曲瀟玲 宋麗云 張道順 丁程瀛 沈廣材 張友臣 張曉亮 焦裕冰 李瑩 楊金廣 申莉莉
摘? 要:前期研究表明NbNAC062能夠抑制PVY早期侵染,本研究通過(guò)構(gòu)建NbNAC062敲除突變體和過(guò)表達(dá)植株進(jìn)一步明確NbNAC062的抗病毒功能,并利用異硫氰酸熒光素(fluorescein-5-isothiocyanate,F(xiàn)ITC)標(biāo)記的殼聚糖季銨鹽(chitosan quaternary ammonium salt,HACC)包被NbNAC062質(zhì)粒,制備HACC-NbNAC062納米藥物。激光共聚焦顯微鏡對(duì)納米藥物進(jìn)行示蹤;透射電鏡和激光粒子分析儀對(duì)其表征進(jìn)行分析。通過(guò)GFP熒光差異、qRT-PCR和蛋白免疫印跡檢測(cè)病毒含量來(lái)探明納米藥物對(duì)PVY侵染的影響。結(jié)果顯示,敲除組病毒GFP熒光增強(qiáng),而過(guò)表達(dá)組病毒GFP熒光減弱,PVY CP含量與上述結(jié)果一致。納米藥物粒徑集中分布在18~32 nm之間;Zeta電位為+41.8 mV。浸潤(rùn)納米藥物HACC-NbNAC062后48 h,在細(xì)胞內(nèi)觀察到FITC-HACC(綠色熒光)與RFP-NbNAC062(紅色熒光);接種PVY-GFP后5、7、9 d,NbNAC062-HACC施藥組的PVY CP mRNA水平較對(duì)照組分別下調(diào)17.41%、47.81%、13.03%;第7天施藥組PVY CP蛋白水平明顯低于對(duì)照組,病毒熒光強(qiáng)度顯著暗于對(duì)照組。上述研究結(jié)果說(shuō)明HACC-NbNAC062納米藥物成功遞送了NbNAC062,并發(fā)揮了其對(duì)PVY初期侵染的抑制作用。
關(guān)鍵詞:NbNAC062;馬鈴薯Y病毒;敲除;過(guò)表達(dá);HACC-NbNAC062納米藥物
中圖分類(lèi)號(hào):S435.72? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ? ? ? 文章編號(hào):1007-5119(2023)02-0035-08
Abstract: Previous studies have shown that NbNAC062 inhibits early PVY infection. In this study, NbNAC062 knockout mutants and overexpression plants were used to further clarify the antiviral function of NbNAC062. The NbNAC062 plasmid was coated with fluorescein isothiocyanate (FITC)-labeled chitosan quaternary ammonium salt (HACC) to prepare HACC-NbNAC062 nanomedicine. Laser confocal microscopy was used to trace the nanomedicine and its characteristics were analyzed by transmission electron microscopy and laser particle analyzer. The viral content was determined GFP fluorescence difference, qRT-PCR and Western blot to explore the effects of nanomedicine on PVY infection. The results showed that the viral GFP fluorescence in the knockout group was enhanced, while the viral fluorescence in the overexpression group was weakened. The PVY CP content was consistent with the above results. The diameter of HACC-NbNAC062 nanomedicine was 18~32 nm; the Zeta potential was +41.8 mV. FITC-HACC (green fluorescence) and RFP-NbNAC062 (red fluorescence) were observed in the plant cells at 48 h after infiltrated with the HACC-NbNAC062 nanomedicine. Comparing with the control group, the PVY CP mRNA levels in the NbNAC062-HACC group were down-regulated by 17.41%, 47.81%, and 13.03% respectively 5, 7, and 9 days after PVY-GFP inoculation. The protein level was significantly lower than that of the control group at 7 days after viral inoculation, and the GFP fluorescence intensity was significantly darker than that of the control group. The above research results indicated that the HACC-NbNAC062 nanomedicine successfully delivered NbNAC062 and exerted its inhibitory effect on the initial infection of PVY.
