郭智棟 王玉斌 鮑園 胡宜亮 袁洋
摘 要:為重新梳理韓城地區(qū)煤層氣氣體地球化學(xué)特征,預(yù)測低產(chǎn)煤層氣井微生物開發(fā)的潛力區(qū),通過煤層氣和煤層產(chǎn)出水樣品采集、煤層氣氣體組分和穩(wěn)定同位素組成測試及微生物多樣性分析,判識(shí)煤層氣的成因類型,計(jì)算煤層賦存熱成因氣和生物成因氣的相對(duì)含量,討論適合低產(chǎn)煤層氣井微生物開發(fā)的潛力區(qū)。結(jié)果表明:韓城地區(qū)太原組煤層氣氣體組分以甲烷為主,平均含量為94.78%;煤層氣氣體類型是以熱成因氣為主并含有少量次生生物成因氣的混合成因氣,其中次生生物成因氣占比為4.79%~28.28%;煤層產(chǎn)出水中優(yōu)勢古菌種屬為Methanobacterium和Methanothrix,二者之和平均占比達(dá)45.45%?;诘彤a(chǎn)井煤層埋深、構(gòu)造條件、水化學(xué)條件、儲(chǔ)層溫度和古菌群落結(jié)構(gòu)等關(guān)鍵因素,認(rèn)為韓城地區(qū)中部和南部井區(qū)是有利于煤層氣生物實(shí)現(xiàn)增產(chǎn)目的的潛力區(qū)。
關(guān)鍵詞:煤層氣;成因類型;產(chǎn)甲烷菌;韓城地區(qū)
中圖分類號(hào):TD 712文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2023)03-0539-10
DOI:10.13800/j.cnki.xakjdxxb.2023.0311開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Coalbed methane generation and microbial-development potential in? Hancheng Block
GUO Zhidong1,2,WANG Yubin2,BAO Yuan3,HU Yiliang3,YUAN Yang2
(1.Petroleum Engineering School,Southwest Petroleum University,Chengdu 610500,China;
2.Institute of Engineering and Technology,PetroChina Coalbed Methane Company Limited,Xian 710082,China;3.College of Geology and Environment,Xian University of Science and Technology,Xian 710054,China)
Abstract:The geochemical characteristics of coal-bed methane(CBM)in Hancheng block are explored to predict the potential areas of microbial development in low-yield CBM wells.In this paper,the gas origin of CBM in this area were identified by collecting gas and water samples,testing the gas composition and stable isotope composition of CBM and analyzing the microbial diversity,and the relative contents of thermogenic gas and biogenic gas in the coal seam were calculated quantitatively,with the potential areas examined suitable for microbial exploitation of low-yield CBM wells in the study area.The results show that methane is the main gas component in Taiyuan Formation of Hancheng Block,with an average content of 94.78%;the gas genetic types in this area,mainly thermogenic gases,contain a small amount of secondary biogenic gases,of which the proportion of secondary biogenic gases is 4.79%~28.28%;the dominant archaea in the coalbed-produced water in this area were Methanobacterium and Methanothrix,the average proportion of which was 45.45%.Based on the analysis of key factors such as the depth of coal seam,structural conditions,hydrochemical conditions,reservoir temperature and archaeal community structure of low-producing wells,it is concluded that the central and southern well areas of Hancheng Block are the potential areas conducive to the implementation of CBM bioengineering and the improvement of gas production.
