• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      飛輪離心超負(fù)荷訓(xùn)練與傳統(tǒng)力量訓(xùn)練對運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn)影響比較的Meta分析

      2023-06-11 12:07:10李文華李春雷吳曉妹丁乾
      關(guān)鍵詞:元分析沖刺飛輪

      李文華 李春雷 吳曉妹 丁乾

      摘? ? 要? ?目的:運(yùn)用Meta分析的方法比較飛輪離心超負(fù)荷訓(xùn)練(FEOT)與傳統(tǒng)力量訓(xùn)練(TST)對運(yùn)動(dòng)員縱跳能力、短距離直線沖刺能力和變向能力的干預(yù)有效性。方法:檢索CNKI、Wanfang Data、Web of Science、PubMed、Elsevier、EBSCO-MEDLINE等數(shù)據(jù)庫中關(guān)于FEOT干預(yù)運(yùn)動(dòng)表現(xiàn)的隨機(jī)對照試驗(yàn)文獻(xiàn),采用軟件“Review Manager 5.4”對納入文獻(xiàn)進(jìn)行方法學(xué)質(zhì)量評價(jià)、異質(zhì)性分析及亞組分析,采用軟件“Stata/SE 15.1”對納入文獻(xiàn)進(jìn)行發(fā)表性偏倚分析及敏感性分析。結(jié)果:Meta分析結(jié)果顯示,F(xiàn)EOT比TST更能有效地提高縱跳高度(MD=0.31,95%CI[0.11,0.51],p=0.001),縮短變向測試用時(shí)(SMD=-0.71,95%CI[-1.01,-0.42],p<0.01);FEOT可以縮短短距離直線沖刺用時(shí),但無統(tǒng)計(jì)學(xué)意義(SMD=-0.04,95%CI[-0.34,0.27],p=0.081)。結(jié)論:飛輪離心超負(fù)荷訓(xùn)練比傳統(tǒng)力量訓(xùn)練更能有效地提高受試者縱跳能力和變向能力、提高成年運(yùn)動(dòng)員短距離直線沖刺能力,而對青少年運(yùn)動(dòng)員短距離直線沖刺能力提升效果不明顯;飛輪離心超負(fù)荷訓(xùn)練與傳統(tǒng)力量訓(xùn)練在中等慣量和大慣量、與特定運(yùn)動(dòng)表現(xiàn)的力的矢量方向相近或相同的訓(xùn)練具有良好的干預(yù)效果。

      關(guān)鍵詞? ?飛輪;離心超負(fù)荷訓(xùn)練;傳統(tǒng)力量訓(xùn)練;縱跳;沖刺;變向;元分析

      中圖分類號(hào):G 80-059? ? ? ? ? ?學(xué)科代碼:040301? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A

      DOI:10.14036/j.cnki.cn11-4513.2023.01.010

      Abstract? ?Objective: To compare the effectiveness of flywheel eccentric overload training (FEOT) and traditional strength training (TST) on athletes vertical jump, short straight sprint and directional change ability by using the method of meta-analysis. Methods: The randomized controlled trials of FEOT on exercise performance intervention in CNKI, Wanfang Data, Web of Science, PubMed, Elsevier, EBSCO-MEDLINE and other databases were retrieved. The methodological quality evaluation, heterogeneity analysis and subgroup analysis of the included literatures were performed using “Review Manager 5.4” software, and the publication bias analysis and sensitivity analysis of the included literatures were performed using“Stata/SE 15.1” software. Results: Meta analysis showed that FEOT was more effective than TST in increasing the vertical jump height (MD=0.31, 95% CI[0.11, 0.51], p=0.001), and reducing the time for directional change test (SMD=-0.71, 95% CI[-0.01, -0.42], p<0.01); FEOT could reduce the time for short straight sprint, but it had no statistical significance (SMD=-0.04, 95% CI[-0.34, 0.27], p=0.081). Conclusion: Compared with traditional strength training, flywheel eccentric overload training can effectively improve the vertical jump and directional change ability of subjects, and enhance the short distance straight sprint ability of adult athletes, but it has no obvious effect on the short distance straight sprint ability of young athletes; flywheel eccentric overload training and traditional strength training have good intervention effect in the training design with medium and high inertia load, similar or the same direction as the force vector of specific sports performance.

      Keywords? ?flywheel; eccentric overload training; traditional strength training; vertical jump; sprint; change of direction;meta analysis

      力量訓(xùn)練是提高運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn)、預(yù)防運(yùn)動(dòng)損傷的重要策略[1]。傳統(tǒng)力量訓(xùn)練(縮寫為“TST”)通常使用固定器械、自由重量、阻力帶等進(jìn)行。受力學(xué)因素影響,TST過程中關(guān)節(jié)角度和肌肉發(fā)力能力受肌肉長度與內(nèi)部力臂(肌肉的力臂)限制而使得肌纖維不完全激活[2-3],骨骼肌在向心階段受到的刺激較大,而在離心階段受到的刺激要小得多[4],僅為最大離心負(fù)荷的40%~50%[5]。近年來,一種新型抗阻訓(xùn)練器械—飛輪抗阻訓(xùn)練器扭轉(zhuǎn)了TST的這一劣勢。通過調(diào)整飛輪慣量及旋轉(zhuǎn)速度,使內(nèi)部力臂與外部力臂都能在整個(gè)運(yùn)動(dòng)范圍的每一次重復(fù)中產(chǎn)生最大阻力[2,6-7]。該器械通過訓(xùn)練者在動(dòng)作的向心階段拉動(dòng)一端系在腰間、另一端通過軸承連接飛輪的繩子,加速旋轉(zhuǎn)飛輪使飛輪產(chǎn)生慣性矩并儲(chǔ)存動(dòng)能,隨即在動(dòng)作的離心階段抵抗最初儲(chǔ)存在飛輪中的慣性阻力,通過不斷的離心—向心循環(huán)[8],促使骨骼肌離心階段產(chǎn)生比向心階段更大的力[9],實(shí)現(xiàn)離心超負(fù)荷(縮寫為“EOT”)[2,10]。與向心收縮相比,離心收縮通過利用更高的機(jī)械效率,使用比向心收縮更少的能量就能產(chǎn)生更大的肌肉力量[11-12]。肌肉劇烈的離心收縮也能引起一些有益的神經(jīng)肌肉適應(yīng),例如:增強(qiáng)神經(jīng)沖動(dòng)發(fā)射同步性、選擇性募集高階運(yùn)動(dòng)單位、增加運(yùn)動(dòng)單位放電率等[11]。當(dāng)使用飛輪抗阻訓(xùn)練器進(jìn)行飛輪離心超負(fù)荷訓(xùn)練(縮寫為“FEOT”)時(shí),訓(xùn)練者可利用最初向心收縮時(shí)儲(chǔ)存的能量,在離心收縮階段獲得更大的角加速度及力矩,克服更大的阻力[13],以實(shí)現(xiàn)超負(fù)荷離心收縮。有研究者發(fā)現(xiàn),飛輪抗阻訓(xùn)練器產(chǎn)生的阻力與重力無關(guān),阻力可以從任何方向施加[14],且飛輪訓(xùn)練器的機(jī)械優(yōu)勢在于可產(chǎn)生動(dòng)態(tài)變化的適應(yīng)性阻力,在整個(gè)運(yùn)動(dòng)過程中,阻力與訓(xùn)練者施加的力成正比[15-16]。

