• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      杏仁核抑制性神經(jīng)元與焦慮的研究進(jìn)展*

      2023-08-07 06:31:36周晗郭明
      中國病理生理雜志 2023年7期
      關(guān)鍵詞:抗焦慮抑制性杏仁核

      周晗, 郭明

      杏仁核抑制性神經(jīng)元與焦慮的研究進(jìn)展*

      周晗, 郭明△

      [濱州醫(yī)學(xué)院附屬醫(yī)院(濱州醫(yī)學(xué)院第一臨床醫(yī)學(xué)院)心理科,醫(yī)學(xué)研究中心,山東 濱州 256603]

      杏仁核;抑制性神經(jīng)元;焦慮;光遺傳學(xué)

      焦慮障礙是以過度恐懼和焦慮以及行為紊亂為特征的精神疾病,全球患病率為7.3%[1],我國焦慮障礙的終身患病率已達(dá)到7.6%[2]。焦慮障礙嚴(yán)重影響患者的工作和生活,給社會(huì)帶來巨大的疾病負(fù)擔(dān)。目前關(guān)于焦慮障礙的確切發(fā)病機(jī)制尚不清楚,臨床上主要應(yīng)用抗抑郁藥和苯二氮卓類藥物進(jìn)行治療,存在起效慢、副作用大等缺點(diǎn)。杏仁核是恐懼、焦慮等負(fù)性情緒調(diào)控的重要腦區(qū),當(dāng)對(duì)杏仁核的抑制性調(diào)控減弱時(shí),會(huì)導(dǎo)致杏仁核內(nèi)部神經(jīng)元活動(dòng)異常興奮,增加實(shí)驗(yàn)動(dòng)物的焦慮樣行為[3]。研究顯示抑制性γ-氨基丁酸(gamma-aminobutyric acid, GABA)能系統(tǒng)與焦慮關(guān)系密切,杏仁核中有大量的GABA能抑制性神經(jīng)元可能參與調(diào)控焦慮[4]。隨著基因工程、生物信息學(xué)、光遺傳學(xué)等學(xué)科和技術(shù)的發(fā)展及其在神經(jīng)科學(xué)研究領(lǐng)域的應(yīng)用,對(duì)神經(jīng)元分類、分布、功能的研究不斷深入,對(duì)抑制性神經(jīng)元亞型的研究也越來越精細(xì)[5]。本文綜述了不同亞型的抑制性神經(jīng)元在杏仁核中的特異性分布及其在焦慮調(diào)控中的作用,以期為研究焦慮發(fā)生機(jī)制和疾病治療新策略提供參考。

      1 杏仁核的結(jié)構(gòu)及其與焦慮的關(guān)系

      杏仁核在結(jié)構(gòu)上主要分為基底外側(cè)杏仁核(basolateral amygdala, BLA)和中央杏仁核(central amygdala, CeA),分別是主要的輸入和輸出核團(tuán)。BLA包括外側(cè)核(lateral amygdala, LA)、基底核(basal amygdala, BA)和基底內(nèi)側(cè)核(basomedial amygdala, BMA),CeA包括外側(cè)核(lateral central amygdala, CeL)和內(nèi)側(cè)核(medial central amygdala, CeM)。此外,在BLA外側(cè)以及BLA和 CeA之間存在一些致密的細(xì)胞層(intercalated cell masses, ITC)。杏仁核是焦慮調(diào)控的關(guān)鍵腦區(qū),但其與焦慮關(guān)系的研究報(bào)道并不一致。杏仁核增大或縮?。?-7]、激活或抑制[8, 9]都被報(bào)道與焦慮障礙存在聯(lián)系,提示杏仁核參與焦慮調(diào)控的機(jī)制復(fù)雜性。在基礎(chǔ)研究中,應(yīng)用動(dòng)物實(shí)驗(yàn)可以更深入的研究杏仁核在焦慮調(diào)控中的作用機(jī)制[10]。杏仁核內(nèi)分布有谷氨酸能興奮性投射神經(jīng)元、GABA能抑制性中間神經(jīng)元和GABA能投射神經(jīng)元,傳統(tǒng)的研究手段很難區(qū)分不同類型神經(jīng)元在焦慮中的作用?;蚬こ獭⒐膺z傳學(xué)和化學(xué)遺傳學(xué)等實(shí)驗(yàn)技術(shù)在神經(jīng)科學(xué)領(lǐng)域的應(yīng)用,為研究不同神經(jīng)元群體和特定神經(jīng)投射通路提供了有效的方法。光激活BLA神經(jīng)元能夠減少小鼠在高架十字迷宮開臂中停留的時(shí)間,產(chǎn)生致焦慮樣作用,但特異性激活BLA神經(jīng)元投射到CeA的軸突末端卻可以增加小鼠在高架十字迷宮開臂中停留的時(shí)間,產(chǎn)生抗焦慮樣作用[11],提示BLA不同神經(jīng)元對(duì)焦慮行為調(diào)控存在差異。因此,明確杏仁核中不同神經(jīng)元對(duì)焦慮的調(diào)控作用有助于揭示其調(diào)控焦慮的確切機(jī)制。

