)者對腸道菌群與肥胖之間的關(guān)系及其可能機(jī)制進(jìn)行廣泛探索[1-3]。本文對近年有關(guān)腸道微生物與肥胖關(guān)系的研究進(jìn)展進(jìn)行綜述。
1 腸道微生物與肥胖
人類腸道微生物群主要以細(xì)菌為主,其組成受遺傳、飲食、體重、藥物和宿主代謝狀態(tài)等的影響[2]。腸道菌群主要優(yōu)勢菌群為擬桿菌門和厚壁菌門,且各菌群在胃腸道的分布不同[3],在維持宿主體內(nèi)代謝平衡等方面起著重要作用。21世紀(jì)初期的動(dòng)物實(shí)驗(yàn)表明,肥胖基因小鼠發(fā)現(xiàn)的腸道菌群改變能夠促進(jìn)接受其菌群移植瘦小鼠體重的增加[4];定植“肥胖菌群”無菌小鼠比定植“瘦菌群”小鼠體內(nèi)總脂肪增加的多,這說明腸道菌群與肥胖有關(guān)系[5]。研究表明,健康者與肥胖者在腸道微生物組成上有明顯差別,提示腸道菌群可能在人類肥胖中發(fā)揮著重要作用[6]。目前關(guān)于腸道菌群與肥胖關(guān)系的動(dòng)物和人類研究都發(fā)現(xiàn),肥胖者的腸道厚壁菌增加,擬桿菌下降[4]。Sroka-Oleksiak等[7]發(fā)現(xiàn),肥胖者的雙歧桿菌屬數(shù)量明顯低于健康受試者,提示雙歧桿菌屬細(xì)菌可被考慮作為肥胖癥進(jìn)展的潛在生物標(biāo)志物。張文文等[8]發(fā)現(xiàn),兒童正常體重組、超重組和肥胖組直腸真桿菌數(shù)量呈上升趨勢,而乳酸桿菌數(shù)量呈下降趨勢,直腸真桿菌是厚壁菌門的代表菌,提示直腸真桿菌數(shù)量的增加與乳酸桿菌數(shù)量的減少可能與超重和肥胖的發(fā)生發(fā)展有關(guān)。且腸道梭菌屬的多樣性與兒童體重指數(shù)、血漿脂聯(lián)素和瘦素相關(guān),肥胖兒童腸道梭菌屬的多樣性及相似性降低[9]。腸道微生物多樣性的改變,是肥胖發(fā)生的高風(fēng)險(xiǎn)因素[10]。腸道微生態(tài)失調(diào)是肥胖及其相關(guān)疾病發(fā)病的重要原因之一,它的改善有益于預(yù)防肥胖患者的神經(jīng)病理和認(rèn)知能力下降[11]。Smoczek等[12]研究發(fā)現(xiàn),肥胖表型會受到遺傳和腸道菌群穩(wěn)態(tài)的共同影響,且提出在進(jìn)行代謝性研究時(shí),應(yīng)考慮特定菌株特征的重要性。
2 腸道微生物與肥胖相關(guān)影響因素的關(guān)系
2.1 飲食
2.1.1 高脂肪飲食 飲食是影響腸道菌群組成的重要環(huán)境因素,肥胖發(fā)生的主要原因?yàn)槿狈w育鍛煉和攝入高脂肪飲食(HFD)[13]。HFD攝入初期會引起腸道微生態(tài)失調(diào),隨后出現(xiàn)大腦病理、小膠質(zhì)細(xì)胞過度活躍和認(rèn)知能力下降等狀況[5]。調(diào)節(jié)腸道菌群失調(diào),可以改善宿主由HFD引起的肥胖問題[14]。Maher等[15-16]研究發(fā)現(xiàn),攝入HFD可能會導(dǎo)致腸道微生物多樣性的降低。此外還有研究表明,HFD攝入的增加會改變腸道微生物群的組成,使實(shí)驗(yàn)小鼠腸道內(nèi)擬桿菌門數(shù)量減少,厚壁菌門和變形菌門的數(shù)量增加,并且使小鼠體重增加。