      近年來,F(xiàn)EOT使眾多訓(xùn)練者在長期和急性干預(yù)中受益,可有效增強(qiáng)骨骼肌系統(tǒng)的形態(tài)變化(例如肥大)[17]、提高肌肉力量水平及提升運(yùn)動(dòng)表現(xiàn)(例如:跳躍、沖刺、變向)[18-19],被認(rèn)為是相比傳統(tǒng)力量訓(xùn)練更為高效的干預(yù)手段。Tesch等的研究表明,F(xiàn)EOT對青年人運(yùn)動(dòng)能力的提高要顯著于老年人,有訓(xùn)練經(jīng)驗(yàn)者要比無訓(xùn)練經(jīng)驗(yàn)者更有效,對受試者垂直及水平矢量方向上的位移影響也產(chǎn)生了良好的效果[20]??v觀現(xiàn)有的綜述文獻(xiàn),已有多位學(xué)者就FEOT對運(yùn)動(dòng)表現(xiàn)的影響進(jìn)行了Meta分析或系統(tǒng)綜述,但是并未有研究者以FEOT對比TST的運(yùn)動(dòng)表現(xiàn)效益進(jìn)行綜述,由于對照組的訓(xùn)練干預(yù)措施不同,F(xiàn)EOT區(qū)別于TST的優(yōu)勢應(yīng)重新進(jìn)行系統(tǒng)性綜述,且近幾年也有研究表明,F(xiàn)EOT提高運(yùn)動(dòng)表現(xiàn)的效果并未優(yōu)于TST[21-24]。同時(shí),由于新近研究成果存在爭議,重新對FEOT影響特定運(yùn)動(dòng)表現(xiàn)進(jìn)行系統(tǒng)評價(jià)是必要的。此外,類似研究并非均是隨機(jī)對照實(shí)驗(yàn)[20],實(shí)驗(yàn)對象從幼年至老年、運(yùn)動(dòng)經(jīng)驗(yàn)不等[25-26],都可能會(huì)造成結(jié)果的不一致。Petré等的研究表明,訓(xùn)練經(jīng)驗(yàn)是影響FEOT干預(yù)效果的重要因素[27]。以往研究選取的縱跳能力、沖刺能力或變向能力的結(jié)局指標(biāo)中,與結(jié)局相關(guān)的測試內(nèi)容卻有出入。例如,Petré等[27]和Allen等[28]的研究均將蹲跳(縮寫為“ SJ”)、下蹲跳(縮寫為“CMJ”)等作為評估縱跳能力的指標(biāo),這些指標(biāo)實(shí)際上評估的是受試者在不同情況下的垂直跳躍能力,由反向式的CMJ測試評估在拉長—縮短周期性運(yùn)動(dòng)中快速產(chǎn)生力量的能力,由SJ評估僅在運(yùn)動(dòng)的向心階段快速發(fā)展力量的能力,可以避免利用儲(chǔ)存的彈性勢能及牽張反射[29]。結(jié)局指標(biāo)的選取盡量趨于一致才更具有統(tǒng)計(jì)效力?;诖?,本文首次納入隨機(jī)對照試驗(yàn)研究,采用Meta分析從方法學(xué)角度系統(tǒng)評估FEOT與TST對運(yùn)動(dòng)員運(yùn)動(dòng)表現(xiàn)的干預(yù)效果,梳理FEOT與不同運(yùn)動(dòng)表現(xiàn)之間的關(guān)系,避免理論與實(shí)踐的偏差,使用方法學(xué)客觀分析該訓(xùn)練手段的優(yōu)劣勢對未來運(yùn)動(dòng)訓(xùn)練實(shí)踐具有重要的指導(dǎo)意義。同時(shí),通過對前人研究成果的梳理,分析訓(xùn)練干預(yù)措施、干預(yù)慣量與運(yùn)動(dòng)表現(xiàn)之間的關(guān)系,為FEOT的進(jìn)一步應(yīng)用提供有益建議。

      1? ?研究方法

      1.1? 檢索策略

      根據(jù)《系統(tǒng)綜述與薈萃分析優(yōu)先報(bào)告條目:PRISMA聲明》[30],由2名研究人員以獨(dú)立雙盲的方式通過CNKI、Wanfang Data、Web of Science、PubMed、Elsevier、EBSCO-MEDLINE等數(shù)據(jù)庫進(jìn)行檢索。檢索時(shí)間為建庫至 2021 年8 月 13 日。以“離心超負(fù)荷訓(xùn)練”或“離心超負(fù)荷”或“離心訓(xùn)練”或“離心過載”或“飛輪”為中文主題詞進(jìn)行布爾邏輯檢索;以“flywheel overload training” OR “eccentric overload” OR “flywheel exercise” OR “eccentric overload performance” OR “flywheel sport” OR “YOYO sport” OR “YOYO exercise” OR “YOYO training”為英文主題詞進(jìn)行布爾邏輯檢索,未進(jìn)行語種限制,并且對所檢索文獻(xiàn)的參考文獻(xiàn)進(jìn)行手動(dòng)追溯檢索。在國內(nèi)外數(shù)據(jù)庫檢索到相關(guān)文獻(xiàn)2 691篇,通過軟件“NoteExpress 3.2.0”去重373篇后得到相關(guān)文獻(xiàn)2 322篇,閱讀文題和摘要后得到相關(guān)文獻(xiàn)65篇,去除不符合納入標(biāo)準(zhǔn)的文獻(xiàn)50篇,最終納入15項(xiàng)研究進(jìn)行合并分析。

      1.2? 文獻(xiàn)納入與排除標(biāo)準(zhǔn)

      1.2.1? 納入標(biāo)準(zhǔn)

      根據(jù) PICOS原則[31]制定文獻(xiàn)納入標(biāo)準(zhǔn)。1)研究類型。實(shí)驗(yàn)設(shè)計(jì)均為隨機(jī)對照試驗(yàn),無論是否采用分配隱藏和盲法。2)實(shí)驗(yàn)對象。不區(qū)分國籍、運(yùn)動(dòng)項(xiàng)目、運(yùn)動(dòng)水平及年齡。3)干預(yù)措施。干預(yù)類型、干預(yù)周期、干預(yù)量度、干預(yù)強(qiáng)度等,納入有比較FEOT與TST的干預(yù)效果的相關(guān)研究。要求納入研究中FEOT的干預(yù)措施是以飛輪訓(xùn)練器進(jìn)行離心超負(fù)荷訓(xùn)練。TST所運(yùn)用的器械與FEOT不同,生理機(jī)制特點(diǎn)與FEOT也有巨大差異,主要表現(xiàn)為完整的離心—向心循環(huán),做動(dòng)作過程中機(jī)體承受的阻力始終相同(自重或負(fù)重),包括最大力量訓(xùn)練、爆發(fā)力訓(xùn)練、力量耐力訓(xùn)練等類型,且?guī)缀跛羞\(yùn)動(dòng)隊(duì)在隊(duì)內(nèi)進(jìn)行的一些常規(guī)體能訓(xùn)練也并未完全脫離力量訓(xùn)練。因此,要求納入研究的對照組的TST干預(yù)措施包括負(fù)重或自重的力量訓(xùn)練或常規(guī)的隊(duì)內(nèi)體能訓(xùn)練,對文獻(xiàn)中并未標(biāo)明具體干預(yù)措施但有提到進(jìn)行過該類型訓(xùn)練的研究進(jìn)行保留。4)結(jié)局指標(biāo)。以評估縱向跳躍能力、短距離直線沖刺能力、變向能力相關(guān)的測試成績??v向跳躍能力指標(biāo)要求均以CMJ測試評估,測試儀器包括縱跳測力板及可穿戴式縱跳測試電子設(shè)備、帶有厘米刻度的高度測量桿等。短距離直線沖刺能力以10 m~30 m的位移距離為測試標(biāo)準(zhǔn),位移距離過短或過長(5 m或40 m)的結(jié)局指標(biāo)不被納入。變向能力測試依據(jù)Liu[32]與楊威等[33]的研究,將一些經(jīng)典的變向測試納入(例如:Illinois test、T型跑、變向跑、往返跑等),并且要求使用紅外光電管計(jì)時(shí)門等電子測速儀器進(jìn)行變向能力及沖刺能力測試。

      1.2.2? 排除標(biāo)準(zhǔn)

      不符合納入標(biāo)準(zhǔn)要求的文獻(xiàn)為:1)重復(fù)發(fā)表的文獻(xiàn)。2)沒有全文的文獻(xiàn)。3)動(dòng)物實(shí)驗(yàn)的文獻(xiàn)。4)綜述類的文獻(xiàn)。5)數(shù)據(jù)無法提取或合并的文獻(xiàn)。根據(jù)《系統(tǒng)綜述與薈萃分析優(yōu)先報(bào)告條目:PRISMA 聲明》要求制定文獻(xiàn)篩選流程圖[30](見圖 1)。

      1.3? 數(shù)據(jù)提取

      使用Excel制作數(shù)據(jù)提取表格,由上述2名研究人員獨(dú)立進(jìn)行閱讀、評價(jià)和數(shù)據(jù)提取,包括研究對象特征(樣本量、年齡、性別、運(yùn)動(dòng)經(jīng)驗(yàn))、干預(yù)措施(干預(yù)動(dòng)作模式、干預(yù)周期、訓(xùn)練量度、慣量)、結(jié)局指標(biāo)數(shù)據(jù)與結(jié)果(縱跳能力、短距離直線沖刺能力、變向能力測評成績在實(shí)驗(yàn)前后的均值、標(biāo)準(zhǔn)差及變化值),去除不符合納入要求的研究(見表1、表2)。當(dāng)對同一研究出現(xiàn)評價(jià)分歧時(shí),由第三人參與討論與決定。

      1.4? 方法學(xué)質(zhì)量評價(jià)