Keywords: NbNAC062; potato virus Y; gene knockdown; over-expression; HACC-NbNAC062 nanomedicine
馬鈴薯Y病毒(potato virus Y,PVY)能侵染包括茄科、藜科、豆科在內(nèi)的34屬170余種植物,是煙草上最具破壞性的病毒[1]。自苗期開(kāi)始噴施抗病毒劑預(yù)防是病害的主要控制策略之一,但目前生產(chǎn)上缺少靶向高效藥劑。培育抗病品種是目前最有效的防治措施,而植物抗病基因的挖掘和功能闡明可為植物病害的防治提供新的種質(zhì)資源。
NAC作為植物特有的轉(zhuǎn)錄因子,在植物整個(gè)生命周期中發(fā)揮重要作用[2],不僅調(diào)控分生組織形成、側(cè)根形成、花器官發(fā)育、果實(shí)成熟及葉片衰老[3-6]等生長(zhǎng)發(fā)育過(guò)程;還參與低溫、冷害、干旱、鹽害等非生物脅迫下的抗逆反應(yīng)及發(fā)育進(jìn)程[7-8]。此外,一些NAC轉(zhuǎn)錄因子還受病菌和病毒侵染的誘導(dǎo),調(diào)控植物的防衛(wèi)反應(yīng)。例如,擬南芥AtNAC062能與病程相關(guān)蛋白基因PR1、PR2、PR5結(jié)合,激發(fā)抗性反應(yīng),抑制丁香假單胞菌(Pseudomonas syringae)侵染[9];玉米ZmNAC41和ZmNAC100可防御炭疽病菌(Colletotrichum graminicola)侵染[10]。煙草NbNAC089和百合LrNAC35有助于誘導(dǎo)植株對(duì)黃瓜花葉病毒(cucumber mosaic virus,CMV)和煙草花葉病毒(tobacco mosaic virus,TMV)的防御反應(yīng)[11-12]。
將抗病蛋白核酸遞送進(jìn)入細(xì)胞是發(fā)揮其抗性作用的前提。納米材料的高通量應(yīng)用能夠?qū)⑸锓肿涌焖俸?jiǎn)單地引入植物細(xì)胞,而無(wú)需昂貴且費(fèi)力的生物分子轉(zhuǎn)移技術(shù)[13-15]。研究發(fā)現(xiàn),殼聚糖季銨鹽(quaternary ammonium salt of chitosan,HACC)可有效包裹核酸使其免受酶的降解,并有效進(jìn)入細(xì)胞,是目前核酸傳遞中廣泛應(yīng)用的納米材料[16-18]。本課題組前期研究表明,HACC能有效遞送抗病蛋白NbMLP28質(zhì)粒,增強(qiáng)植物對(duì)病毒侵染的抗性[19];本氏煙轉(zhuǎn)錄因子NbNAC062能通過(guò)促進(jìn)細(xì)胞生存信號(hào)而抑制PVY病毒的早期侵染增殖[20],但尚未在敲除突變體和過(guò)表達(dá)植株中驗(yàn)證?;谇贸蛔凅w和組成型過(guò)表達(dá)植株的靶標(biāo)特異性和穩(wěn)定性,本文以本氏煙為材料,構(gòu)建NbNAC062敲除突變體和過(guò)表達(dá)植株,明確其在PVY侵染過(guò)程中的作用;創(chuàng)制殼聚糖-DNA質(zhì)粒納米藥物并檢測(cè)其對(duì)PVY的防效,以期為PVY的靶向防控提供參考。
1? 材料與方法
1.1? 供試植株、病毒、質(zhì)粒和試劑
供試煙苗均為5~6葉期溫室土培本氏煙(N. benthamiana),培養(yǎng)溫度(25±1)℃,光照16 h/d,光照強(qiáng)度2000 lx,相對(duì)濕度65%;供試病毒為保存于三生NN煙(N. tabacum var. Samsun NN)活體上的PVY,及中國(guó)農(nóng)業(yè)科學(xué)院煙草研究所病毒組自制侵染性克隆PVY-GFP[21],于–80 ℃保存。