2.1.2 膳食纖維 有學(xué)者對超重或肥胖成年人進(jìn)行為期12周的單中心雙盲安慰劑對照試驗(yàn),結(jié)果發(fā)現(xiàn),毛螺菌屬在豌豆纖維組中增加,且體重變化與毛螺菌屬豐度呈負(fù)相關(guān),提示適當(dāng)攝入豌豆膳食纖維可通過影響腸道菌群來改善肥胖[17]。EMaher等[15]研究也發(fā)現(xiàn),纖維攝入量與微生物多樣性呈正相關(guān),故飲食干預(yù)會使腸道中與健康相關(guān)菌群豐度增加。海帶提取物褐藻黃質(zhì)(Fx)通過抑制肥胖與炎癥相關(guān)的毛螺菌科和Erysipelotrichaceae的生長,可緩解HFD誘導(dǎo)的腸道菌群失調(diào),同時(shí)促進(jìn)乳桿菌/乳球菌、雙歧桿菌和部分產(chǎn)丁酸細(xì)菌的生長,故膳食Fx有可能緩解肥胖和相關(guān)炎癥的發(fā)展[18]。
2.1.3 奶制品及其蛋白質(zhì)成分 奶及奶制品的蛋白成分以酪蛋白為主,酪蛋白等膳食蛋白是腸道微生物與肥胖關(guān)系的影響因素之一,會增加乳球菌的相對豐度[19]。Zhao等[19]研究發(fā)現(xiàn),與雞蛋白飲食(CHPD)相比,酪蛋白飲食(CAD)的短期干預(yù)可提高有益乳球菌和長雙歧桿菌的相對豐度,上調(diào)微生物群的半乳糖代謝;CAD還上調(diào)了大鼠盲腸組織中肥胖相關(guān)通路(如Adipoq和Irs1)的基因表達(dá)。此外,酸奶富含益生菌,益生菌是通過增加潛在有益微生物種類的豐度來調(diào)節(jié)腸道菌群,使脂肪含量和炎癥介質(zhì)相應(yīng)減少,進(jìn)而減輕體重[20]。
2.1.4 堅(jiān)果類 長期攝入開心果的肥胖小鼠厚壁菌門/擬桿菌門比值降低,可顯著增加腸道健康菌屬的豐富度,減少與炎癥有關(guān)的細(xì)菌,改善腸道屏障功能,對菌群穩(wěn)態(tài)有積極的調(diào)節(jié)作用[21]。
2.1.5 水果(葡萄、石榴和藍(lán)莓)相關(guān)成分 Han等[22]發(fā)現(xiàn),葡萄提取物通過優(yōu)化厚壁菌門與擬桿菌門的比率和增加雙歧桿菌、Akkermansia和梭狀芽胞桿菌屬的豐度來恢復(fù)腸道菌群生態(tài)失調(diào),從而抗肥胖。葡萄皮提取物白藜蘆醇(RSV)可增加Blautia菌豐度,降低脫硫弧菌屬和毛螺菌科_NK4A136_組群豐度,進(jìn)而減少肥胖小鼠體重[23]。Zhao等[24]研究發(fā)現(xiàn),石榴皮多酚(PPPs)通過增加腸道有益菌群豐度,使HFD誘導(dǎo)的腸道菌群失調(diào)正?;?;還可以減輕HFD誘導(dǎo)的肥胖,提高循環(huán)促炎細(xì)胞因子,降低結(jié)腸組織損傷和結(jié)腸緊密連接蛋白的表達(dá)水平。藍(lán)莓花青素提取物也能夠改善由HFD引起的腸道微生態(tài)失調(diào),調(diào)節(jié)腸道菌群結(jié)構(gòu),具有潛在的減肥消脂功能[25];具體表現(xiàn)為降低厚壁菌門的組成和豐度,提高擬桿菌門的豐度和含量[26]。藍(lán)莓花青素提取的微膠囊,還可促進(jìn)腸道微生物群對短鏈脂肪酸的生物合成[26]。
2.2 中藥成分