      運(yùn)用軟件“Review Manager 5.4”對納入的15篇文獻(xiàn)進(jìn)行方法學(xué)質(zhì)量評價(jià),依據(jù)《Cochrane 系統(tǒng)評價(jià)員手冊 5.1.0 版質(zhì)量評價(jià)標(biāo)準(zhǔn)》對納入文獻(xiàn)偏倚風(fēng)險(xiǎn)進(jìn)行綜合評價(jià)得出判斷標(biāo)準(zhǔn)為低度偏倚(A 級)、不清楚(B級)、高度偏倚(C 級),評價(jià)標(biāo)準(zhǔn)包括:隨機(jī)分組、隱蔽分組、雙盲實(shí)驗(yàn)、效應(yīng)指標(biāo)盲檢、實(shí)驗(yàn)數(shù)據(jù)不完整、選擇性報(bào)告和其他偏倚風(fēng)險(xiǎn) 7 個(gè)評價(jià)指標(biāo)。將文獻(xiàn)的研究質(zhì)量按照滿足評價(jià)指標(biāo)數(shù)量分為 3 個(gè)等級:A級≥4,2≤B級≤3,C級≤1。經(jīng)方法學(xué)質(zhì)量評價(jià),總計(jì)納入15篇文獻(xiàn),涉及不同運(yùn)動(dòng)水平的受試者共計(jì)335人,其中:實(shí)驗(yàn)組為172人、對照組為163人;包含A級文獻(xiàn)14篇、B級文獻(xiàn)1篇、C級文獻(xiàn)0篇,納入研究方法學(xué)質(zhì)量較高。

      1.5? 統(tǒng)計(jì)處理

      運(yùn)用軟件“Review Manager 5.4”對納入研究的連續(xù)性變量結(jié)局指標(biāo)進(jìn)行異質(zhì)性分析及亞組分析。單位一致時(shí)采用MD統(tǒng)計(jì)量進(jìn)行效應(yīng)量評價(jià),不一致時(shí)使用 SMD 統(tǒng)計(jì)量進(jìn)行效應(yīng)量評價(jià)(SMD<0.5 時(shí)為小效應(yīng)量,0.5≤SMD<0.8 時(shí)為中等效應(yīng)量,SMD≥0.8 時(shí)為大效應(yīng)量),效應(yīng)尺度為95%置信區(qū)間(CI)。用 I2統(tǒng)計(jì)量進(jìn)行異質(zhì)性檢驗(yàn)(I2<40%時(shí)可能具有低度異質(zhì)性,40%≤I2≤70%時(shí)可能具有中度異質(zhì)性,I2>70%時(shí)可能具有高度異質(zhì)性),低度異質(zhì)性采用固定效應(yīng)模型分析,中度異質(zhì)性、高度異質(zhì)性采用隨機(jī)效應(yīng)模型分析,對于異質(zhì)性較大的文獻(xiàn)進(jìn)行亞組分析。運(yùn)用軟件“Stata/SE 15.1”對納入文獻(xiàn)發(fā)表偏倚采用Egger法進(jìn)行分析,顯著性水平設(shè)置為0.05。

      1.6? 發(fā)表偏倚分析

      采用 Eggers 檢驗(yàn)FEOT對縱跳能力、短距離直線沖刺能力及變向能力干預(yù)效果的發(fā)表偏倚(見表3),截距線段橫跨 0 點(diǎn)時(shí)發(fā)表偏倚較?。?4]。FEOT對縱跳能力干預(yù)效果的檢驗(yàn)結(jié)果為:t=-4.470,p=0.001,95%CI[-3.081,-1.030],不包含0,說明FEOT對縱跳能力干預(yù)效果存在發(fā)表偏倚,且具有統(tǒng)計(jì)學(xué)意義。FEOT對短距離直線沖刺能力干預(yù)效果的檢驗(yàn)結(jié)果為:t=-0.120,p=0.906>0.05,95%CI[-4.020,3.608],包含 0,說明FEOT對短距離直線沖刺能力干預(yù)效果無明顯的發(fā)表偏倚,Meta 分析結(jié)果比較可靠。FEOT對變向能力干預(yù)效果的檢驗(yàn)結(jié)果為:t=-0.230,p=0.824>0.05,95%CI[-7.301,6.036],包含 0,說明FEOT對變向能力干預(yù)效果無明顯的發(fā)表偏倚,Meta分析結(jié)果比較可靠。

      2? ?結(jié)果

      2.1? FEOT影響縱跳能力的meta分析

      有12篇文獻(xiàn)研究了FEOT對縱跳能力的影響,納入研究的實(shí)驗(yàn)組樣本量為137人、對照組樣本量為128人。在納入的研究中,衡量縱跳能力的測試均為CMJ測試,12項(xiàng)研究均以CMJ高度(cm)作為結(jié)局指標(biāo),異質(zhì)性分析單位一致,所以采用MD統(tǒng)計(jì)量進(jìn)行效應(yīng)量評估。分析結(jié)果顯示存在中度異質(zhì)性(I2=53%,p=0.02),所以采用隨機(jī)效應(yīng)模型進(jìn)行 Meta分析,結(jié)果表明,F(xiàn)EOT對提高受試者縱跳高度具有明顯效果,縱跳高度在周期性運(yùn)動(dòng)干預(yù)后顯著增長(MD=2.82,95%CI[1.57,4.06],p<0.001),與對照組相比具有統(tǒng)計(jì)學(xué)意義(見圖2)。

      為了探究異質(zhì)性來源,從運(yùn)動(dòng)人群、干預(yù)措施A(矢量方向)、干預(yù)措施B(單雙側(cè))、干預(yù)周期和慣量5個(gè)方面進(jìn)行亞組分析(見表4)。結(jié)果顯示,運(yùn)動(dòng)人群、干預(yù)措施A(矢量方向)、干預(yù)措施B(單雙側(cè))、干預(yù)周期和慣量均有可能是異質(zhì)性來源。運(yùn)動(dòng)人群中青少年異質(zhì)性最?。↖2=0),成年人異質(zhì)性最大(I2=64%),且青少年的效應(yīng)量(MD=2.95)優(yōu)于成年人的效應(yīng)量(MD=2.63);干預(yù)措施A(矢量方向)中深蹲為主的異質(zhì)性最?。↖2=0),因蹬腿動(dòng)作模式只有1篇文獻(xiàn),所以無法進(jìn)行檢驗(yàn);干預(yù)措施B(單雙側(cè))中的單側(cè)異質(zhì)性最小(I2=0),雙側(cè)異質(zhì)性最大(I2=30%),且雙側(cè)效應(yīng)量(MD=2.87)大于單側(cè)效應(yīng)量(MD=2.33);干預(yù)周期中的>6周干預(yù)期異質(zhì)性最小(I2=0),≤6周干預(yù)期異質(zhì)性最大(I2=59%),且>6周干預(yù)期效應(yīng)量(MD=2.90 )大于≤6周干預(yù)期效應(yīng)量(MD=2.76);慣量為0.05 kg·m2以下時(shí)異質(zhì)性最?。↖2=0),慣量為0.05~0.10 kg·m2時(shí)異質(zhì)性較?。↖2=15%),慣量為0.10 kg·m2以上時(shí)異質(zhì)性最大(I2=51%)。

      為了進(jìn)一步探究異質(zhì)性來源,在整體研究中使用敏感性分析逐個(gè)去除納入的文獻(xiàn),評估每篇文獻(xiàn)對縱跳能力效應(yīng)量的影響,發(fā)現(xiàn)去除Maroto-Izquierdo(2017)[8]的文獻(xiàn)后(n=11)異質(zhì)性明顯變?。↖2=0,p>0.1)。再次分析該研究后發(fā)現(xiàn),其在干預(yù)方式上除常規(guī)訓(xùn)練外僅進(jìn)行坐姿蹬腿的動(dòng)作模式,動(dòng)作干預(yù)的矢量方向與其他研究(深蹲、硬拉等)不同,其所使用的慣量為0.145 kg·m2,也大于任何其他研究所使用的慣量,但并不足以將其去除,結(jié)果不穩(wěn)健需謹(jǐn)慎對待。