pEarleyGate100-RFP-NbNAC062質(zhì)粒由煙草所病毒組制備[20],pORE-Cas9質(zhì)粒由西南大學(xué)夏慶友老師惠贈(zèng)[22];殼聚糖季銨鹽(chitosan quaternary ammonium salt,HACC)和熒光素-5-異氰酸酯(fluorescein-5-isothiocyanate,F(xiàn)ITC)購(gòu)自上海源葉生物科技有限公司,二甲基亞砜(dimethyl sulfoxide,DMSO)購(gòu)自Sigma-Aldrich公司。測(cè)序由派森諾生物科技有限公司完成。
1.2? NbNAC062敲除突變體和過(guò)表達(dá)植株構(gòu)建
根據(jù)NbNAC062基因序列設(shè)計(jì)2個(gè)sgRNA位點(diǎn)(表1)。將單鏈Oligo DNA退火形成的雙鏈DNA,Bsa I酶切pORE-Cas9產(chǎn)生的線性化表達(dá)載體,兩者經(jīng)T4 DNA連接酶連接后,轉(zhuǎn)化至大腸桿菌,篩選卡那霉素抗性陽(yáng)性轉(zhuǎn)化子,提取質(zhì)粒,將其轉(zhuǎn)化至農(nóng)桿菌,篩選陽(yáng)性轉(zhuǎn)化子[2]。根據(jù)NbNAC062序列設(shè)計(jì)含XbaⅠ、EcoRⅠ酶切位點(diǎn)的引物Fu- NbNAC F/R(表1)。擴(kuò)增NbNAC062并將其連接入Fu46-RFP,構(gòu)建入門(mén)載體Fu46::RFP::NbNAC062;利用LR反應(yīng),將其與pEarleyGate100重組構(gòu)建NbNAC062表達(dá)載體,提取質(zhì)粒并轉(zhuǎn)化農(nóng)桿菌。制備農(nóng)桿菌懸液后,利用葉盤(pán)法轉(zhuǎn)染本氏煙,通過(guò)Bar抗性篩選陽(yáng)性小芽,生根培養(yǎng)[20]。
提取敲除突變體葉片總DNA,分別利用sg1 F/R和sg2 F/R檢測(cè)引物(表1),進(jìn)行PCR擴(kuò)增,測(cè)序比對(duì)靶基因有效突變株。提取過(guò)表達(dá)植株葉片總DNA,利用NbNAC062 F/R引物(表1)進(jìn)行PCR擴(kuò)增,瓊脂糖凝膠電泳檢測(cè)NbNAC062表達(dá)量。以細(xì)胞膜綠色染液BBcellProbe M01(488 nm/500 nm, Bestbio)為對(duì)照,在激光共聚焦顯微鏡下觀察NbNAC062的亞細(xì)胞定位[20]。
1.3? NbNAC062敲除突變體和過(guò)表達(dá)植株的表型及對(duì)PVY侵染的影響
將野生型本氏煙、NbNAC062敲除突變體和過(guò)表達(dá)植株,分別套袋收種和檢測(cè)后,于營(yíng)養(yǎng)基質(zhì)土中播種,溫室培養(yǎng)。觀察出苗率、苗期及成株葉片和花器官表型。5~6葉期時(shí),浸潤(rùn)接種PVY-GFP侵染性克隆。每處理15株,3次重復(fù)。接種后7 d在紫外燈下觀察葉片上病毒熒光強(qiáng)度及擴(kuò)展情況;提取各處理葉片總蛋白,通過(guò)Western blot檢測(cè)PVY CP蛋白積累差異。
1.4? FITC標(biāo)記HACC
將10 mg HACC和50 mL ddH2O置于燒杯中,于磁力攪拌器上,800 r/min、25 ℃攪拌至顆粒融化,配置0.2 mg/mL的HACC溶液,4 ℃保存。將20 mg FITC和20 mL DMSO液體置于燒杯中,300 r/min、25 ℃、黑暗條件下攪拌至粉末融化,配置1 mg/mL FITC溶液,4 ℃避光保存。在鋁箔紙包裹的滅菌錐形瓶中,加入等體積的HACC與FITC,25 ℃避光輕輕攪拌3 h后,將混合溶液倒入預(yù)先煮沸(10 min)且降至室溫的8000~14000 Da透析袋中,封口后于ddH2O中,4 ℃黑暗透析3 d,制備FITC-HACC溶液[19]。