Wang等[27]發(fā)現(xiàn),補(bǔ)充生姜可調(diào)節(jié)腸道菌群的組成,增加雙歧桿菌屬和產(chǎn)生短鏈脂肪酸細(xì)菌(Alloprevotella和Allobaculum)的種類,從而降低體重。Zhang等[28]的研究表明,食用富含植物化學(xué)成分的當(dāng)歸果汁(AKJ)可預(yù)防HFD誘導(dǎo)的肥胖和代謝紊亂,AKJ可調(diào)節(jié)腸道菌群的相對豐度恢復(fù)到正常狀態(tài)。
2.3 含n-亞硝胺飲用水
n-亞硝胺(NAs)是一種新興的消毒副產(chǎn)物,以混合物的形式出現(xiàn)在飲用水中。Zhu等[29]將含有n-亞硝胺的混合液喂給SD大鼠7天,結(jié)果發(fā)現(xiàn)大鼠體重增加,甘油三酯水平顯著升高,且與肥胖相關(guān)的細(xì)菌類群數(shù)量增加,厚壁菌門/擬桿菌門細(xì)菌比例也升高。
2.4 分娩方式
近期研究表明,嬰兒的分娩方式(陰道分娩或剖宮產(chǎn))可能會影響與肥胖相關(guān)微生物群的母嬰傳播[30]。Singh等[31]發(fā)現(xiàn),母親體重增加與陰道分娩嬰兒腸道微生物組成和多樣性改變有關(guān),陰道分娩組超重母親所生嬰兒大腸埃希菌、腸球菌、克雷伯氏菌屬、瘤胃球菌屬豐度增加;剖腹產(chǎn)嬰兒肥胖癥則與較高水平葡萄球菌和較低水平埃希氏桿菌有關(guān)。
2.5 抗生素
抗生素的使用會導(dǎo)致機(jī)體腸道菌群失調(diào)及其代謝紊亂[32]??股乇┞稌闺u的厚壁菌門、放線菌門、Thermi、疣微菌門以及乳酸桿菌屬、乳球菌屬、S24-7以及棒狀桿菌科的相對豐度下降,且對腸道菌群組成和微生物代謝譜的效果可持續(xù)到停藥期間,從而打破腸道菌群穩(wěn)態(tài),引起與腸道菌群失調(diào)有關(guān)的疾病,包括肥胖[33]。
3 腸道微生物與肥胖間的相關(guān)作用機(jī)理
3.1 慢性炎癥反應(yīng)
肥胖被認(rèn)為是一種炎癥狀態(tài),是由脂肪細(xì)胞釋放促炎因子而介導(dǎo)的慢性炎癥,而炎癥的改善會減輕肥胖[34]。腸道屏障功能障礙會導(dǎo)致細(xì)菌或有毒細(xì)菌的代謝產(chǎn)物從腸道進(jìn)入血液,從而導(dǎo)致全身炎癥,這就是許多人類疾病的關(guān)鍵致病因素,包括肥胖[35]。通過緩解炎癥或者調(diào)節(jié)與炎癥相關(guān)細(xì)菌可以改善肥胖。黃腐醇及其衍生物可通過降低炎癥、調(diào)節(jié)腸道菌群和膽汁酸代謝來改善肥胖和代謝綜合征[36]。褐藻黃質(zhì)(Fx)可通過抑制與炎癥相關(guān)的毛螺菌科和Erysipelotrichaceae的生長,緩解肥胖和相關(guān)炎癥的發(fā)展[18]。腸道變形菌屬可產(chǎn)生慢性、低級別炎癥反應(yīng)而引起肥胖,辣椒素抗肥胖作用可能是通過降低變形菌屬的相對豐度介導(dǎo)的[37]。
3.2 腸道微生物的代謝產(chǎn)物
3.2.1 脂多糖 脂多糖(Lipopolysaccharides,LPS)作為內(nèi)毒素,廣泛存在于人類腸道中,是由腸道菌群產(chǎn)生的代謝物。LPS可經(jīng)腸粘膜被動(dòng)擴(kuò)散,導(dǎo)致腸上皮細(xì)胞緊密連接完整性的受損,從而使腸粘膜通透性增加,進(jìn)入血液中[13]。慢性炎癥細(xì)菌和LPS的積累會導(dǎo)致代謝性菌血癥(MB)和內(nèi)毒素血癥(ME),是肥胖和其他代謝綜合征表現(xiàn)特征的促炎過程[35]。鈣三醇聯(lián)合聯(lián)iBRD9治療通過調(diào)節(jié)肥胖小鼠的腸道微生物群,改善腸黏膜屏障功能,減少LPS吸收入血,從而減輕肥胖[38]。