      2.2? FEOT影響短距離直線沖刺能力的meta分析

      有11篇文獻(xiàn)研究了FEOT對短距離直線沖刺能力的影響,其中的實(shí)驗(yàn)組樣本量為132人、對照組樣本量為125人。對納入的研究進(jìn)行異質(zhì)性檢驗(yàn)時(shí),因測試距離不同,將提取的數(shù)據(jù)統(tǒng)一換算為以秒為單位,之后以SMD合并效應(yīng)量進(jìn)行評估,結(jié)果顯示存在高度異質(zhì)性(I2=74%,p=0.000),所以采用隨機(jī)效應(yīng)模型進(jìn)行Meta分析(見圖3)。Meta分析結(jié)果表明,F(xiàn)EOT對提高受試者短距離直線沖刺能力具有明顯效果,干預(yù)后沖刺用時(shí)減少(SMD=-0.32,95%CI[-0.85,0.20],p=0.23>0.1),但是不具有統(tǒng)計(jì)學(xué)意義(見圖3)。為了探究異質(zhì)性來源,對納入的研究從運(yùn)動(dòng)人群、干預(yù)措施A(矢量方向)、干預(yù)措施B(單雙側(cè))、干預(yù)周期及慣量5個(gè)方面進(jìn)行亞組分析(見表5)后發(fā)現(xiàn),干預(yù)措施B(單雙側(cè))及慣量可能是異質(zhì)性主要來源,干預(yù)措施B(單雙側(cè))中的單側(cè)訓(xùn)練異質(zhì)性最?。↖2=0),雙側(cè)訓(xùn)練異質(zhì)性最大(I2=28%),且雙側(cè)訓(xùn)練的效應(yīng)量(SMD=-0.77)優(yōu)于單側(cè)訓(xùn)練的效應(yīng)量(SMD=1.00),單側(cè)訓(xùn)練可能會(huì)使短距離直線沖刺能力下降,但是由于研究量證據(jù)不足,所以缺乏說服力。慣量在0.05~0.1 kg·m2時(shí)的異質(zhì)性最?。↖2=0),慣量在0.10 kg·m2以上時(shí)異質(zhì)性最大(I2=89%);慣量大于0.10 kg·m2時(shí)的效應(yīng)量既優(yōu)于慣量在0.05~0.1 kg·m2時(shí)的效應(yīng)量,也優(yōu)于慣量小于0.05 kg·m2時(shí)的效應(yīng)量。

      2.3? FEOT影響變向能力的meta分析

      有8篇文獻(xiàn)研究了FEOT對變向能力的影響,其中的實(shí)驗(yàn)組樣本量為83人、對照組樣本量為79人,并且有6篇文獻(xiàn)的異質(zhì)性分析結(jié)果顯示存在高度異質(zhì)性(I2=82%,p=0.000),所以采用隨機(jī)效應(yīng)模型進(jìn)行Meta分析(見圖4)。結(jié)果表明,F(xiàn)EOT方案能有效提高受試者的變向能力(SMD=-1.00,95%CI[-1.76,-0.24],p=0.01<0.05)(見圖4)。為了探索異質(zhì)性來源,對納入研究從運(yùn)動(dòng)人群、干預(yù)措施A(矢量方向)、干預(yù)措施B(單雙側(cè))、干預(yù)周期、慣量5個(gè)方面進(jìn)行亞組分析(見表6),由于干預(yù)措施A(矢量方向)不存在組別差異,所以不進(jìn)行亞組分析。由表6可知,干預(yù)周期、慣量可能是異質(zhì)性來源,干預(yù)周期中的>6周干預(yù)期的異質(zhì)性最?。↖2=0),≤6周干預(yù)期的異質(zhì)性最大(I2=90%),且≤6周干預(yù)期的效應(yīng)量(SMD=-1.15)優(yōu)于>6周干預(yù)期效應(yīng)量(SMD=-0.88);慣量為0.05~0.10 kg·m2時(shí)異質(zhì)性最?。↖2=0),慣量為0.10 kg·m2以上時(shí)異質(zhì)性最大(I2=

      90%),慣量為0.01 kg·m2時(shí)效應(yīng)量既優(yōu)于慣量為0.05~0.10? kg·m2時(shí)的效應(yīng)量,又優(yōu)于慣量為0.05 kg·m2時(shí)的效應(yīng)量。

      3? ?討論

      FEOT作為新興的訓(xùn)練手段已逐漸應(yīng)用于運(yùn)動(dòng)訓(xùn)練實(shí)踐中,通過飛輪訓(xùn)練器獨(dú)特的機(jī)械優(yōu)勢,可帶給運(yùn)動(dòng)員諸多益處。以往研究中的受試人群、動(dòng)作模式、慣量、周期及結(jié)局指標(biāo)不同,可能會(huì)造成實(shí)驗(yàn)效果的差異,因此,將以往研究中的訓(xùn)練效果重新進(jìn)行梳理、歸納并將其具體化,使FEOT未來的實(shí)踐應(yīng)用更具有針對性。本研究對所有以FEOT與TST相比較的隨機(jī)對照試驗(yàn)文獻(xiàn)進(jìn)行篩選,確定納入15篇高質(zhì)量研究文獻(xiàn),通過閱讀發(fā)現(xiàn):運(yùn)動(dòng)人群多以成年運(yùn)動(dòng)員為主;受試者多以足球、籃球、排球?yàn)橹?;干預(yù)周期4~10周不等,其中6~10周居多;運(yùn)動(dòng)干預(yù)多以雙側(cè)動(dòng)作模式干預(yù)為主,單側(cè)動(dòng)作模式研究較少。通過Meta分析發(fā)現(xiàn),F(xiàn)EOT相較于TST更能有效提升運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn),特別是對運(yùn)動(dòng)員的縱跳能力、短距離直線沖刺能力(成年人)和變向能力提升明顯。

      3.1? FEOT相比TST對縱跳能力的影響

      本研究選取的受試者縱跳能力評估指標(biāo)與下肢力量測量值、爆發(fā)力測量值存在正相關(guān)關(guān)系[45-46]。做縱跳反向動(dòng)作時(shí),肌纖維被動(dòng)拉長,肌梭對拉長的幅度及速度敏感,從而會(huì)募集更多的運(yùn)動(dòng)單位、提高運(yùn)動(dòng)單位激發(fā)率。因此,縱跳能力測試可有效評估受試者在拉長—縮短周期性運(yùn)動(dòng)中快速產(chǎn)生力量的能力和反應(yīng)神經(jīng)募集能力[47-48]。

      Meta分析結(jié)果顯示,F(xiàn)EOT相比TST可有效提高受試者縱跳能力(MD=2.82),且具有統(tǒng)計(jì)學(xué)意義(p<0.01)。只有1篇文獻(xiàn)的研究結(jié)果顯示,干預(yù)周期為4周(每周2次訓(xùn)練)并且慣量為0.05 kg·m2時(shí)不能提高運(yùn)動(dòng)員縱跳能力。將不同干預(yù)周期進(jìn)行分組可知,6周訓(xùn)練周期相比于6周以內(nèi)訓(xùn)練周期對提高受試者縱跳能力更具優(yōu)勢。亞組分析發(fā)現(xiàn),小慣量似乎也能產(chǎn)生一定效果,使用0.05 kg·m2以下慣量的4篇文獻(xiàn)都產(chǎn)生了顯著結(jié)果,效應(yīng)量甚至大于慣量為0.05~0.10 kg·m2時(shí)的效應(yīng)量,原因是這4篇文獻(xiàn)的干預(yù)周期為6~10周,干預(yù)周期的延長彌補(bǔ)了訓(xùn)練量不足的缺點(diǎn),提高了機(jī)體的適應(yīng)能力。慣量為>0.10 kg·m2的3篇文獻(xiàn)的干預(yù)周期僅為5~8周,卻產(chǎn)生了最大效應(yīng)量。當(dāng)訓(xùn)練量相當(dāng)時(shí),每周進(jìn)行多次阻力訓(xùn)練的效果優(yōu)于每周1次的效果,進(jìn)一步驗(yàn)證了干預(yù)周期與訓(xùn)練量之間的密切關(guān)系[49]。11篇文獻(xiàn)中有8篇明確了每周進(jìn)行2次及以上的訓(xùn)練頻率,并且均認(rèn)為,訓(xùn)練頻率是誘發(fā)肌肉肥大的關(guān)鍵變量[50]。從人群分組結(jié)果可知,青少年效應(yīng)量大于成年人效應(yīng)量,青少年在運(yùn)動(dòng)敏感期進(jìn)行相關(guān)訓(xùn)練,可促進(jìn)身體素質(zhì)快速發(fā)展,不僅省時(shí)省力,效果也相較其他時(shí)期顯著[51],D.Cagno等的實(shí)驗(yàn)研究也表明,即使是可明顯提高縱跳能力的增強(qiáng)式訓(xùn)練,對提升青少年擊劍運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn)也并未優(yōu)于FEOT[52]。11篇文獻(xiàn)中的動(dòng)作模式包括半蹲或深蹲(10篇)、羅馬尼亞硬拉(2篇)、分腿蹲(2篇)、蹬腿(2篇)、北歐降(1篇)。深蹲或半蹲為FEOT的主要?jiǎng)幼髂J?,但是將納入研究以包括該動(dòng)作模式或不包括該動(dòng)作模式進(jìn)行分組分析后卻發(fā)現(xiàn),無論是否以深蹲或半蹲為主要?jiǎng)幼髂J?,對縱跳能力的提高都是一定的,僅有1篇文獻(xiàn)中的蹬腿效應(yīng)量大于深蹲或半蹲為主的效應(yīng)量,但是樣本量過少,這種結(jié)果可能極不可信,未來有必要從不同動(dòng)作模式得出實(shí)證依據(jù)。干預(yù)措施B(單雙側(cè))亞組分析的11篇文獻(xiàn)中,干預(yù)動(dòng)作模式僅有下肢單側(cè)訓(xùn)練的文獻(xiàn)為3篇,干預(yù)運(yùn)動(dòng)模式包括下肢雙側(cè)同時(shí)訓(xùn)練的文獻(xiàn)為9篇,并且與前人的相關(guān)研究結(jié)果一致,無論是雙側(cè)訓(xùn)練還是單側(cè)訓(xùn)練,F(xiàn)EOT都能提升 CMJ 的表現(xiàn)[53],且雙側(cè)效應(yīng)量明顯大于單側(cè)效應(yīng)量,兩組異質(zhì)性檢驗(yàn)結(jié)果均為低度異質(zhì)性。這可能與本研究選取的測試指標(biāo)為雙側(cè)CMJ相關(guān),雙側(cè)下肢肌肉同時(shí)收縮產(chǎn)生的力要比單側(cè)下肢肌肉分別收縮產(chǎn)生的力的總和?。?4],雙側(cè)同時(shí)進(jìn)行干預(yù)的FEOT相比TST能更為有效地提高受試者雙側(cè)CMJ的高度。