1.5? NbNAC062納米藥物制備、表征檢測(cè)及表達(dá)示蹤
將pEarleyGate100-RFP-NbNAC062質(zhì)粒(200 ng/?L)與HACC溶液(0.2 mg/mL),分別按3∶1、2∶1、1∶1、1∶2、1∶3、1∶4、1∶5(V∶V)混勻后,經(jīng)55 ℃水浴1 min,渦旋振蕩30 s、靜置10 min,制備殼聚糖-DNA納米藥物HACC-NbNAC062。通過(guò)瓊脂糖凝膠電泳,檢測(cè)包裹效率。以FITC-HACC溶液替代HACC溶液,制備FITC標(biāo)記的納米藥物FITC-HACC-NbNAC062。透射電鏡下檢測(cè)藥物的微觀形態(tài)和大??;激光粒度分析儀檢測(cè)其粒徑分布和Zeta電位。于本氏煙下表皮上浸潤(rùn)納米藥物FITC-HACC-NbNAC062,每片葉200 ?L,48 h后在激光共聚焦顯微鏡下檢測(cè)藥物的表達(dá)和示蹤[19]。
1.6? HACC-NbNAC02納米藥物對(duì)PVY的防效檢測(cè)
取長(zhǎng)勢(shì)均勻的本氏煙兩組,于下表皮浸潤(rùn)納米藥物FITC-HACC-NbNAC062(200 ?L/葉),以浸潤(rùn)FITC-HACC的為對(duì)照組,每處理移栽15株,3次重復(fù)。溫室培養(yǎng)12 h后,分別浸潤(rùn)接種PVY-GFP侵染性克隆。接種后1、3、5、7、9、11、13、15 d,取接種葉進(jìn)行qRT-PCR檢測(cè)PVY CP mRNA含量或通過(guò)Western blot檢測(cè)PVY CP蛋白積累。另取部分植株于接種后7、8、10、11、13、15 d,在紫外燈下持續(xù)觀察葉片熒光情況[19]。
1.7? 實(shí)時(shí)熒光定量PCR(Quantitative Real-time PCR)
按照制造商的說(shuō)明利用TRIzol(Vazyme, 南京)法提取植物總RNA和反轉(zhuǎn)錄試劑盒合成cDNA(Vazyme, 南京),利用Applied Biosystems 7500快速實(shí)時(shí)PCR系統(tǒng)(Applied Biosystems,Waltham,MA,USA),使用SYBR Premix Ex TaqTM試劑盒(Vazyme,南京)進(jìn)行qRT-PCR。β-肌動(dòng)蛋白基因用作內(nèi)源對(duì)照,使用引物PVY-CP-F和PVY-CP-R檢測(cè)病毒外殼蛋白表達(dá)的變化。采用–2-△△CT法計(jì)算?目的基因的相對(duì)表達(dá)量,每處理3個(gè)生物學(xué)重復(fù)。
1.8? 蛋白質(zhì)印跡(Western Blotting)
從本氏煙中提取植物總蛋白質(zhì),并與2×蛋白質(zhì)上樣緩沖(含DTT)液等體積混合后,將蛋白質(zhì)樣品在95 ℃下孵育3 min,置于12% SDS-聚丙烯酰胺凝膠上分離。然后通過(guò)電轉(zhuǎn)印儀將分離的蛋白質(zhì)轉(zhuǎn)移到硝酸纖維素膜上。PVY CP抗體(SRA20001,Agdia,USA)和β-肌動(dòng)蛋白(CW0264M,CWBIO,北京)抗體用于蛋白印跡。
2? 結(jié)? 果
2.1? NbNAC062敲除與過(guò)表達(dá)材料檢測(cè)
在NbNAC062敲除突變體中,PCR分別擴(kuò)增sg-1、sg-2靶序列。測(cè)序結(jié)果比對(duì)顯示(圖1),sg-1中在第18 bp位置處,插入了1 bp的腺嘌呤脫氧核糖核苷酸(A);sg-2中從第14 bp位置起,缺失了3 bp的腺嘌呤脫氧核糖核苷酸(A)和1 bp的鳥(niǎo)嘌呤脫氧核糖核苷酸(G),依次為AAAG,該突變體為有效敲除,可以篩選純合子作為后續(xù)試驗(yàn)的材料。