      2 杏仁核抑制性神經(jīng)元對(duì)焦慮的調(diào)控

      抑制性神經(jīng)元是一類產(chǎn)生抑制作用的神經(jīng)元,主要釋放抑制性神經(jīng)遞質(zhì)GABA,占神經(jīng)元總數(shù)的10%~20%。抑制性神經(jīng)元是大腦抑制性回路的重要組成部分,在保持神經(jīng)元興奮與抑制之間的平衡中發(fā)揮重要作用。不同的抑制性神經(jīng)元會(huì)特異性表達(dá)某種神經(jīng)肽,如小清蛋白(parvalbumin, PV)、生長抑素(somatostatin, SOM)、縮膽囊素(cholecystokinin, CCK)、血管活性腸肽(vasoactive intestinal peptide, VIP)及蛋白激酶Cδ(protein kinase Cδ, PKCδ)等。表達(dá)不同神經(jīng)肽的抑制性神經(jīng)元具有分布和功能的特異性,在焦慮調(diào)控中也發(fā)揮著不同的作用。

      杏仁核中,BLA是主要信息接收核團(tuán),其中抑制性神經(jīng)元約占20%,主要包括PV神經(jīng)元、SOM神經(jīng)元、CCK神經(jīng)元和VIP神經(jīng)元等。這些抑制性神經(jīng)元通過作用于BLA占比約80%的谷氨酸能興奮性神經(jīng)元、BLA下游核團(tuán)的神經(jīng)元以及不同類型抑制性神經(jīng)元之間的相互作用調(diào)控杏仁核的信息傳遞[4-5]。CeA是杏仁核的主要信息輸出核團(tuán),主要由抑制性神經(jīng)元構(gòu)成,包括GABA能投射神經(jīng)元和中間神經(jīng)元。CeA的抑制性神經(jīng)元包括SOM神經(jīng)元、CCK神經(jīng)元、PKCδ神經(jīng)元和促腎上腺皮質(zhì)激素釋放因子(corticotropin releasing factor, CRF)神經(jīng)元等。應(yīng)激刺激損傷杏仁核的GABA能神經(jīng)元,減少GABA釋放,導(dǎo)致興奮/抑制穩(wěn)態(tài)失衡從而誘發(fā)焦慮,人為調(diào)控這些抑制性神經(jīng)元的活性也會(huì)對(duì)實(shí)驗(yàn)動(dòng)物的焦慮樣行為產(chǎn)生影響[11]。為了更好地了解杏仁核抑制性神經(jīng)元與焦慮的關(guān)系,人們對(duì)不同類型的神經(jīng)元分別進(jìn)行了研究,總結(jié)見圖1。