      3.2? FEOT相比TST對短距離直線沖刺能力的影響

      不同的短距離直線沖刺能力可能取決于不同肌肉的激活程度,腘繩肌、內(nèi)收肌及臀大肌在30 m跑直線沖刺時(shí)可能比在10 m跑沖刺時(shí)更活躍[55]。因此,為了避免短距離直線沖刺能力在不同距離沖刺時(shí)受外在因素的影響,本研究在提取數(shù)據(jù)時(shí)優(yōu)先選取30 m跑測試成績,其次是20 m跑測試成績、最后是10 m跑測試成績。FEOT相較TST可降低受試者短距離直線沖刺用時(shí)(SMD=-0.32),但是不具有統(tǒng)計(jì)學(xué)意義(p=0.23)。納入本研究的短距離直線沖刺結(jié)局指標(biāo)包括30 m跑測試(6篇)、20 m跑測試(3篇)、10 m跑測試(2篇)。嘗試將2篇10 m跑測試研究去除,結(jié)果無明顯變化(SMD=-0.27,95%CI[-0.91,-0.37],p=<0.000),并且無統(tǒng)計(jì)學(xué)意義(p=0.40)??紤]到異質(zhì)性可能與受試者年齡差異相關(guān),將運(yùn)動(dòng)人群進(jìn)行分組后發(fā)現(xiàn),F(xiàn)EOT訓(xùn)練可能無法提高青少年人群短距離直線沖刺能力,而對提高成年人短距離直線沖刺能力具有顯著性。

      11篇文獻(xiàn)中有8篇的短距離直線沖刺測試結(jié)果有顯著差異。例如,Westblad等[36]和Miki■等[37]運(yùn)用FEOT干預(yù)有效減少了直線沖刺用時(shí),與TST相比,F(xiàn)EOT能提高受試者短距離直線沖刺能力。另有3篇文獻(xiàn)的研究結(jié)果不同,其中,Javier等通過對比FEOT與常規(guī)訓(xùn)練對20 m跑直線沖刺的影響發(fā)現(xiàn),常規(guī)訓(xùn)練的效果明顯優(yōu)于FEOT,F(xiàn)EOT未能有效減少?zèng)_刺用時(shí)[23]。這可能與常規(guī)訓(xùn)練內(nèi)容相關(guān),包括拉雪橇、超等長訓(xùn)練的常規(guī)練習(xí)與短距離直線沖刺之間的獲益已被證實(shí)[56-58],而實(shí)驗(yàn)組每周增加一次FEOT可能使受試者更為疲勞或產(chǎn)生不良的影響,從而抑制運(yùn)動(dòng)表現(xiàn)。此外,有研究者再次驗(yàn)證了FEOT的干預(yù)效果與受試者的年齡有關(guān)。例如,Javier等[23]及Raya-González等分別于2018年[41]和2021年[22]發(fā)表的2篇文獻(xiàn)均顯示招募了16~18歲青少年為受試者。該年齡段生長發(fā)育特征屬于非線性變化,同一年齡段的青少年的肌肉骨骼成熟度特別是肌肉質(zhì)量及肌肉力量有巨大差異,因此,同一年齡段的青少年對抗阻力量訓(xùn)練的適應(yīng)性差異可能會(huì)影響其特定運(yùn)動(dòng)表現(xiàn)[59-60]。同樣,Tous-Fajardo等在FEOT結(jié)合振動(dòng)訓(xùn)練的實(shí)驗(yàn)研究中發(fā)現(xiàn)[19],當(dāng)以TST為對照組的運(yùn)動(dòng)干預(yù)方案時(shí),24名U18足球運(yùn)動(dòng)員經(jīng)過11周的訓(xùn)練后,無論是FEOT組還是TST組,受試者的10 m跑和30 m跑的直線沖刺成績都沒有得到顯著提高,但是縱跳能力及變向能力卻得到了顯著的提高,由于研究有局限,F(xiàn)EOT對青少年運(yùn)動(dòng)員的短距離直線沖刺效益的影響值得進(jìn)一步研究。亞組分析發(fā)現(xiàn),干預(yù)措施B(單雙側(cè))及慣量可能是異質(zhì)性主要來源,在FEOT時(shí),大慣量效應(yīng)量優(yōu)于小慣量,單側(cè)FEOT訓(xùn)練與TST相比可能無法提高短距離直線沖刺能力,雙側(cè)FEOT卻與之相反。短距離直線沖刺是一項(xiàng)雙側(cè)肢體重復(fù)性運(yùn)動(dòng),同樣慣量及負(fù)荷的單側(cè)動(dòng)作模式可能會(huì)造成肢體動(dòng)作的不對稱,并改變隨后短距離沖刺的表現(xiàn)[61-62]。此外,Javier等[23]和Nunez等[63]認(rèn)為FEOT不能提高短距離直線沖刺成績,原因可能是受試者必須在整個(gè)運(yùn)動(dòng)的向心階段施加力,且施加力的時(shí)間比產(chǎn)生力的時(shí)間更長,長時(shí)間施力可能不會(huì)對短時(shí)間施力運(yùn)動(dòng)(例如短跑)產(chǎn)生額外的訓(xùn)練益處。但是也有大量研究者發(fā)現(xiàn),F(xiàn)EOT對短距離沖刺有良好的效果。本研究的Meta分析結(jié)果并未發(fā)現(xiàn)FEOT能有效提高短距離直線沖刺能力。這極有可能與受試者年齡差異相關(guān),F(xiàn)EOT相比TST可以有效提高成年人短距離直線沖刺能力,但是不會(huì)提高青少年運(yùn)動(dòng)人群的短距離直線沖刺能力。

      3.3? FEOT相比TST對變向能力的影響

      變向能力受多種因素影響,其表現(xiàn)取決于神經(jīng)肌肉協(xié)調(diào)性[64]、腿部肌肉力量和爆發(fā)力[64-65]及直線沖刺速度[66-67]。變向時(shí)腳觸地時(shí)間超過了短跑加速及最大速度階段,因此,變向需要更長時(shí)間的SSC運(yùn)動(dòng)[68-69]。在變向過程中,需要快速執(zhí)行離心收縮減速、制動(dòng),再執(zhí)行向心收縮向新方向加速[70]。有學(xué)者深入研究后發(fā)現(xiàn),變向與膝關(guān)節(jié)屈肌離心力量、下肢最大離心力量[71-72]相關(guān),離心訓(xùn)練的適應(yīng)對離心負(fù)荷的速度可能更具有特異性。