在NbNAC062過(guò)表達(dá)植株中,擴(kuò)增NbNAC062靶基因,瓊脂糖凝膠電泳檢測(cè)顯示,在1944 bp位置出現(xiàn)預(yù)期的電泳條帶,且過(guò)表達(dá)植株的條帶亮度顯著強(qiáng)于野生型(圖2A),說(shuō)明該材料已過(guò)表達(dá)NbNAC062。激光共聚焦顯微鏡觀察發(fā)現(xiàn),過(guò)表達(dá)植株中,顯示紅色熒光的RFP-NbNAC062蛋白(圖2B)與顯示綠色熒光的細(xì)胞膜染液BBcellProbe M01(圖2C)發(fā)生共定位,產(chǎn)生黃色熒光(圖2D),說(shuō)明過(guò)表達(dá)植株NbNAC062蛋白定位于細(xì)胞膜,這一結(jié)果與之前檢測(cè)到的NbNAC062在正常情況下定位于細(xì)胞膜相一致[24]。
2.2? NbNAC062敲除與過(guò)表達(dá)材料表型及對(duì)PVY侵染的影響
野生型、敲除、過(guò)表達(dá)本氏煙材料種子,播種后第10天出苗率、幼苗及開(kāi)花結(jié)果成株表型,三者均無(wú)明顯差異(圖3A),說(shuō)明正常情況下NbNAC062基因的敲除或過(guò)表達(dá)對(duì)植株的生長(zhǎng)發(fā)育無(wú)顯著影響。對(duì)5~6葉期野生型、敲除突變體和過(guò)表達(dá)本氏煙葉片浸潤(rùn)接種PVY-GFP后7 d,綠色熒光顯示,相較于野生型對(duì)照組,敲除組病毒熒光增強(qiáng),而過(guò)表達(dá)組病毒熒光減弱(圖3B);PVY CP蛋白表達(dá)量亦顯示NbNAC062敲除促進(jìn)了病毒積累,而過(guò)表達(dá)抑制了病毒積累(圖3C)。這說(shuō)明本氏煙轉(zhuǎn)錄因子NbNAC062對(duì)PVY侵染具有一定的抑制作用,可用于納米藥物制備。
2.3? NbNAC062-FITC-HACC藥物示蹤
抗病毒藥物充分發(fā)揮作用的前提是藥物進(jìn)入植物細(xì)胞內(nèi)。如圖4,殼聚糖-DNA納米藥物NbNAC062-FITC-HACC浸潤(rùn)本氏煙后48 h,激光共聚焦顯微鏡下顯示,紅色熒光標(biāo)記的融合蛋白R(shí)FP-NbNAC062與綠色熒光標(biāo)記的殼聚糖季銨鹽FITC-HACC發(fā)生共定位,產(chǎn)生黃色熒光。說(shuō)明pEarleyGate100-RFP-NbNAC062質(zhì)??杀粴ぞ厶羌句@鹽HACC遞送進(jìn)入細(xì)胞內(nèi),并發(fā)生表達(dá)。
2.4? NbNAC062-HACC納米藥物表征測(cè)定
瓊脂糖凝膠電泳檢測(cè)HACC對(duì)NbNAC062的最大載藥量,顯示pEarleyGate100-RFP-NbNAC062質(zhì)粒(200 ng/?L)與HACC溶液按照體積比1∶2混均,包裹效率較好(圖5A)。透射電鏡下(TEM),納米藥物NbNAC062-HACC呈近球形的顆粒狀,微觀形態(tài)良好(圖5B);激光粒度分析儀測(cè)定顯示,藥物顆粒集中分布在18~32 nm之間,粒徑較均勻(圖5C);納米藥物NbNAC062-HACC的Zeta電位為+41.8 mV(圖5D)。說(shuō)明形態(tài)和大小均符合納米藥物的表征要求,且藥物溶液體系穩(wěn)定性良好,可以開(kāi)展藥物抑制PVY侵染增殖的室內(nèi)防效試驗(yàn)。
2.5? NbNAC062納米藥物對(duì)馬鈴薯Y病毒初期侵染的防效檢測(cè)