      Figure 1. Regulation of anxiety by the inhibitory neurons in the amygdala. Top left: a diagram showing the amygdala structure and afferent and efferent projections; right: a summary of the effects of neuronal types, intracellular proteins, and projection targets on anxiety. Effects of neuron activation and intracellular proteins on anxiety are shown as anxiogenic (red), anxiolytic (blue), and inconclusive (yellow). BLA: basolateral amygdala; BNST: bed nucleus of the stria terminalis; CeA: central amygdala; ITC: intercalated cell masses; LC: locus coeruleus; PAG: midbrain periaqueductal gray; SLEAc: central sublenticular extended amygdala; CCK: cholecystokinin; CRF: corticotropin releasing factor; PKCδ: protein kinase Cδ; PV: parvalbumin; SOM: somatostatin; ANO2: anoctamin 2; CART: cocaine and amphetamine regulated transcript; CB1R: cannabinoid type 1 receptor; ErbB4: Erb-b2 receptor tyrosine kinase 4; Erbin: ErbB2-interacting protein; GluK1: glutamate ionotropic receptor kainate type subunit 1; NK-1R: neurokinin-1 receptor; NPS: neuropeptide S; NPY2R: neuropeptide Y receptor Y2; OxtR: oxytocin receptor.

      2.1 BLA抑制性神經(jīng)元對(duì)焦慮的調(diào)控

      2.1.1PV神經(jīng)元PV神經(jīng)元是BLA中最主要的抑制性神經(jīng)元,約占抑制性神經(jīng)元總數(shù)的50%[4]。大部分PV神經(jīng)元投射到BLA谷氨酸能神經(jīng)元的胞體和近端樹突,少部分投射到遠(yuǎn)端樹突[12],從而對(duì)其活性進(jìn)行調(diào)節(jié)。母嬰分離和甲基氧化偶氮甲醇醋酸鹽(methylazoxymethanol acetate)處理會(huì)誘導(dǎo)大鼠產(chǎn)生焦慮樣行為并伴有BLA PV神經(jīng)元活性或數(shù)量的降低[13, 14];而抗焦慮藥和豐富環(huán)境能夠增加BLA PV神經(jīng)元的活性和數(shù)量從而發(fā)揮抗焦慮作用[15, 16]。光遺傳學(xué)的應(yīng)用直接證實(shí)了BLA PV神經(jīng)元活性與焦慮的關(guān)系,光抑制BLA PV神經(jīng)元可以增加小鼠在曠場和高架十字迷宮中的焦慮樣行為,反之,光激活BLA PV神經(jīng)元產(chǎn)生抗焦慮樣作用[17]。分子機(jī)制研究顯示,突變或敲低BLA PV神經(jīng)元中的ErbB2相互作用蛋白(ErbB2-interacting protein, Erbin)會(huì)降低PV神經(jīng)元興奮性并誘發(fā)焦慮樣行為,其作用可能是通過減弱PV神經(jīng)元對(duì)BLA椎體神經(jīng)元的抑制實(shí)現(xiàn)的[17]。PV神經(jīng)元還可以調(diào)控其他抑制性中間神經(jīng)元的活性。Englund等[18]研究顯示,BLA PV神經(jīng)元中具有內(nèi)源性活性的海人藻酸受體亞基GluK1可以通過激活PV神經(jīng)元抑制下游SOM中間神經(jīng)元,從而間接調(diào)控谷氨酸能神經(jīng)元興奮性,敲除BLA的或母嬰分離所致LA中GluK1降低均伴有焦慮樣行為的增加。以上研究結(jié)果顯示,BLA PV神經(jīng)元可以調(diào)控焦慮行為,激活PV神經(jīng)元具有抗焦慮作用,而抑制其活性具有致焦慮作用。