3.2.2 膽汁酸 回腸細(xì)菌可以清除膽汁酸,使之避免被腸道吸收,經(jīng)腸道微生物代謝為次級膽汁酸,腸道菌群也影響膽汁酸(BA)的組成[2]。膽汁酸也作為信號分子和結(jié)合細(xì)胞受體,如TGR5促進(jìn)葡萄糖穩(wěn)態(tài),棕色脂肪組織和肌肉中激活的TGR5增加機(jī)體能量消耗,從而可通過改變BA信號防止飲食引起的肥胖[39]。膽汁酸也可激活小腸固有免疫基因,直接或間接調(diào)節(jié)腸道菌群的組成[2]。Wei等[29]發(fā)現(xiàn),高體重指數(shù)受試者non-12-OH BA的比例明顯下降,且腸道梭狀芽胞桿菌減少,由腸道菌群介導(dǎo)的BA信號異常會引起肥胖的易感性,提示調(diào)節(jié)BA能夠抗肥胖。
3.2.3 短鏈脂肪酸 一項(xiàng)Meta分析結(jié)果顯示,相比于瘦腸道環(huán)境,肥胖腸道環(huán)境更有利于梭狀芽胞桿菌等腸道菌群發(fā)酵多糖產(chǎn)生短鏈脂肪酸 (SCFA),且SCFA生物合成會帶給宿主額外的能量收獲[40]。Wang等[37]的研究發(fā)現(xiàn),辣椒素(CAP)具有抗肥胖作用是由腸道菌群數(shù)量和短鏈脂肪酸濃度變化介導(dǎo)的,CAP通過改變HFD喂養(yǎng)小鼠的腸道微生物群組成及數(shù)量,從而使小鼠體重減輕;CAP可調(diào)節(jié)產(chǎn)生SCFA的細(xì)菌相對豐度,導(dǎo)致腸道中乙酸和丙酸濃度增加,從而有利于肥胖小鼠能量平衡。
3.3 瘦素表達(dá)
瘦素表達(dá)失常是肥胖發(fā)生和發(fā)展中最常見的特征之一,但其潛在機(jī)制尚不清楚。Yao等[41]發(fā)現(xiàn),外源性瘦素7天正常脂肪飼料(NFD)增加了C57BL/6J無菌(GF)小鼠瘦素表達(dá)和體重,在瘦素啟動(dòng)子上有更多的CpG位點(diǎn)高甲基化,然而HFD喂養(yǎng)的小鼠沒有變化。外源性瘦素同時(shí)降低GF小鼠和常規(guī)(CV)小鼠的體重,且對NFD喂養(yǎng)的CV小鼠影響更大。可見,腸道菌群的缺失對肥胖的改善是不利的,腸道菌群通過對瘦素表達(dá)的影響繼而影響肥胖,腸道菌群對瘦素表達(dá)和體重的影響與高脂肪飲食有關(guān)。
4 結(jié)論
腸道菌群是人及動(dòng)物腸道內(nèi)必不可少的微生物群,它參與并影響著宿主的生理代謝作用,與宿主和諧共生且相互影響,可通過調(diào)節(jié)宿主體內(nèi)腸道微生物菌群的組成和數(shù)量及其多樣性,從而改善宿主的肥胖等代謝性疾病。目前腸道微生物與肥胖具體的作用機(jī)制并不是很明確,而且研究主要集中在門水平,很少有具體到細(xì)菌種水平的研究,這可能與腸道菌群的復(fù)雜性和多樣性有關(guān)。以后隨著研究技術(shù)的進(jìn)一步發(fā)展,腸道微生物與肥胖關(guān)系的研究有待進(jìn)一步深入。
參考文獻(xiàn)
[1]WHO (2018)Obesity and overweight[EB/OL].Fact Sheet 311,https://wwwwhoint/news-room/fact-sheets/detail/obesity-and-overweight.