Key words:coalbed methane;genetic type;methanogenic bacteria;Hancheng block
0 引 言
隨著世界各國對(duì)全球氣候變化、生態(tài)環(huán)境保護(hù)和能源低碳發(fā)展等領(lǐng)域重大科學(xué)問題的重視,煤層氣作為一種綠色、清潔、環(huán)境友好型的非常規(guī)天然氣資源在全球能源結(jié)構(gòu)中的地位將進(jìn)一步提升[1-3]。中國煤層氣建成了沁水盆地和鄂爾多斯盆地東緣兩大煤層氣產(chǎn)業(yè)化基地,在煤層氣開發(fā)關(guān)鍵技術(shù)方面也取得了重大進(jìn)展,如多分支水平井鉆井技術(shù)[4]、氮?dú)馀菽瓑毫鸭夹g(shù)[5]、二氧化碳驅(qū)替增產(chǎn)技術(shù)[6]等。針對(duì)低產(chǎn)井的儲(chǔ)層改造與增產(chǎn)技術(shù)方面仍然存在改造效果差、開發(fā)難度大、增產(chǎn)效果不顯著等重大問題。探索低產(chǎn)井的儲(chǔ)層改造方法與增產(chǎn)措施研究是目前煤層氣開發(fā)理論研究的重中之重[7-11]。
煤層氣按其形成演化階段可分為生物成因氣和熱成因氣或混合成因氣[12-14],前者可分為原生生物成因氣和次生生物成因氣。關(guān)于天然氣或煤層氣成因類型的判別方法,提出多種判識(shí)指標(biāo),例如,CH4碳、氫同位素組成[12-14],CO2碳同位素組成[12,15-16]、氣體干燥系數(shù)[17-18]、CDMI([CO2/(CO2+CH4)]×100)[11,16]、C2H6碳同位素[19]、CO2和CH4的碳同位素分餾系數(shù)[20]、CH4和H2O的氫同位素分餾系數(shù)[21]等參數(shù)指標(biāo)。前人利用CH4碳、氫同位素組成、氣體干燥系數(shù)、CO2碳同位素組成、CDMI、CO2和CH4的碳同位素分餾系數(shù)等指標(biāo)參數(shù)對(duì)鄂爾多斯盆地南部彬長礦區(qū)大佛寺井田和沁水盆地南部鄭莊-胡底區(qū)塊的煤層氣成因進(jìn)行了研究,認(rèn)為前者煤層氣成因主要為CO2還原型生物成因氣和熱成因氣的混合氣體,后者主要為經(jīng)次生改造的熱成因煤層氣[22-23]。在煤層氣成因類型定量計(jì)算方面,前人提出了基于鏡質(zhì)體最大反射率、甲烷碳同位素組成和二元混合識(shí)別模型,認(rèn)為淮北煤田蘆嶺礦區(qū)中二疊統(tǒng)煤層賦存生物與熱混合成因氣,生物成因氣占比為47.65%~51.21%[14]。煤層氣的成因類型對(duì)揭示富集過程、指導(dǎo)勘探開發(fā)及井位部署均具有重要作用。
鄂爾多斯盆地東緣蘊(yùn)藏豐富的煤層氣資源,1 500 m以淺煤層氣地質(zhì)資源量約9×1012m3,韓城地區(qū)作為盆地中較早開發(fā)的煤層氣區(qū)塊之一,煤層氣氣體成因類型及其來源識(shí)別仍存在不確定性,且接近70%的煤層氣井日產(chǎn)氣量低于1 000 m3/d,低產(chǎn)井比重較多。韓城地區(qū)系統(tǒng)采集14口地面煤層氣井的氣樣和水樣,基于氣體組分和穩(wěn)定同位素組成測試分析了煤層氣氣體成因類型和不同成因類型煤層氣相對(duì)含量,基于煤層產(chǎn)出水的酸堿度、礦化度含量和16S rRNA測試,討論煤層原位產(chǎn)甲烷菌群落結(jié)構(gòu)及低產(chǎn)井適合開展微生物增產(chǎn)煤層氣工程試驗(yàn)的潛力區(qū)塊。
1 地質(zhì)背景
韓城地區(qū)位于鄂爾多斯盆地東南部渭北隆起的東部,構(gòu)造相對(duì)簡單,為NE-SW走向、NW向傾斜的單斜構(gòu)造,傾角為5°~20°(圖1(a))以正斷層為主,逆斷層零星分布,斷層走向以NNE-SSW,NE-SW,NW-NE,NWW-SEE向?yàn)橹?。根?jù)構(gòu)造發(fā)育情況,分為前高斷裂帶、東澤村斷裂帶、薛峰北斷裂帶、龍亭斷裂帶和韓城大斷裂(圖1(b))。韓城地區(qū)發(fā)育二疊系的太原組及山西組煤層,其中太原組為海陸交互相沉積,含煤3~9層,主采煤層為5號(hào)和11號(hào)煤層;山西組為陸相沉積地層,含煤1~4層,主采煤層為3號(hào)煤層[24]。2號(hào)煤層為局部可采煤層,其余煤層均為不穩(wěn)定的薄煤層,無開采價(jià)值(圖2)。
2 樣品采集與試驗(yàn)方法
2.1 樣品采集