      2.1.2SOM神經(jīng)元BLA中SOM神經(jīng)元約占抑制性神經(jīng)元總數(shù)的15%,主要投射到BLA興奮性神經(jīng)元的樹突棘和遠(yuǎn)端樹突,少量投射到其他抑制性神經(jīng)元或BLA以外腦區(qū)[19]。SOM神經(jīng)元接收來自VIP和PV神經(jīng)元的抑制性信號(hào),構(gòu)成投射神經(jīng)元前饋調(diào)控通路[20]。應(yīng)激刺激會(huì)影響B(tài)LA中SOM神經(jīng)元的活性,Butler等[21]通過SOM與神經(jīng)元激活標(biāo)志物c-Fos雙標(biāo)免疫組化實(shí)驗(yàn)檢測到捕食者氣味會(huì)降低大鼠BLA中激活狀態(tài)SOM神經(jīng)元的數(shù)量,而高架十字迷宮暴露則使其數(shù)量增加。抑制SOM神經(jīng)元中GABA的合成可增加小鼠的焦慮樣行為[22],相反去抑制SOM神經(jīng)元活性則具有抗焦慮樣作用[23]。以上研究提示SOM神經(jīng)元參與焦慮行為的調(diào)控。激活SOM神經(jīng)元上神經(jīng)肽Y(neuropeptide Y, NPY)受體NPY2R可以減少GABA釋放從而減弱對(duì)投射神經(jīng)元的抑制作用,使焦慮水平升高[24]。相反,慢性激活BLA的NPY5R會(huì)導(dǎo)致投射神經(jīng)元的興奮性輸入減弱和樹突萎縮,并產(chǎn)生抗焦慮樣作用[25],但NPY5R是否通過SOM神經(jīng)元發(fā)揮作用尚不清楚。有研究顯示其他腦區(qū)SOM神經(jīng)元中代謝型谷氨酸受體5、腺苷酸環(huán)化酶3、IQSEC3等功能蛋白參與了SOM神經(jīng)元活性和焦慮行為的調(diào)控[26-28],這些蛋白在BLA的SOM神經(jīng)元中是否發(fā)揮相同的作用尚不清楚。以上研究顯示BLA SOM神經(jīng)元激活具有抗焦慮樣作用,抑制具有致焦慮樣作用,但目前還缺少光遺傳學(xué)、化學(xué)遺傳學(xué)實(shí)驗(yàn)提供更直接的證據(jù)。

      2.1.3CCK神經(jīng)元CCK神經(jīng)元可以分為胞體較大、共表達(dá)鈣結(jié)合蛋白(calbindin, CALB)的大CCK神經(jīng)元和胞體較小、共表達(dá)鈣視網(wǎng)膜蛋白或VIP的小CCK神經(jīng)元[29]。應(yīng)用化學(xué)遺傳學(xué)方法激活CCK神經(jīng)元會(huì)增加小鼠在高架十字迷宮閉臂停留的時(shí)間,有致焦慮作用[30]。BLA中CCK神經(jīng)元特異性表達(dá)神經(jīng)激肽1受體(neurokinin-1 receptor, NK-1R),約占BLA中NK-1R陽性細(xì)胞的40%,損毀BLA中表達(dá)NK-1R的抑制性神經(jīng)元導(dǎo)致大鼠焦慮樣行為增加[31],提示其可能參與CCK神經(jīng)元對(duì)焦慮的調(diào)控,但另有約40%的NK-1R表達(dá)在NPY陽性的SOM神經(jīng)元中,因此NK-1R對(duì)焦慮的調(diào)控是這兩類細(xì)胞共同作用的結(jié)果。與NK-1R不同,1型大麻素受體(cannabinoid type 1 receptor, CB1R)在BLA的大CCK神經(jīng)元中特異性表達(dá),提示CCK神經(jīng)元可能參與大麻素對(duì)焦慮和應(yīng)激的調(diào)控[32]。CCK神經(jīng)元具有較高的異質(zhì)性,其對(duì)焦慮的調(diào)控可能需要更精細(xì)的分類研究。