[2]Wang PX,Deng XR,Zhang CH,et al.Gut microbiota and metabolic syndrome[J].Chin Med J (Engl),2020,133(7):808-816.
[3]袁宵瀟,羅飛宏.腸道菌群與肥胖、糖尿病關(guān)系的研究進(jìn)展[J].醫(yī)學(xué)綜述,2020,26(2):346-350.
[4]Ley RE,Bckhed F,Turnbaugh P,et al.Obesity alters gut microbial ecology[J].Proc Natl Acad Sci USA,2005,102(31):11070-5.
[5]Turnbaugh PJ,Ley RE,Mahowaid MA,et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J].Nature,2006,444(7122):1027-1031.
[6]Leong KSW,Jayasinghe TN,Derraik JGB,et al.Protocol for the Gut Bugs Trial:a randomised double-blind placebo-controlled trial of gut microbiome transfer for the treatment of obesity in adolescents[J].BMJ Open,2019,9(4):e026174.
[7]Sroka-Oleksiak A,Mtodzińska A,Bulanda M,et al.Metagenomic analysis of duodenal microbiota teveals a potential biomarker of dysbiosis in the course of obesity and type 2 diabetes:A Pilot Study[J].J Clin Med,2020,9(2):369.
[8]張文文,孫海翔,張鳳云,等.學(xué)齡兒童腸道直腸真桿菌和乳酸桿菌分布特征分析[J].中國公共衛(wèi)生,2019,35(02):215-219.
[9]朱萬英,張立,盧可斌,等.肥胖兒童腸道梭菌屬的變化及意義[J].國際醫(yī)藥衛(wèi)生導(dǎo)報(bào),2019(19):3234-3238.
[10]Ville A,Levine E,ZHI D,et al.Alterations in the gut microbiome at 6 months of age in obese latino infants[J].J Am Coll Nutr,2020,39(1):47-53.
[11]Saiyasit N,Chunchai T,Prus D,et al.Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition[J].Nutrition,2020,69:110576.
[12]Smoczek M,Vital M,Wedekind D,et al.A combination of genetics and microbiota influences the severity of the obesity phenotype in diet-induced obesity[J].Sci Rep,2020,10(1):6118.
[13]Zhi C,Huang J,Wang J,et al.Connection between gut microbiome and the development of obesity[J].Eur J Clin Microbiol Infect Dis,2019,38(11):1987-1998.
[14]Wang W,Zhong M,Yu T,et al.Polysaccharide extracted from WuGuChong reduces high-fat diet-induced obesity in mice by regulating the composition of intestinal microbiota[J].Nutr Metab (Lond),2020(17):27.
[15]Maher SE,OBrien EC,Moore RL,et al.The association between the maternal diet and the maternal and infant gut microbiome:a systematic review[J].Br J Nutr,2020(4):1-29.
[16]Ramos-Romero S,Hereu M,Atienza L,et al.Mechanistically different effects of fat and sugar on insulin resistance,hypertension,and gut microbiota in rats[J].Am J Physiol Endocrinol Metab,2018,314(6):E552-E563.
[17]Mayengbam S,Lambert JE,Parnell JA,et al.Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity[J].J Nutr Biochem,2019(64):228-236.
[18]Sun X,Zhao H,Liu Z,et al.Modulation of gut microbiota by fucoxanthin during alleviation of obesity in high fat diet-fed mice[J].J Agric Food Chem,2020,68(18):5118-5128.
[19]Zhao F,Song S,Ma Y,et al.A short-term feeding of dietary casein increases abundance of lactococcus lactis and upregulates gene expression involving obesity prevention in cecum of young rats compared with dietary chicken protein[J].Front Microbiol,2019(10):2411.
[20]Sergeev IN,Aljutaily T,Walton G,et al.Effects of synbiotic supplement on human gut microbiota,body composition and weight loss in obesity[J].Nutrients,2020,12(1):222.
[21]Terzo S,Mulè F,Caldara GF,et al.Pistachio consumption alleviates inflammation and improves gut microbiota composition in mice fed a high fat diet[J].Int J Mol Sci,2020,21(1):365.
[22]Han X,Guo J,Yin M,et al.Grape extract activates brown adipose tissue through pathway involving the regulation of gut microbiota and bile acid[J].Mol Nutr Food Res,2020,64(10):e2000149.