qRT-PCR檢測(cè)結(jié)果顯示(圖6A),相較于HACC對(duì)照組,PVY接種后1、3、5、7、9、11、15 d,NbNAC062-HACC納米藥物處理組的CP表達(dá)分別下調(diào)15.44%、27.00%、17.41%、47.81%、13.03%、10.98%、7.13%,其中5、7、9 d,藥物處理組的病毒CP表達(dá)下調(diào)達(dá)到了顯著或極顯著水平,接種后7 d的Western blot檢測(cè)亦顯示(圖6B),藥物處理組的PVY CP蛋白表達(dá)顯著低于對(duì)照組。接種后7~11 d的植株紫外熒光亦顯示(圖6C),在7~8 d,NbNAC062-HACC藥物處理組的PVY熒光強(qiáng)度顯著低于HACC對(duì)照組,10 d之后熒光強(qiáng)度差異不明顯,與PVY CP表達(dá)量檢測(cè)相符,顯示植株在接種PVY前預(yù)先施用納米藥物,能顯著抑制或延緩PVY的早期積累和擴(kuò)展。
3? 討? 論
煙草NAC轉(zhuǎn)錄因子可以調(diào)控葉片衰老、參與鹽脅迫和響應(yīng)病毒侵染[6-7,12,20]。本課題組前期研究表明本氏煙NbNAC062能促進(jìn)細(xì)胞生存而抑制病毒的早期侵染增殖[20]。這一結(jié)論在本研究中,通過(guò)創(chuàng)制敲除突變體和過(guò)表達(dá)植株進(jìn)一步得到驗(yàn)證,即敲除組對(duì)PVY敏感性上升,而過(guò)表達(dá)組則抑制病毒侵染增殖(圖3)。本氏煙NbNAC062對(duì)病毒侵染增殖的抑制作用,與煙草NbNAC089和百合LrNAC35抑制CMV和TMV侵染[11-12],及擬南芥AtNAC089抵御車(chē)前草花葉病毒(plantago asiatica mosaic virus,PlAMV)的侵染[9,23]相一致;但與番茄卷葉病毒(tomato leaf curl virus,TLCV)可利用植株的SINAC1基因與自身的復(fù)制增強(qiáng)蛋白R(shí)En結(jié)合,促進(jìn)自身DNA復(fù)制,加速病毒增殖[24]相反。雖然,目前的研究尚不能明確是不同寄主的不同NAC轉(zhuǎn)錄因子,還是不同病毒類(lèi)型(TMV、CMV、PVY均為RNA病毒,TLCV為DNA病毒)導(dǎo)致了這種差異。但推測(cè),寄主在通過(guò)一些NAC類(lèi)轉(zhuǎn)錄因子抑制病毒侵染的同時(shí),一些病毒也會(huì)進(jìn)化出適應(yīng)途徑,通過(guò)主動(dòng)的誘導(dǎo)激活和劫持利用,而實(shí)現(xiàn)自身增殖。此外,本研究中敲除和過(guò)表達(dá)NbNAC062,正常條件下均不影響植株的生長(zhǎng)發(fā)育(圖3);但作為重要的試驗(yàn)材料,后續(xù)還應(yīng)進(jìn)行干旱、鹽害、冷害等逆境脅迫試驗(yàn),進(jìn)一步闡釋其在煙草抗逆中的功能。
細(xì)胞壁不僅是植物的保護(hù)屏障,還是外源生物分子進(jìn)入植物體的主要運(yùn)輸障礙,限制了功能性外源DNA的傳遞。相較于傳統(tǒng)的病毒類(lèi)載體,單壁碳納米管、介孔二氧化硅、殼聚糖季銨鹽等無(wú)細(xì)胞毒性的納米材料是核酸藥物傳遞的安全、有效載體。殼聚糖衍生物殼聚糖季銨鹽(HACC)是核酸傳遞的納米載體,具有生物相容性、可降解性及廣譜抗菌性[16-17],可有效包裹核酸,使DNA免受DNA酶的降解并有效進(jìn)入細(xì)胞[18],目前已應(yīng)用于醫(yī)藥、食品、環(huán)保、農(nóng)業(yè)等研究領(lǐng)域。本研究創(chuàng)制的殼聚糖?-DNA納米藥物NbNAC062-HACC,其球形顆粒的形態(tài)和大小均符合納米藥物要求[25-26],且藥物穩(wěn)定性良好,能在細(xì)胞內(nèi)穩(wěn)定表達(dá)(圖4、5);接種病毒前預(yù)先浸潤(rùn)施用NbNAC062-HACC納米藥物,能顯著抑制和延緩PVY的初期侵染和增殖(圖6)。但作為藥物開(kāi)發(fā),仍需改進(jìn)施藥方法。NbNAC062作為抑制PVY侵染的功能核酸,要充分發(fā)揮其作用,可嘗試制備DNA水凝膠的分子納米藥物[27-28],以更好地穿越核膜,發(fā)揮其轉(zhuǎn)錄因子的調(diào)控作用。