      2.2 CeA抑制性神經(jīng)元對(duì)焦慮的調(diào)控

      2.2.1SOM神經(jīng)元SOM神經(jīng)元是CeL的主要組成部分,通過與CeA的中間神經(jīng)元相互作用以及投射到CeA以外核團(tuán)參與情緒調(diào)控[33]。光激活CeA SOM神經(jīng)元會(huì)增加小鼠在曠場、高架十字迷宮和明暗箱實(shí)驗(yàn)中的焦慮樣行為[34]。光激活CeA SOM神經(jīng)元會(huì)誘導(dǎo)驚恐刺激下小鼠產(chǎn)生被動(dòng)僵直,而激活CeA CRF神經(jīng)元?jiǎng)t會(huì)誘發(fā)小鼠的條件性躲避行為,提示SOM神經(jīng)元和CRF神經(jīng)元共同作用影響應(yīng)激反應(yīng)[35]。CeA SOM投射神經(jīng)元投射到多個(gè)與情緒調(diào)控相關(guān)的腦區(qū)。光激活CeL SOM神經(jīng)元投射到中央近管狀延伸杏仁核(central sublenticular extended amygdala, SLEAc)的軸突末梢可以增加小鼠的焦慮樣行為[36]。條件性恐懼刺激能夠特異性增強(qiáng)CeA SOM投射神經(jīng)元的興奮性突觸傳遞,通過投射抑制中腦導(dǎo)水管周圍灰質(zhì)(midbrain periaqueductal gray, PAG)神經(jīng)元活性調(diào)控恐懼行為[37]。分子機(jī)制研究顯示,敲除CeL中SOM神經(jīng)元的Erb-b2受體酪氨酸激酶4(Erb-b2 receptor tyrosine kinase 4, ErbB4)通過增加CeA中SOM神經(jīng)元活性和去抑制下游終紋床核(bed nucleus of the stria terminalis, BNST)SOM神經(jīng)元而增加小鼠的焦慮樣行為,這一作用與CeL SOM神經(jīng)元中強(qiáng)啡肽水平升高有關(guān)[38]。Li等[39]報(bào)道敲除鈣激活氯離子通道ANO2的小鼠焦慮樣行為減弱,這一作用是通過介導(dǎo)CeA SOM神經(jīng)元鈣激活的氯離子電流以及對(duì)其動(dòng)作電位的影響實(shí)現(xiàn)的。以上研究提示,CeA SOM神經(jīng)元激活具有致焦慮樣作用,但其與抗焦慮作用的關(guān)系目前報(bào)道較少,還需要更進(jìn)一步研究。

      2.2.2PKCδ神經(jīng)元PKCδ神經(jīng)元主要分布在CeL,占CeL抑制性神經(jīng)元的50%,可作用于CeL的其他神經(jīng)元以及CeM的投射神經(jīng)元[4, 40]。關(guān)于CeA PKCδ神經(jīng)元活性對(duì)焦慮行為影響的報(bào)道并不一致。Cai等[41]報(bào)道光激活小鼠CeL PKCδ神經(jīng)元可以在高架十字迷宮、曠場和明暗箱實(shí)驗(yàn)中產(chǎn)生抗焦慮樣作用;Botta等[42]檢測到光激活CeL PKCδ神經(jīng)元能夠增加小鼠在高架十字迷宮和曠場實(shí)驗(yàn)中的焦慮行為,而光抑制PKCδ神經(jīng)元產(chǎn)生抗焦慮樣作用;而在Chen等[34]的研究中光激活CeL PKCδ神經(jīng)元對(duì)小鼠在以上三個(gè)實(shí)驗(yàn)中的焦慮行為沒有明顯影響。這些研究的光纖植入位置和采用的光刺激條件不同,提示不同位置和不同興奮性條件下PKCδ神經(jīng)元對(duì)焦慮行為的影響存在差異。PKCδ神經(jīng)元對(duì)焦慮的調(diào)控也受到多種信號(hào)因子的影響。CeA中65%的PKCδ神經(jīng)元表達(dá)催產(chǎn)素受體(oxytocin receptor, OxtR),研究顯示PKCδ神經(jīng)元介導(dǎo)了催產(chǎn)素抗焦慮和恐懼的作用[40]??煽ㄒ?安非他明調(diào)節(jié)轉(zhuǎn)錄肽(cocaine and amphetamine regulated transcript, CART)也是CeA中PKCδ神經(jīng)元特異性表達(dá)的一種神經(jīng)肽,育亨賓和乙醇共同作用能夠增加小鼠在明暗箱實(shí)驗(yàn)中的焦慮樣行為,這一作用可以被CeA注射CART抗體所中和,提示CART參與應(yīng)激誘導(dǎo)焦慮的調(diào)控[43]。