樣品為采自韓城地區(qū)地面煤層氣排采井的煤層氣和煤層產(chǎn)出水樣品,其中5號(hào)煤層采樣5個(gè),11號(hào)煤層采樣9個(gè),樣品編號(hào)分別命名為H5-X和H11-X。煤層氣樣品采樣方法為先打開集輸管道上的取氣閥門排放氣體3~5 min,以排放管道中滯留煤層氣,然后把橡膠導(dǎo)管一端和取氣口連接,另一端和鋁箔集氣袋連接,用采樣井煤層氣置換集氣袋3次后,充滿集氣袋后密封并低溫保存,且需盡快送至試驗(yàn)室進(jìn)行氣體組分和同位素組成測試。水樣的采樣方法為先在試驗(yàn)室對(duì)500 mL聚乙烯采樣瓶進(jìn)行清洗及紫外燈下照射30 min的滅菌處理,然后在現(xiàn)場排采水下打開瓶蓋,用煤層產(chǎn)出水潤洗取樣瓶3次后,將水裝滿至溢出,密封后置于低溫冷藏箱中保存并盡快送至試驗(yàn)室于4°C冷藏。煤層水中微生物樣本提取方法為先用5 μm膜過濾器(Whatman,日本)對(duì)500 mL取樣瓶中水進(jìn)行無菌過濾,以去除水中雜質(zhì),然后用0.22 μm膜過濾器(Millipore,USA)對(duì)水樣進(jìn)行二次過濾,收集0.22 μm濾膜及菌群然后置于低溫冰箱-80 ℃儲(chǔ)存,用于后續(xù)DNA提取和高通量測序分析。過濾后的水樣還進(jìn)行酸堿度和礦化度檢測,測試儀器分別為PP-50-p11計(jì)和DDSJ-308A電導(dǎo)率計(jì)。韓城地區(qū)煤層氣井生產(chǎn)數(shù)據(jù)及煤層產(chǎn)出水化學(xué)特征見表1。
2.2 煤層氣組分測試方法
煤層氣組分測試在陜西省煤炭綠色開發(fā)地質(zhì)保障重點(diǎn)試驗(yàn)室完成,檢測儀器為安捷倫7890B型氣相色譜儀,該儀器配有氫火焰離子化檢測器(FID)和熱傳導(dǎo)檢測器(TCD),包含HP-AL/S型毛細(xì)柱(50 m×0.320 mm,8.00 um)、HayeSep Q型填充柱(80/100 SS,3 Ft×2 mm與6 Ft×2 mm)及MolSleve 5A型填充柱(60/80 SS,6 Ft×2 mm)。載氣為氦氣,毛細(xì)柱流速為3 mL/min,填充柱流速為25 mL/min,分流比為3∶1。進(jìn)樣口溫度為200 ℃,加熱爐內(nèi)溫度為105 ℃,F(xiàn)ID檢測器工作溫度為300 ℃,TCD檢測器工作溫度為250 ℃。
2.3 煤層氣同位素測試方法
煤層氣氣體穩(wěn)定同位素組成測試在中國科學(xué)院西北生態(tài)環(huán)境資源研究院油氣資源研究中心完成,測試儀器為Delta V氣體穩(wěn)定同位素質(zhì)譜計(jì),測試方法依據(jù)國家相關(guān)行業(yè)標(biāo)準(zhǔn)GB/T 37847—2019執(zhí)行,測量值絕對(duì)偏差分別小于等于±0.2‰(δ13C)和±1‰(δD)。碳、氫同位素?cái)?shù)據(jù)分別用 V-PDB和V-SMOW標(biāo)準(zhǔn)表示。
2.4 煤層水中古菌高通量測序方法
煤層水中古菌高通量測序在上海派森諾生物科技股份有限公司完成(上海,中國)。①DNA提?。菏褂肍ast DNA SPIN試劑盒從0.22 μm膜過濾器中分離出DNA;對(duì)提取DNA用Nanodrop紫外定量設(shè)備和電泳儀進(jìn)行檢測,以確定DNA樣品提取成功。②PCR擴(kuò)增:選擇古菌16S rRNA基因的V8-V9區(qū)的功能基因作為擴(kuò)增子對(duì)煤層采出水中古菌微生物進(jìn)行PCR擴(kuò)增;擴(kuò)增引物組的前引物序列為TTWAGTCAGGCAACGAGC,后引物序列為TGTGCAAGGAGCAGGGAC;PCR擴(kuò)增物用Vazyme VAHTSTM DNA Clean Beads純化(諾唯贊,南京,中國)。③高通量測序:進(jìn)行個(gè)體量化步驟,將擴(kuò)增物按等量匯總,基于Illumina MiSeq平臺(tái)對(duì)16S rRNA基因進(jìn)行測序分析。
3 結(jié)果與討論
3.1 煤層氣氣體組分和同位素特征
3.1.1 煤層氣氣體組分
韓城地區(qū)煤層氣氣體組成以甲烷為主,含量占91.72%~97.68%,平均含量94.78%,其次為氫氣,平均含量1.99%,氮?dú)馄骄?.86%,二氧化碳平均含量1.21%,氧氣平均含量0.09%,重?zé)N平均含量0.07%(表2)。CDMI值介于0.2~2.6。韓城地區(qū)煤層氣氣體干度指數(shù)(C1/∑C1-5)分布范圍99.3%~100%(近似),具備典型的干氣特征(干度指數(shù)>95%)[28]。
3.1.2 氣體同位素組成特征