      由Meta分析結(jié)果可知,F(xiàn)EOT相比TST可以有效減少受試者變向跑的用時(shí)(SMD=-1.00),且具有統(tǒng)計(jì)學(xué)意義(p=0.01)。異質(zhì)性檢驗(yàn)結(jié)果顯示存在高度異質(zhì)性。通過亞組分析發(fā)現(xiàn),干預(yù)周期及慣量為主要的異質(zhì)性來源。其中:在納入分析的研究中,訓(xùn)練周期分別為4周、5周、6周、8周、10周。有2篇文獻(xiàn)的研究中每周訓(xùn)練1次,有5篇文獻(xiàn)的研究中每周訓(xùn)練2次。Monajati等的研究表明,在團(tuán)隊(duì)運(yùn)動(dòng)中將每周2次、每次20~30 min的FEOT與其他特定訓(xùn)練動(dòng)作(短跑、拉雪橇、舉重等)相結(jié)合,可以使運(yùn)動(dòng)表現(xiàn)發(fā)生積極的變化及避免運(yùn)動(dòng)損傷[24]。通過亞組分析還發(fā)現(xiàn),中等慣量和大慣量的效應(yīng)量大于小慣量。例如,Sabido等通過對慣量分別為0.025 kg·m2、0.050 kg·m2、0.075 kg·m2、0.100 kg·m2的深蹲FEOT進(jìn)行對比分析發(fā)現(xiàn),較小的慣量(0.025 kg·m2)是產(chǎn)生大向心力峰值功率輸出的更好選擇,中到大的慣量(0.050~0.100 kg·m2)更容易產(chǎn)生更大的離心超負(fù)荷[73]。此外,≤6周的訓(xùn)練周期的效應(yīng)量大于>6周,似乎FEOT在早期就已經(jīng)引起了運(yùn)動(dòng)適應(yīng),因研究數(shù)量過少、干預(yù)動(dòng)作模式及干預(yù)周期多樣而無法準(zhǔn)確評估,但是有限的研究已顯示出積極影響。由表2可知,深蹲或半蹲通常是FEOT的主要?jiǎng)幼髂J剑?篇文獻(xiàn)中有7篇包括單側(cè)或雙側(cè)的垂直矢量方向的蹲起動(dòng)作,另一篇采用了蹬腿。8篇文獻(xiàn)中有2篇采用硬拉、2篇采用弓步、1篇采用踢腿的動(dòng)作進(jìn)行訓(xùn)練。這也表明,F(xiàn)EOT能提高不同運(yùn)動(dòng)人群變向能力的一個(gè)重要因素在于飛輪無論從任何方向、單側(cè)或雙側(cè)進(jìn)行訓(xùn)練都有效并能得到益處[74],以蹲起動(dòng)作模式為主的訓(xùn)練組合可有效提高受試者的變向能力。Young等[75]和D. Hoyo等[76]的研究表明,力量訓(xùn)練與特定運(yùn)動(dòng)任務(wù)之間具有特異性,變向和短跑等需要在水平面內(nèi)進(jìn)行加速和減速。因此,變向能力需要在水平力矢量中進(jìn)行特定練習(xí)[77]。在水平力矢量中進(jìn)行的練習(xí)(例如臀部推力)可以有效地提高沖刺成績,而在縱向力矢量中進(jìn)行的練習(xí)(例如深蹲)對縱跳能力有更大的提高作用[78]。此外,Nú?觡ez等認(rèn)為,無論是單側(cè)還是雙側(cè)的FEOT訓(xùn)練都能有效提升運(yùn)動(dòng)表現(xiàn),單側(cè)訓(xùn)練相對于雙側(cè)訓(xùn)練似乎能更有效地提高變向能力[79]。但是Hernandez等認(rèn)為,單側(cè)深蹲FEOT并不能提高變向能力,原因是單側(cè)訓(xùn)練可能會(huì)增加兩腿不對稱性,訓(xùn)練期間可能會(huì)導(dǎo)致非優(yōu)勢腿發(fā)力不足[80]。鑒于單側(cè)FEOT相關(guān)研究有限,有關(guān)單側(cè)FEOT的方法及手段有待于進(jìn)一步探究。

      4? ?本研究的局限性

      本研究嚴(yán)格按照 PRISMA 聲明清單[81]進(jìn)行,但是還存在一定的局限性:1)僅納入了公開發(fā)表的研究性文獻(xiàn),未公開發(fā)表的研究性文獻(xiàn)未能納入,可能在一定程度上會(huì)影響資料的全面性。2)由于飛輪的特殊機(jī)制,即在向心階段全力發(fā)力,離心階段制動(dòng)抵抗,有學(xué)者認(rèn)為在離心階段的后1/3處制動(dòng)可獲得更大的超負(fù)荷刺激[82],但是現(xiàn)有研究對向心階段或離心階段的速度或比例的問題尚未明確,飛輪離心超負(fù)荷依賴自主發(fā)力的機(jī)械特點(diǎn),速度及比例的執(zhí)行可能成為重要因素。3)個(gè)別亞組(矢量方向、單雙側(cè)等)納入分析的研究有限,期待未來有更多的相關(guān)研究為運(yùn)動(dòng)訓(xùn)練方法與訓(xùn)練方案設(shè)計(jì)提供多樣化建議。

      5? ?結(jié)論與建議

      飛輪離心超負(fù)荷訓(xùn)練相比傳統(tǒng)力量訓(xùn)練既可以有效提高受試者縱跳能力及變向能力,也可以有效提高成年運(yùn)動(dòng)員的短距離直線沖刺能力,但是不會(huì)提高青少年運(yùn)動(dòng)員的短距離直線沖刺能力。中等慣量和大慣量、與特定運(yùn)動(dòng)表現(xiàn)用力的矢量方向相近或相同的訓(xùn)練對運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn)具有良好的干預(yù)效果。建議未來對單側(cè)或雙側(cè)飛輪離心超負(fù)荷訓(xùn)練、單一或組合動(dòng)作模式與特定運(yùn)動(dòng)表現(xiàn)的相關(guān)關(guān)系進(jìn)一步進(jìn)行探討與研究。

      參考文獻(xiàn):

      [1]? JAVIER R, DANIEL C, MARCO B. The flywheel paradigm in team sports: A soccer approach[J]. Strength and Conditioning Journal, 2021, 43(1): 12-22.

      [2]? LENA N, MARCO P, PER A T. Flywheel resistance training calls for greater eccentric muscle activation than weight training[J]. European Journal of Applied Physiology, 2010, 110(5): 997-1005.

      [3]? DUCHATEAU J, ENOKA R M. Neural control of lengthening contractions[J]. The Journal of Experimental Biology, 2016, 219(2): 197-204.

      [4]? RAYA-GONZ?魣LEZ J, CASTILLO D, DOM?魱NGUEZ-D?魱EZ M, et al. Eccentric-overload production during the flywheel squat exercise in young soccer players: implications for injury prevention[J]. International Journal of Environmental Research and Public Health, 2020, 17(10): 3671.

      [5]? DUDLEY G A, TESCH P A, HARRIS R T, et al. Influence of eccentric actions on the metabolic cost of resistance exercise[J]. Aviation, Space, and Environmental Medicine, 1991, 62(7): 678-682.

      [6]? JULIO T, OLIVER G, JOS?魪 L A, et al. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training[J]. International Journal of Sports Physiology and Performance, 2016, 11(1):66-73.

      [7]? HANS E B, PER A T. Force and power characteristics of a resistive exercise device for use in space[J]. Acta Astronautica, 1998,42(8): 219-230.

      [8]? MAROTO-IZQUIERDO S, GARCIA-LOPEZ D, DE PAZ J A. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players[J]. Journal of Human Kinetics, 2017, 60(1): 133-143.

      [9]? COLLIANDER E B, TESCH P A. Effects of eccentric and concentric muscle actions in resistance training[J]. Acta Physiol Scand, 1990, 140(1): 31-39.

      [10]? NORRBRAND L, FLUCKEY J D, POZZO M, et al. Resistance training using eccentric overload induces early adaptations in skeletal muscle size[J]. European Journal of Applied Physiology, 2008, 102(3): 271-282.

      [11]? HODY S, CROISIER J L, BURY T, et al. Eccentric muscle contractions: risks and benefits[J]. Frontiers in Physiology, 2019, 10: 536.

      [12]? ZAMPARO P, BOLOMINI F, NARDELLO F, et al. Energetics (and kinematics) of short shuttle runs[J]. European Journal of Applied Physiology, 2015, 115(9): 1985-1994.

      [13]? TINWALA F, CRONIN J, HAEMMERLE E, et al. Eccentric strength training: A review of the available technology[J]. Strength and Conditioning Journal, 2017, 39(1): 32-47.

      [14]? CHIU L Z F, SALEM G J. Comparison of joint kinetics during free weight and flywheel resistance exercise[J]. The Journal of Strength and Conditioning Research, 2006, 20(3): 555-562.

      [15]? LENA N, MARCO P, PER A T. Flywheel resistance training calls for greater eccentric muscle activation than weight training[J]. European Journal of Applied Physiology, 2010, 110(5):997-1005.

      [16]? BERG H E, TESCH A. A gravity-independent ergometer to be used for resistance training in space[J]. Aviation, Space, and Environmental Medicine, 1994, 65(8): 752-756.