4? 結(jié)? 論
本研究表明,在正常條件下,敲除和過(guò)表達(dá)轉(zhuǎn)錄因子NbNAC062對(duì)本氏煙生長(zhǎng)發(fā)育無(wú)顯著影響;在PVY侵染脅迫下,過(guò)表達(dá)NbNAC062轉(zhuǎn)基因植株對(duì)病毒侵染初期具有抑制作用。殼聚糖-DNA納米藥物NbNAC062-HACC表征和穩(wěn)定性良好,且能在細(xì)胞內(nèi)表達(dá);預(yù)先施用能抑制和延緩PVY在本氏煙中的積累和擴(kuò)展。
參考文獻(xiàn)
[1]朱賢朝,王彥亭,王智發(fā). 中國(guó)煙草病害[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2002.
ZHU X C, WANG Y T, WANG Z F. Tobacco disease of China[M]. Beijing: China Agriculture Press, 2002.
[2]馬雪祺,陰艷紅,馮婧嫻,等. 植物NAC轉(zhuǎn)錄因子研究進(jìn)展[J]. 植物生理學(xué)報(bào),2021,57(12):2225-2234.
MA X Q, YIN Y H, FENG J X, et al. Research progress of NAC transcription factors in plant[J]. Plant Physiology Journal, 2021, 57(12): 2225-2234.
[3]KOU X, LIU C, HAN L, et al. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening[J]. Molecular Genetics and Genomics, 2016, 291(3): 1205-1217.
[4]RUSHTON P J, BOKOWIEC M T, HAN S, et al. Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae[J]. Plant Physiology, 2008, 147(1): 280-295.
[5]ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves[J]. Scientific Reports, 2016, 6(1): 23609.
[6]LI W, LI X X, CHAO J T, et al. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence[J]. Frontiers in Plant Science, 2018, 9: 1900.
[7]LIU Q L, XU K D, ZHAO L J, et al. Overexpression of a novel Chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco[J]. Biotechnology Letters, 2011, 33(10): 2073-2082.
[8]JIAN W, ZHENG Y X, YU T T, et al. SlNAC6, A NAC transcription factor, is involved in drought stress response and reproductive process in tomato[J]. Journal of Plant Physiology, 2021, 264: 153483.