韓城地區(qū)煤層氣樣品甲烷碳同位素值介于-45.4‰~-36.8‰,甲烷氫同位素值介于-229‰~-178‰,二氧化碳同位素值介于-13.3‰~14.6‰。碳同位素分餾因子εC介于24.8~55.0(表3)。一般來說,εC介于0~60或更大[20-29],數(shù)值越大代表δ13C-CH4與δ13C-CO2之間發(fā)生同位素分餾程度越高。韓城地區(qū)煤層氣在生成過程中發(fā)生過強(qiáng)烈的碳同位素分餾現(xiàn)象。
3.2 煤層產(chǎn)出水中古菌群落分布特征
韓城地區(qū)煤層產(chǎn)出水中原位古菌按門類劃分主要為Euryarchaeota和Proteobacteria 2類,其中Euryarchaeota在樣品中占比最高,占31.48%~97.90%,平均含量為87.55%(圖3(a))。Euryarchaeota門類產(chǎn)甲烷菌具有很強(qiáng)的底物特異性,只能使用不超過2個(gè)碳原子的簡單有機(jī)物。在屬的生物分類水平上(圖3(b)),煤層產(chǎn)出水中原位古菌的優(yōu)勢菌屬為Methanobacterium,占比為12.32%~59.31%,平均含量為32.37%。該菌屬于氫營養(yǎng)型產(chǎn)甲烷菌,可以利用H2,CO2小分子為底物生成甲烷,通過種間氫轉(zhuǎn)移降低系統(tǒng)中的氫分壓,以促進(jìn)乙酸生成;其次為Methanothrix,占比為0.25%~45.30%,平均含量為13.08%。該菌主要以乙酸為代謝底物,分解乙酸產(chǎn)甲烷;同時(shí)也含有實(shí)現(xiàn)CO2還原代謝途徑的基因代碼[30]。這2類與產(chǎn)甲烷作用有關(guān)的古菌(Methanobacterium和Methanothrix)平均含量占全部古菌數(shù)量的45.45%。此外還有Methanoregula,Methanococcus,Methanosarcina,Methanospirllum等與產(chǎn)甲烷作用有關(guān)的古菌種屬在煤層產(chǎn)出水中被檢測出來。
3.3 煤層氣氣體成因類型
3.3.1 煤層氣成分指數(shù)
CDMI是基于甲烷和二氧化碳?xì)怏w組分的指標(biāo),通常用于識(shí)別煤層氣中CO2的來源。如果CDMI值小于8%,則CO2為生物成因[22]。將研究區(qū)煤層氣CDMI數(shù)據(jù)投影到如δ13C-CO2與CDMI關(guān)系圖上,發(fā)現(xiàn)韓城地區(qū)煤層氣中的CO2具有微生物產(chǎn)甲烷作用的來源(圖4(a))。GOLDING等還提出以δ13C-CO2=-10‰作為CO2有機(jī)來源和無機(jī)來源的分界線,由圖4(b)可知韓城地區(qū)煤層氣CO2數(shù)據(jù)點(diǎn)主要分布在生物成因的區(qū)域內(nèi),印證了生物作用對(duì)現(xiàn)存煤層氣的貢獻(xiàn)[31]。
3.3.2 煤層氣同位素指數(shù)
國內(nèi)外多數(shù)學(xué)者都將δ13C-CH4=-55‰作為熱成因和生物成因甲烷的分界線,并得出δ13C-CH4<-55‰指向生物成因的結(jié)論[28],而SMITH和PALLASSER認(rèn)為生物成因甲烷的δ13C-CH4值可以達(dá)到-50‰[15]。韓城礦區(qū)煤層氣δ13C-CH4值的分布范圍為-69.9‰~-36.8‰,根據(jù)δ13C-CH4值分布特征,推斷韓城礦區(qū)煤層氣屬于部分生物成因氣。結(jié)合δ13C-CH4與C1/(C2+C3)關(guān)系圖[21],發(fā)現(xiàn)多數(shù)數(shù)據(jù)點(diǎn)落在次生作用后的熱成因氣體區(qū)域,少部分韓城數(shù)據(jù)點(diǎn)位于產(chǎn)熱氣范圍內(nèi),且屬于Ⅱ型干酪根(圖5(a)),表明研究區(qū)煤層氣以熱成因氣體為主。
煤層氣成因類型還可以通過碳同位素分餾系數(shù)(αCO2-CH4)進(jìn)行區(qū)分[32-34]。FLORES等揭示了甲基型發(fā)酵途徑生成的煤層氣碳同位素分餾系數(shù)(αCO2-CH4)范圍為1.03至1.06,而CO2還原途徑生成的氣體αCO2-CH4值為1.06至1.09[33]。為了更準(zhǔn)確地定義煤層氣的起源,李清光等基于大量數(shù)據(jù)對(duì)αCO2-CH4進(jìn)行了改進(jìn),認(rèn)為αCO2-CH4值介于1.02~1.04和1.06~1.08分別為熱成因氣體和二氧化碳還原途徑生物氣,而αCO2-CH4值在1.04和1.06之間則指示煤層氣的混合來源[35]。從圖5(b)可以看出韓城地區(qū)煤層氣樣品多數(shù)分散在αCO2-CH4=1.04~1.06區(qū)間,其他2個(gè)區(qū)間范圍也有部分樣品分布,說明韓城礦區(qū)煤層氣不僅包含熱成因氣體,還包含CO2還原作用和乙酸發(fā)酵作用的生物成因氣(圖5(b)),這點(diǎn)與煤層產(chǎn)出水中原位古菌群落特征中優(yōu)勢菌(Methanobacterium和Methanothrix)的代謝途徑相吻合。韓城地區(qū)煤層氣總體屬于以熱成因氣為主的混合成因氣,并含有少量的次生生物氣。