      [17]? HORWATH O, PAULSEN G, ESPING T, et al. Isokinetic resistance training combined with eccentric overload improves athletic? performance and induces muscle hypertrophy in young ice hockey players[J]. Journal of Science and Medicine in Sport, 2019, 22(7): 821-826.

      [18]? SABIDO R, HERN?魣NDEZ-DAV?譫 J L, BOTELLA J, et al. Effects of adding a weekly eccentric-overload training session on strength and? athletic performance in team-handball players[J]. European Journal of Sport Science, 2017, 17(5): 530-538.

      [19]? TOUS-FAJARDO J, GONZALO-SKOK O, ARJOL-SERRANO J L, et al. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training[J]. International Journal of Sports Physiology and Performance, 2016, 11(1): 66-73.

      [20]? TESCH P A, FERNANDEZ-GONZALO R, LUNDBERG T R. Clinical applications of iso-inertial, eccentric-overload (yoyo) resistance exercise[J]. Frontiers in Physiology, 2017,29(8): 241.

      [21]? MURTON J, EAGER R, DRURY B. Comparison of flywheel versus traditional resistance training in elite academy male? rugby union players[J]. Research in Sports Medicine, 2021,22: 1-14.

      [22]? RAYA-GONZ?魣LEZ J, CASTILLO D, DE KEIJZER K L, et al. The effect of a weekly flywheel resistance training session on elite u-16 soccer? playersphysical performance during the competitive season: A randomized controlled? trial[J]. Research in Sports Medicine, 2021,29(6): 571-585.

      [23]? JAVIER NUNEZ F, DE HOYO M, MUNOZ LOPEZ A, et al. Eccentric-concentric ratio: A key factor for defining strength training in soccer[J]. International Journal of Sports Medicine, 2019, 40(12): 796-802.

      [24]? MONAJATI A, LARUMBE-ZABALA E, GOSS-SAMPSON M, et al. Injury prevention programs based on flywheel vs body weight resistance in recreational athletes[J]. Journal of Strength and Conditioning Research, 2021, 35(1): 188-196.

      [25]? MAROTO-IZQUIERDO S, GARC?魱A-L?譫PEZ D, FERNANDEZ-GONZALO R, et al. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis[J]. Journal of Science and Medicine in Sport, 2017, 20(10): 943-951.

      [26]? RAYA-GONZ?魣LEZ J, DE KEIJZER K L, BISHOP C, et al. Effects of flywheel training on strength-related variables in female populations: A systematic review[J]. Research in Sports Medicine (Print), 2022,30(4):353-370.

      [27]? PETR?魪 H, WERNST?魡L F, MATTSSON C M. Effects of flywheel training on strength-related variables: a meta-analysis[J]. Sports Medicine - Open, 2018, 4(1):55.

      [28]? ALLEN W J C, DE KEIJZER K L, RAYA-GONZALEZ J, et al. Chronic effects of flywheel training on physical capacities in soccer players: a systematic review[J]. Research in Sports Medicine,2021, 27:1-21.

      [29]? MCGUIGAN M R, DOYLE T L, NEWTON M, et al. Eccentric utilization ratio: effect of sport and phase of training[J]. Journal of Strength and Conditioning Research, 2006, 20(4): 992-995.

      [30]? MOHER D, LIBERATI A, TETZLAFF J, et al. Reprint-preferred reporting items for systematic reviews and meta-analyses: the prisma statement[J]. Physical Therapy & Rehabilitation Journal, 2009, 89(9): 873-880.

      [31]? HONG-JIAO L. On-site quality control of acupuncture randomized controlled trials[J]. Journal of Integrative Medicine, 2014, 12(3): 281-282.

      [32]? LIU R, LIU J, CLARKE C V, et al. Effect of eccentric overload training on change of direction speed performance: A systematic review and meta-analysis[J]. Journal of Sports Sciences, 2020, 38(22): 2579-2587.

      [33]? 楊威,李博,高崇,等. 足球運(yùn)動(dòng)員變向能力的測試方法、影響因素和訓(xùn)練策略[J]. 首都體育學(xué)院學(xué)報(bào), 2021, 33(5): 507-521.

      [34]? ASKLING C, KARLSSON J, THORSTENSSON A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload[J]. Scandinavian Journal of Medicine & Science in Sports, 2003, 13(4): 244-250.

      [35]? MAROTO-IZQUIERDO S, FERNANDEZ-GONZALO R, MAGDI H R, et al. Comparison of the musculoskeletal effects of different iso-inertial resistance? training modalities: Flywheel vs electric-motor[J]. European Journal of Sport Science, 2019, 19(9): 1184-1194.

      [36]? WESTBLAD N, PETR?魪 H, K?魡RSTR?魻M A, et al. The effect of autoregulated flywheel and traditional strength training on training load progression and motor skill performance in youth athletes[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3479.

      [37]? MIKI■ M, STOJANOVI■ M D M, DRID P, et al. Greater power but not strength gains using flywheel versus equivolumed traditional strength training in junior basketball players[J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1181.

      [38]? CORATELLA G, BEATO M, Cè E, et al. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players[J]. Biology of Sport, 2019, 36(3): 241-248.

      [39]? SAGELV E H, PEDERSEN S, NILSEN L P R, et al. Flywheel squats versus free weight high load squats for improving high velocity movements in football: A randomized controlled trial[J]. BMC Sports Science Medicine and Rehabilitation, 2020, 12(1):61.

      [40]? CABANILLAS R, SERNA J, MU?譙OZ-ARROYAVE V, et al. Effect of eccentric overload through isoinertial technology in basketball players[J]. Revista Brasileira de Cineantropometria & Desempenho Humano, 2020, 22:e59831.

      [41] RAYA-GONZ?魣LEZ J, SUAREZ-ARRONES L, RISQUEZ BRETONES A, et al. Short-term effects of an eccentric-overload training program on the physical performance on u-16 elite soccer players[J]. Retos-Nuevas Tendencias en Educacion Fisica Deporte y Recreacion, 2018,33(33): 106-111.

      [42] BRIEN J, BROWNE D, EARLS D. The effects of different types of eccentric overload training on strength, speed,? power and change of direction in female basketball players[J]. J Funct Morphol Kinesiol, 2020, 5(3):50.

      [43]? SANCHEZ-SANCHEZ J, GONZALO-SKOK O, CARRETERO M, et al. Effects of concurrent eccentric overload and high-intensity interval training on team sports playersperformance[J]. Kinesiology, 2019, 51(1): 119-126.

      [44]? 王丹,牟振云,翟俊霞,等.? Stata軟件在Meta分析發(fā)表性偏倚識(shí)別中的探討[J]. 現(xiàn)代預(yù)防醫(yī)學(xué),2008,35(15): 2819-

      2822.

      [45]? ASHLEY C, WEISS L. Vertical jump performance and selected physiological characteristics of women[J]. Journal of Strength and Conditioning Research, 1994, 8(1): 5-11.

      [46]? NUZZO J L, MCBRIDE J M, CORMIE P, et al. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength[J]. Journal of Strength and Conditioning Research, 2008, 22(3): 699-707.

      [47]? CRONIN N J, RANTALAINEN T, AVELA J. Triceps surae fascicle stretch is poorly correlated with short latency stretch reflex size[J]. Muscle & Nerve, 2015, 52(2): 245-251.

      [48]? JAMES D, LEAH R B, INGVARS B, et al. Muscle spindles in human tibialis anterior encode muscle fascicle length changes[J]. Journal of Neurophysiology, 2017, 117(4):1489-1498.

      [49]? WERNBOM M, AUGUSTSSON J, THOME?魪 R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans[J]. Sports Medicine (Auckland, N.Z.), 2007, 37(3):225-264.

      [50]? MORTON R W, MCGLORY C, PHILLIPS S M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy[J]. Frontiers in Physiology, 2015,3(6):245.

      [51]? 吳鍵,向靜文,袁圣敏. 中國1985—2010年兒童青少年爆發(fā)力素質(zhì)發(fā)展敏感期變化[J]. 中國學(xué)校衛(wèi)生,2018, 39(8): 1132-1134.

      [52]? DI CAGNO A, IULIANO E, BUONSENSO A, et al. Effects of accentuated eccentric training vs plyometric training on performance of young elite fencers[J]. Journal of Sports Science and Medicine, 2020, 19(4): 703-713.

      [53]? OLIVER G, JULIO T, CARLOS V, et al. Eccentric-overload training in team-sport functional performance: constant bilateral vertical versus variable unilateral multidirectional movements[J]. International Journal of Sports Physiology and Performance, 2017, 12(7):951-958.

      [54]? GABRIEL D A, KAMEN G, FROST G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices[J]. Sports Medicine (Auckland, N.Z.), 2006, 36(2):133-149.