[9]GAYRAL M, ARIAS GAGUANCELA O, BASQUEZ E, et al. Multiple ER-to-nucleus stress signaling pathways are activated during Plantago asiatica mosaic virus and Turnip mosaic virus infection in Arabidopsis thaliana[J]. The Plant Journal, 2020, 103(3): 1233-1245.
[10]SEO P J, KIM M J, PARK J Y, et al. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. The Plant Journal, 2010, 61(4): 661-671.
[11]VOITSIK A M, MUENCH S, DEISING H B, et al. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection[J]. Bmc Plant Biology, 2013, 13(1): 85-100.
[12]LI F F, SUN H J, JIAO Y B, et al. Viral infection-induced endoplasmic reticulum stress and a membrane-associated transcription factor NbNAC089 is involved in resistance to virus in Nicotiana benthamiana[J]. Plant Pathology, 2018, 67: 233-243.
[13]DEMIRER G S, ZHANG H, MATOS J L, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nature Nanotechnology, 2019, 14(5): 456-464.
[14]THAGUN C, HORII Y, MORI M, et al. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts[J]. ACS nano, 2022, 16(3): 3506-3521.
[15]WANG J W, CUNNINGHAM F J, GOH N S, et al. Nanoparticles for protein delivery in planta[J]. Current Opinion in Plant Biology, 2021, 60: 102052.
[16]YANG Y, YANG S, WANG Y, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan[J]. Acta Biomaterialia, 2016, 46: 112-128.
[17]MORI T, OKUMURA M, MATSUURA M, et al. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro[J]. Biomaterials, 1997, 18(13): 947-951.
[18]LI G F, WANG J C, FENG X M, et al. Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles[J]. Applied Biochemistry and Biotechnology, 2015, 175(7): 3244-3257.
[19]ZHANG D S, SONG L Y, LIN Z L, et al. HACC-based nanoscale delivery of the NbMLP28 plasmid as a crop protection strategy for viral diseases[J]. ACS Omega, 2021 6(49): 33953-33960.
[20]曲瀟玲,焦裕冰,羅健達(dá),等. 本氏煙NbNAC062的克隆及對(duì)馬鈴薯Y病毒侵染的抑制作用[J]. 中國(guó)農(nóng)業(yè)科學(xué),2021,54(19):4110-4120.
QU X L, JIAO Y B, LUO J D, et al. Cloning of Nicotiana benthamiana NAC062 and its inhibitory effect on potato virus Y infection[J]. Scientia Agricultura Sinica, 2021, 54(19): 4110-4120.
[21]SUN H J, SHEN L L, QIN Y X, et al. CLC-Nt1 affects potato virus Y infection via regulation of endoplasmic reticulum luminal Ph[J]. New Phytologist, 2018, 220: 539-552.
[22]GAO J P, WANG G H, MA S Y, et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum[J]. Plant Molecular Biology, 2015, 87(1/2): 99-110.
[23]SUN D, ZHANG X, ZHANG Q, et al. Comparative transcriptome profiling uncovers a Lilium regale NAC transcription factor, LrNAC35, contributing to defence response against cucumber mosaic virus and tobacco mosaic virus[J]. Molecular plant pathology, 2019, 20(12): 1662-1681.
[24]SELTH L A, DOGRA S C, RASHEED M S, et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication[J]. The Plant Cell, 2005, 17(1): 311-325.
[25]DEMIRER G S, ZHANG H, GOH N S, et al. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants[J]. Nature Protocol, 2019, 14(10): 1-24.
[26]MITTER N, WORRALL E A, ROBINSON K E, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nature Plants, 2017, 3(2): 16207.
[27]陶晴,卞曉軍,張彤,等. DNA水凝膠的制備及應(yīng)用[J]. 生物工程學(xué)報(bào),2021,37(9):3162-3178.
TAO Q, BIAN X J, ZHANG T, et al. Preparation and application of DNA hydrogels: a review[J]. Chinese Journal of Biotechnology, 2021, 37(9): 3162-3178.
[28]HU Q Q, LI H, WANG L H, et al. DNA nanotechnology-enabled drug delivery systems[J]. Chemical Reviews, 2019, 119: 6459-6506.