3.4 生物成因與熱成因煤層氣相對(duì)含量
煤層氣按其生成演化階段可分為生物成因氣、熱成因氣和混合成因氣[37]。不同成因類型煤層氣具有顯著差異的甲烷碳同位素組成,一般認(rèn)為生物成因氣的δ13C-CH4值小于-55‰或-60‰[32]。陶明信等統(tǒng)計(jì)了576個(gè)煤層氣中CH4碳同位素?cái)?shù)據(jù),認(rèn)為生物成因CH4碳同位素組成以-70‰居多,提出了-70‰作為生物成因氣的端元值[38]。鮑園等通過對(duì)成煤原始物質(zhì)-木本泥炭進(jìn)行熱解生烴試驗(yàn)建立了熱成因甲烷碳同位素與鏡質(zhì)組反射率之間的關(guān)系式[14,19]?;诙旌吓凶R(shí)模型式計(jì)算韓城地區(qū)煤層氣中生物成因和熱成因煤層氣的混合比例(表4)。
韓城地區(qū)煤層氣中熱成因氣含量占比71.72%~95.21%,生物成因氣含量占比4.79%~28.28%,其中5號(hào)煤層生物成因氣平均含量為15.46%,11號(hào)煤層生物成因氣平均含量為14.55%,說明太原組5號(hào)煤層的生物成因氣含量略高于11號(hào)煤層。
3.5 低產(chǎn)井次生生物氣增產(chǎn)煤層氣潛力
次生生物成因氣作為一種十分重要的煤層氣資源類型之一,因其生成條件的可重復(fù)與再現(xiàn)性,有學(xué)者基于其生成理論提出了微生物強(qiáng)化煤層氣產(chǎn)出的觀點(diǎn)[39],主要是通過生物馴化、生物刺激和生物強(qiáng)化等來達(dá)到強(qiáng)化生物甲烷的產(chǎn)出,繼而實(shí)現(xiàn)增產(chǎn)煤層氣,使煤的部分有機(jī)組分轉(zhuǎn)化為甲烷等氣體,從而提高煤層氣井的產(chǎn)氣能力,并取得了良好的產(chǎn)氣效果[40]。次生生物成因氣的生成需要滿足構(gòu)造抬升作用[41]、合適的微生物生長水介質(zhì)環(huán)境(缺氧、礦化度<25 000 mg、近中性:pH=7~8)[41]、合適的微生物生長溫度(0~80 ℃,最適35 ℃左右)[41]、合適的地層埋深(800~1 300 m)[42]等。
針對(duì)煤層氣關(guān)鍵參數(shù)開展低產(chǎn)井是否適合微生物增產(chǎn)煤層氣潛力區(qū)評(píng)價(jià)。韓10-11向3井、韓3-3-034井、韓8-15向1井;滿足構(gòu)造抬升條件的井位為位于逆斷層附近的韓10-11向3井和韓3-3-034井,以及位于背斜核部的韓8-15向1井,均為容易形成厭氧環(huán)境和氣藏有利保存區(qū)域;這三口井也滿足水環(huán)境條件和地層溫度條件。3個(gè)井區(qū)的礦化度介于1710.41~2880.64 mg/L之間,均小于25 000 mg/L,pH均在7~8;現(xiàn)場實(shí)測地層原位溫度范圍為30~35 ℃。結(jié)合研究區(qū)煤層產(chǎn)出水中古菌群落結(jié)構(gòu)分析,產(chǎn)甲烷古菌的占比較高,為31.48%~97.90%?;谏鲜鲫P(guān)鍵參數(shù)分析,滿足原位地質(zhì)條件并可進(jìn)一步開展煤層氣生物工程試驗(yàn)的有利區(qū)塊為韓城地區(qū)中部(韓10-11向3井和韓3-3-034井附近)和南部(韓8-15向1井附近),根據(jù)構(gòu)造條件對(duì)比,韓城地區(qū)南部地區(qū)距離正斷層較近,存在氣體逸散和地下含氧量升高的風(fēng)險(xiǎn)性,因此其優(yōu)選性位于韓城地區(qū)中部之后,故韓城地區(qū)中部為Ⅰ級(jí)潛力區(qū),南部為Ⅱ級(jí)潛力區(qū)(圖6)。通過培養(yǎng)基注入促進(jìn)煤層次生生物氣的生成,以提高低產(chǎn)井位煤層氣的產(chǎn)氣量,實(shí)現(xiàn)煤層氣資源的增產(chǎn),從而更大程度上實(shí)現(xiàn)清潔能源的開采和利用。
4 結(jié) 論
1)韓城地區(qū)煤層氣以熱成因氣為主含少量生物成因氣。次生生物成因氣的生成途徑包含二氧化碳還原型和乙酸發(fā)酵型,煤層氣中熱成因氣含量占比高于生物成因氣。
2)韓城地區(qū)煤層產(chǎn)出水多呈中性或弱堿性,煤層原位古菌群落結(jié)構(gòu)在門水平以Euryarchaeota占比最高,在屬水平以Methanobacterium和Methanothrix為優(yōu)勢產(chǎn)甲烷菌,這為次生生物氣的產(chǎn)生提供了微生物基礎(chǔ)。