[23]Wang P,Gao J,Ke W,et al.Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota[J].Free Radic Biol Med:2020(156):83-98.
[24]Zhao R,Long X,Yang J,et al.Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet[J].Food Funct,2019,10(12):8273-8285.
[25]Morissette A,Kropp C,Songpadith JP,et al.Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice[J].Am J Physiol Endocrinol Metab,2020,318(6):E965-E980.
[26]Wu Y,Han Y,Tao Y,et al.In vitro gastrointestinal digestion and fecal fermentation reveal the effect of different encapsulation materials on the release,degradation and modulation of gut microbiota of blueberry anthocyanin extract[J].Food Res Int,2020(132):109098.
[27]Wang J,Wang P,Li D,et al.Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice[J].Eur J Nutr,2020,59(2):699-718.
[28]Zhang C,Wu W,Li X,et al.Daily supplementation with fresh angelica keiskei juice alleviates high fat diet-induced obesity in mice by modulating gut microbiota composition[J].Mol Nutr Food Res,2019,e1900248.
[29]Zhu J,Kong Y,Yu J,et al.Consumption of drinking water N-Nitrosamines mixture alters gut microbiome and increases the obesity risk in young male rats[J].Environ Pollut,2019(248):388-396.
[30]Korpela K,Costea P,Coelho LP,et al.Selective maternal seeding and environment shape the human gut microbiome[J].Genome Res,2018,28(4):561-568.
[31]Singh SB,Madan J,Coker M,et al.Does birth mode modify associations of maternal pre-pregnancy BMI and gestational weight gain with the infant gut microbiome?[J].Int J Obes (Lond),2020,44(1):23-32.
[32]Du R,Bei H,Jia L,et al.Danggui Buxue Tang restores antibiotic-induced metabolic disorders by remodeling the gut microbiota[J].J Ethnopharmacol,2020(259):112953.
[33]Elokil AA,Abouelezz KFM,Ahmad HI,et al. Investigation of the impacts of antibiotic exposure on the diversity of the gut microbiota in chicks[J].Animals (Basel),2020,10(5):896.
[34]Porter Starr KN,Orenduff M,McDonald SR,et al. Influence of weight reduction and enhanced protein intake on biomarkers of inflammation in older adults with obesity[J].J Nutr Gerontol Geriatr,2019,38(1):33-49.
[35]Wang Y,Yang J,Wang W,et al.Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation[J].Proc Natl Acad Sci USA,2020,117(15):8431-8436.
[36]Zhang Y,Bobe G,Revel JS,et al.Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism[J].Mol Nutr Food Res,2020,64(1):e1900789.
[37]Wang Y,Tang C,Tang Y,et al.Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations[J].Food Nutr Res,2020,64(10):29219/fnr.v64.3525.
[38]Lv Q,Yang A,Shi W,et al.Calcipotriol and iBRD9 reduce obesity in Nur77 knockout mice by regulating the gut microbiota,improving intestinal mucosal barrier function[J].Int J Obes (Lond),2020,44(5):1052-1061.
[39]Wei M,Huang F,Zhao L,et al.A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility[J].EBioMedicine,2020(55):102766.
[40]Jiao N,Baker SS,Nugent CA,et al.Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents:a meta-analysis[J].Physiol Genomics,2018,50(4):244-254.
[41]Yao H,F(xiàn)an C,F(xiàn)an X,et al.Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice[J].Br J Nutr,2020:1-11.
[42]單天昊,麻微微.飲食通過調(diào)節(jié)腸道微生態(tài)對肥胖的影響[J].中國食物與營養(yǎng),2020,26(9):5-8.
[43]楊海燕,葛聲.膳食纖維對肥胖相關(guān)的腸道微生態(tài)的影響[J].中國食物與營養(yǎng),2020,26(9):12-15.
Abstract:The mechanisms of the correlation between intestinal microorganisms and obesity found in current studies mainly include chronic inflammatory response,intestinal microbial metabolites and leptin expression.Research advancements on the relationship between obesity and intestinal microorganisms were reviewed .
Keywords:intestinal microorganisms;intestinal flora;high-fat diet;obesity