      [55]? DELECLUSE C. Influence of strength training on sprint running performance: Current findings and implications for training[J]. Sports Medicine (Auckland, N.Z.), 1997, 24(3): 147-

      156.

      [56]? PETRAKOS G, MORIN J, EGAN B. Resisted sled sprint training to improve sprint performance: A systematic review[J]. Sports Medicine (Auckland, N.Z.), 2016, 46(3): 381-400.

      [57]? MACKENZIE S J, RANNELLI L A, YURCHEVICH J J. Neuromuscular adaptations following antagonist resisted training[J]. Journal of Strength and Conditioning Research, 2010, 24(1): 156-164.

      [58] FERLEY D D, SCHOLTEN S, VUKOVICH M D. Combined sprint interval, plyometric, and strength training in adolescent soccer? players: effects on measures of speed, strength, power, change of direction, and? anaerobic capacity[J]. Journal of Strength and Conditioning Research, 2020, 34(4): 957-968.

      [59]? FAIGENBAUM A D, KRAEMER W J, BLIMKIE C J, et al. Youth resistance training: updated position statement paper from the national strength and conditioning association[J]. Journal of Strength and Conditioning Research, 2009, 23(5): S60-S79.

      [60]? CASTILLO D, LAGO-RODR?魱GUEZ A, DOM?魱NGUEZ-D?魱EZ M, et al. Relationships between players physical performance and small-sided game external responses in a youth soccer training context[J]. Sustainability, 2020, 12(11): 1-13.

      [61]? BISHOP C, TURNER A, READ P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review[J]. Journal of Sports Sciences, 2018, 36(10): 1135-11

      44.

      [62]? NEWTON R U, GERBER A, NIMPHIUS S, et al. Determination of functional strength imbalance of the lower extremities[J]. Journal of Strength and Conditioning Research, 2006, 20(4): 971-977.

      [63]? NUNEZ F J, SUAREZ-ARRONES L J, CATER P, et al. The high-pull exercise: A comparison between a versapulley flywheel device and the free weight[J]. International Journal of Sports Physiology and Performance, 2017, 12(4): 527-532.

      [64]? BRUGHELLI M, CRONIN J, LEVIN G, et al. Understanding change of direction ability in sport: A review of resistance training studies[J]. Sports Medicine, 2008, 38(12): 1045-1063.

      [65]? SHEPPARD J M, YOUNG W B. Agility literature review: Classifications, training and testing[J]. Journal of Sports Sciences, 2006, 24(9): 919-932.

      [66]? JONES P, BAMPOURAS T M, MARRIN K. An investigation into the physical determinants of change of direction speed[J]. The Journal of Sports Medicine and Physical Fitness, 2009, 49(1): 97-104.

      [67]? POPOWCZAK M, ROKITA A, SWIERZKO K, et al. Are linear speed and jumping ability determinants of change of direction movements in young male soccer players?[J]. Journal of Sports Science and Medicine, 2019, 18(1): 109-117.

      [68]? WEYAND P G, BUNDLE M W, MCGOWAN C P, et al. The fastest runner on artificial legs: Different limbs, similar function?[J]. Journal of Applied Physiology (Bethesda, Md. : 1985), 2009, 107(3):903-911.

      [69] WEYAND P G, SANDELL R F, PRIME D N L, et al. The biological limits to running speed are imposed from the ground up[J]. Journal of Applied Physiology(Bethesda, Md. : 1985), 2010, 108(4):950-961.

      [70]? BEN A N, CHAOUACHI A, CHAMARI K, et al. Positional role and competitive-level differences in elite-level mens basketball players[J]. Journal of Strength and Conditioning Research, 2010, 24(5): 1346-1355.

      [71]? DE HOYO M, SANUDO B, CARRASCO L, et al. Effects of traditional versus horizontal inertial flywheel power training on common sport-related tasks[J]. Journal of Human Kinetics, 2015, 47(1): 155-167.

      [72]? SPITERI T, NIMPHIUS S, HART N H, et al. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes[J]. Journal of Strength and Conditioning Research, 2014, 28(9): 2415-2423.

      [73]? SABIDO R, HERNáNDEZ-DAVó J L, PEREYRA-GERBER G T. Influence of different inertial loads on basic training variables during the flywheel squat exercise[J]. International Journal of Sports Physiology and Performance, 2018, 13(4): 482-489.

      [74]? GONZALO-SKOK O, TOUS-FAJARDO J, VALERO-CAMPO C, et al. Eccentric-overload training in team-sport functional performance: Constant bilateral vertical versus variable unilateral multidirectional movements[J]. International Journal of Sports Physiology and Performance, 2017, 12(7): 951-958.

      [75]? YOUNG W B. Transfer of strength and power training to sports performance[J]. International Journal of Sports Physiology and Performance, 2006, 1(2): 74-83.

      [76]? DE HOYO M, POZZO M, SANUDO B, et al. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players[J]. International Journal of Sports Physiology and Performance, 2015, 10(1): 46-52.

      [77]? RANDELL A D, CRONIN J B, KEOGH J W L, et al. Transference of strength and power adaptation to sports performance-horizontal and vertical force production[J]. Strength Trength and Conditioning Journal, 2010, 32(4): 100-106.

      [78]? CONTRERAS B, VIGOTSKY A D, SCHOENFELD B J, et al. Effects of a six-week hip thrust vs. Front squat resistance training program on performance in adolescent males: A randomized controlled trial[J]. Journal of Strength and Conditioning Research, 2017, 31(4): 999-1008.

      [79]? N■?譙EZ F J, SANTALLA A, CARRASQUILA I, et al. The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and cod performance, and its determinants, in team sport players[J]. Plos One, 2018, 13(3): e193841.

      [80]? HERNANDEZ DAVO J L, MONTEAGUDO P, SABIDO R. Comparison of six weeks eccentric overload training between bilateral and unilateral squat in basketball players[J]. European Journal of Human Movement, 2018, 40: 111-121.

      [81]? 曾憲濤,李勝,馬鉆,等. Meta分析系列之八:Meta分析的報(bào)告規(guī)范[J]. 中國循證心血管醫(yī)學(xué)雜志, 2012, 4(6): 500-503.

      [82]? NUNEZ SANCHEZ F J, SAEZ DE V E. Does flywheel paradigm training improve muscle volume and force: a meta-analysis[J]. Journal of Strength and Conditioning Research, 2017, 31(11): 3177-3186.

      收稿日期:2022-07-18

      基金項(xiàng)目:國家社會(huì)科學(xué)基金項(xiàng)目(19BTY104);2019年河北省技術(shù)創(chuàng)新引導(dǎo)計(jì)劃科技冬奧專項(xiàng)(19975705D)。

      第一作者簡介:李文華(1980—),男,碩士,副教授,研究方向?yàn)轶w能訓(xùn)練理論與實(shí)踐。E-mail:47284981@qq.com。

      通信作者簡介:李春雷(1970—),男,博士,教授,研究方向?yàn)轶w能訓(xùn)練理論與實(shí)踐。E-mail:lichunlei@bsu.edu.cn。

      作者單位:1.沈陽體育學(xué)院,遼寧沈陽 110102;2.北京體育大學(xué)體能訓(xùn)練學(xué)院,北京 100084。

      1.Shenyang Sport University,Shenyang, Liaoning 110102,China;2.Institute of Physical Training,Beijing Sport University,Beijing 100084,China.

      猜你喜歡
      元分析沖刺飛輪
      沖刺
      飛輪座注射模設(shè)計(jì)
      模具制造(2019年7期)2019-09-25 07:30:00
      沖刺
      文苑(2018年20期)2018-11-09 01:35:52
      輪峰推出兩款飛輪新產(chǎn)品
      護(hù)理實(shí)踐教學(xué)中在線學(xué)習(xí)效果的元分析
      信任性別差異的元分析
      大學(xué)生主觀幸福感變遷的元分析研究
      Word Formation in English for Science and Technology
      向著自貿(mào)區(qū)沖刺
      推輪子的人
      意林(2014年1期)2014-07-05 05:54:04
      买车| 油尖旺区| 平塘县| 天长市| 滨州市| 武宁县| 丹阳市| 瓮安县| 稻城县| 鄂州市| 保康县| 南漳县| 永嘉县| 庆云县| 堆龙德庆县| 东城区| 府谷县| 海城市| 南涧| 德庆县| 望江县| 大新县| 襄垣县| 襄城县| 衡阳市| 高陵县| 治县。| 香格里拉县| 五大连池市| 吉木乃县| 剑川县| 大理市| 安图县| 珲春市| 故城县| 康乐县| 临沂市| 长白| 涟源市| 娱乐| 湘乡市|