3)韓城地區(qū)井位產(chǎn)氣量、埋深條件、構(gòu)造條件、水環(huán)境條件、原位地層溫度和微生物群落結(jié)構(gòu)參數(shù)的結(jié)果,揭示韓城地區(qū)中部和南部是適合低產(chǎn)井儲(chǔ)層改造與增產(chǎn)試驗(yàn)的潛力區(qū)。
參考文獻(xiàn)(References):
[1] XU G,SCHWARZ P,YANG H.Adjusting energy consumption structure to achieve Chinas CO2emissions peak[J].Renewable and Sustainable Energy Reviews,2020,122(5):1097-1106.
[2]謝和平,任世華,謝亞辰,等.碳中和目標(biāo)下煤炭行業(yè)發(fā)展機(jī)遇[J].煤炭學(xué)報(bào),2021,46(7):2197-2211.
XIE Heping,REN Shihua,XIE Yachen,et al.Development opportunities of the coal industry towards the goal of carbon neutrality[J].Journal of China Coal Society,2021,46(7):2197-2211.
[3]YUN J,XU F,LIU L,et al.New progress and future prospects of CBM exploration and development in China[J].International Journal of Mining Science and Tech-nology,2012,22(8):363-369.
[4]高德利,畢延森,鮮保安.中國煤層氣高效開發(fā)井型與鉆完井技術(shù)進(jìn)展[J].天然氣工業(yè),2022,42(6):1-18.
GAO Deli,BI Yansen,XIAN Baoan.Technical advances in well types and drilling & completion for high-efficient development of coalbed methane in China[J].Natural Gas Industry,2022,42(6):1-18.
[5]徐鳳銀,閆霞,林振盤,等.我國煤層氣高效開發(fā)關(guān)鍵技術(shù)研究進(jìn)展與發(fā)展方向[J].煤田地質(zhì)與勘探,2022,50(3):1-14.
XU Fengyin,YAN Xia,LIN Zhenpan,et al.Research progress and development direction of key technologies for efficient coalbed methane development in China[J].Coal Geology & Exploration,2022,50(3):1-14.
[6]姜?jiǎng)P,李治平,竇宏恩,等.沁水盆地二氧化碳埋存潛力評(píng)價(jià)模型[J].特種油氣藏,2016,23(2):112-114,156.
JIANG Kai,LI Zhiping,DOU Hongen,et al.Evaluation model of CO2storage potential in Qinshui Basin[J].Special Oil & Gas Reservoirs,2016,23(2):112-114,156.
[7]曹運(yùn)興,石玢,周丹,等.煤層氣低產(chǎn)井高壓氮?dú)鈵灳霎a(chǎn)改造技術(shù)與應(yīng)用[J].煤炭學(xué)報(bào),2019,44(8):2556-2565.
CAO Yunxing,SHI Bin,ZHOU Dan,et al.Study and application of stimulation technology for low production CBM well through high pressure N2injection-soak[J].Journal of China Coal Society,2019,44(8):2556-2565.
[8]李勇,胡海濤,王延斌,等.煤層氣井低產(chǎn)原因及二次改造技術(shù)應(yīng)用分析[J].礦業(yè)科學(xué)學(xué)報(bào),2022,7(1):55-70.
LI Yong,HU Haitao,WANG Yanbin,et al.Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J].Journal of Mining Science and Technology,2022,7(1):55-70.
[9]李鑫,肖翠,陳貞龍,等.延川南煤層氣田低效井原因分析與措施優(yōu)選[J].油氣藏評(píng)價(jià)與開發(fā),2020,10(4):32-38.
LI Xin,XIAO Cui,CHEN Zhenlong,et al.Analysis of low-efficiency wells in CBM gas field of South Yanchuan and optimization of measures[J].Reservoir Evaluation and Development,2020,10(4):32-38.
[10]李瑩,鄭瑞,羅凱,等.筠連地區(qū)煤層氣低產(chǎn)低效井成因及增產(chǎn)改造措施[J].煤田地質(zhì)與勘探,2020,48(4):146-155.
LI Ying,ZHENG Rui,LUO Kai,et al.Reasons of low yield and stimulation measures for CBM wells in Junlian area[J].Coal Geology and Exploration,2020,48(4):146-155.
[11]倪小明,趙政,劉度,等.柿莊南區(qū)塊煤層氣低產(chǎn)井原因分析及增產(chǎn)技術(shù)對(duì)策研究[J].煤炭科學(xué)技術(shù),2020,48(2):176-184.
NI Xiaoming,ZHAO Zheng,LIU Du,et al.Study on cause of low production and countermeasures of increasing production technology about coalbed methane wells in Shizhuang South Block[J].Coal Science and Technology,2020,48(2):176-184.
[12]WHITICAR M J,F(xiàn)ABER E,SCHOELL M.Biogenic methane formation in marine and freshwater environments:carbon dioxide reduction vs.acetate fermentation-isotopic evidence[J].Geochimica et Cosmochimica Acta,1986,50(6):693-709.
[13]WHITICAR M J.Stable isotope geochemistry of coals,humic kerogens and related natural gases[J].International Journal of Coal Geology,1996,32(2):191-215.
[14]BAO Y,WEI C,WANG C,et al.Geochemical characte-ristics and identification of thermogenic CBM generated during the low and middle coalification stages[J].Geochemical Journal,2013,47(4):451-458.
[15]SMITH J W,PALLASSER R J.Microbial origin of Australian coalbed methane[J].AAPG Bull,1996,80(6):891-897.
[16]KOTARBA M J.Origin of natural gases in the Paleozoic Mesozoic basement of the Polish Carpathian Foredeep[J].Geologica Carpathica,2012,63(4):307-318.
[17]WHITICAR M J.Correlation of natural gases with their sources[J].AAPG Memoir,1994,60(5):261-283.
[18]STRAPOC D,MASTALERZ M,DAWSON K,et al.Biogeochemistry of microbial coal-bed methane[J].Annual Review of Earth and Planetary Sciences,2011,39(1):617-656.
[19]KOTARBA M J.Composition and origin of coalbed gases in the Upper Silesian and Lublin basins[J].Poland.Org.Geochem.,2001,32(3):163-180.
[20]CONRAD R.Quantification of methanogenic pathways using stable carbon isotopic signatures:A review and a proposal[J].Organic Geochemistry,2005,36(5):739-752.
[21]WHITICAR M J.Carbon and hydrogen isotope systema-tic of bacterial formation and oxidation of methane[J].Chemical Geology,1999,161(3):291-314.
[22]BAO Y,WANG W,MA D,et al.Gas origin and constraint of δ13C(CH4) distribution in the Dafosi mine field in the Southern Margin of the Ordos Basin,China[J].Energy & Fuels,2020,34(11):14065-14073.
[23]李建軍,白培康,毛虎平,等.鄭莊-胡底煤層氣地球化學(xué)特征及成因探討[J].煤炭學(xué)報(bào),2014,39(9):1802-1811.
LI Jianjun,BAI Peikang,MAO Huping,et al.Analysis of geochemistry characteristics and its origin of CBM in Zhengzhuang and Hudi blocks[J].Journal of China Coal Society,2014,39(9):1802-1811.
[24]郭晨,夏玉成,衛(wèi)兆祥,等.韓城礦區(qū)煤層氣成藏條件及類型劃分[J].煤炭學(xué)報(bào),2018,43(S1):192-202.
GUO Chen,XIA Yucheng,WEI Zhaoxiang,et al.Coalbed methane accumulation characteristics and type classification in Hancheng mining area[J].Journal of China Coal Society,2018,43(S1):192-202.
[25]鮑園,唐佳陽,琚宜文,等.鄂爾多斯盆地東南緣黃陵礦區(qū)中生代煤系烴源層構(gòu)造-熱演化過程與生物氣生成[J].地球科學(xué)進(jìn)展,2021,36(10):993-1003.
BAO Yuan,TANG Jiayang,JU Yiwen,et al.Tectonic-thermal evolution and biogas generation of source rocks from the mesozoic coal measures at the Huangling mining area,Southeastern Margin of Ordos Basin[J].Advances in Earth Science,2021,36(10):993-1003.
[26]邊利恒,張亮,劉清.天然裂隙對(duì)煤層氣壓裂效果的影響——以鄂爾多斯盆地韓城區(qū)塊為例[J].天然氣工業(yè),2018,38(S1):129-133.
BIAN Liheng,ZHANG Liang,LIU Qing.Effects of natural fractures on CBM fracturing performance:A case study of Hancheng Block,Ordos Basin[J].Natural Gas Industry,2018,38(S1):129-133.
[27]林文姬.韓城地區(qū)煤層氣藏開發(fā)動(dòng)態(tài)及產(chǎn)能響應(yīng)[D].北京:中國地質(zhì)大學(xué)(北京),2014.
LIN Wenji.Development dynamics and productivity response of coalbed methane reservoir in Hancheng area[D].Beijing:China University of Geosciences(Beijing),2014.
[28]MOORE T A.Coalbed methane:A review[J].Geology,2012,101(3):36-81.
[29]BAO Y,LI D,JU Y.Constraints of biomethane generation yield and carbon isotope fractionation effect in the pathway of acetotrophic with different coal-rank coals[J].Fuel,2021,305(5):121493.
[30]LIU C,SUN D,ZHAO Z,et al.Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer[J].Bioresource Technology,2019,291(2):1218-1227.
[31]GOLDING S D,BOREHAM C J,ESTERLE J S.Stable isotope geochemistry of coal bed and shale gas and related production waters:A review[J].International Journal of Coal Geology,2013,120(3):24-40.
[32]RICE D D.Composition and origins of coalbed gas[J].AAPG Studies in Geology,1993,38(5):159-184.
[33]FLORES R M,RICE C A,STRICKER G D,et al.Methanogenic pathways of coal-bed gas in the Powder River Basin,United States:The geologic factor[J].International Journal of Coal Geology,2008,76(4):52-75.
[34]STRAPO? D,MASTALERZ M,SCHIMMELMANN A.Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios[J].Organic Geochemistry,2007,38(2):267-287.
[35]LI Q,JU Y,BAO Y,et al.Composition,origin,and distribution of coalbed methane in the Huaibei Coal-field,China[J].Energy & Fuels,2015,29(6):546-555.
[36]鄭超,馬東民,夏玉成,等.韓城礦區(qū)煤層氣富集的構(gòu)造控制與開發(fā)模式研究[J].煤炭工程,2021,53(10):89-94.
ZHENG Chao,MA Dongmin,XIA Yucheng,et al.Development mode and tectonic control of CBM enrichment in Hancheng Mining Area[J].Coal Engineering,2021,53(10):89-94.
[37]鮑園,韋重韜,王超勇.不同成因類型煤型氣地球化學(xué)特征及其判識(shí)意義[J].地球科學(xué),2013,38(5):1037-1046.
BAO Yuan,WEI Chongtao,WANG Chaoyong.Geoche-mical characteristics and identification significance of coal tape gas in various geneses[J].Earth Science,2013,38(5):1037-1046.
[38]TAO M,SHI B,LI J,et al.Secondary biological coalbed gas in the Xinji area,Anhui province,China:Evidence from the geochemical features and secondary changes[J].International Journal of Coal Geology,2007,71(7):358-370.
[39]PASHIN J.Coalbed methane:Scientific,environmental and economic evaluation[M].Dordrecht:Kluwer Academic,1999.
[40]RITTER D,VINSON D,BARNHART E,et al.Enhanced microbial coalbed methane generation:A review of research,commercial activity,and remaining challenges[J].International Journal of Coal Geology,2015(3):28-41.
[41]蘇現(xiàn)波,夏大平,趙偉仲,等.煤層氣生物工程研究進(jìn)展[J].煤炭科學(xué)技術(shù),2020,48(6):1-30.
SU Xianbo,XIA Daping,ZHAO Weizhong,et al.Research advances of coalbed gas bioengineering[J].Coal Science and Technology,2020,48(6):1-30.
[42]張水昌,趙文智,李先奇,等.生物氣研究新進(jìn)展與勘探策略[J].石油勘探與開發(fā),2005,32(4):90-96.
ZHANG Shuichang,ZHAO Wenzhi,LI Xianqi,et al.Advances in biogenic gas studies and play strategies[J].Petroleum Exploration and Development,2005,32(4):90-96.
(責(zé)任編輯:李克永)