      2.2.3CRF神經(jīng)元CRF是應(yīng)激反應(yīng)中涉及生理、內(nèi)分泌、行為反應(yīng)調(diào)控的重要因子,除了參與下丘腦-垂體-腎上腺軸的激活,其在CeA也參與應(yīng)激和焦慮的調(diào)控。CRF神經(jīng)元大部分集中在CeL,少量在CeM,兩個(gè)亞區(qū)的CRF神經(jīng)元在電生理和形態(tài)學(xué)上都存在差異[44]。部分CRF神經(jīng)元中特異性共表達(dá)SOM或PKCδ等神經(jīng)肽,也證明了其異質(zhì)性的特點(diǎn)。CeA過表達(dá)CRF或光激活CeA中CRF神經(jīng)元可增加大鼠在曠場和高架十字迷宮中的焦慮樣行為[45-46]。CeA CRF神經(jīng)元投射到多個(gè)腦區(qū),光激活或化學(xué)遺傳學(xué)激活其在藍(lán)斑(locus coeruleus, LC)或BNST的末梢可以增加小鼠的焦慮樣行為,提示CeA投射到LC和BNST的CRF神經(jīng)元參與焦慮的調(diào)控[47-48]。與激活CRF神經(jīng)元相反,敲除CeA的CRF或化學(xué)遺傳學(xué)抑制CRF神經(jīng)元的活性能夠減輕應(yīng)激刺激誘導(dǎo)實(shí)驗(yàn)動(dòng)物的焦慮樣行為[48-49]。總體來說,已有研究顯示CeA CRF神經(jīng)元是一類致焦慮神經(jīng)元,激活誘導(dǎo)焦慮,抑制具有抗焦慮樣作用。

      2.3杏仁核其他抑制性神經(jīng)元對(duì)焦慮的調(diào)控杏仁核中還有一些其他類型的中間神經(jīng)元也參與恐懼、應(yīng)激和焦慮的調(diào)控。BLA VIP中間神經(jīng)元主要作用于投射神經(jīng)元遠(yuǎn)端樹突,部分共表達(dá)CB1R、鈣視網(wǎng)膜蛋白和/或CCK[4]。研究顯示前額葉皮層的VIP神經(jīng)元參與應(yīng)激和焦慮的調(diào)控[50]。Krabbe等[20]用活體鈣成像檢測到足底電擊刺激能夠激活BLA VIP中間神經(jīng)元,但其是否參與焦慮的調(diào)控還有待進(jìn)一步研究。前面提到位于BLA和CeA之間的ITC主要由抑制性GABA能神經(jīng)元構(gòu)成,這些神經(jīng)元接受來自BLA以及杏仁核外其他腦區(qū)的神經(jīng)投射,并對(duì)ITC內(nèi)部以及BLA和CeA的神經(jīng)元進(jìn)行抑制性調(diào)控。神經(jīng)肽S(neuropeptide S, NPS)可通過作用于ITC減輕疼痛誘導(dǎo)的大鼠焦慮樣行為[51]。目前對(duì)這部分神經(jīng)元的分類還缺乏系統(tǒng)的研究,Zikopoulos等[52]檢測到恒河猴ITC抑制性神經(jīng)元表達(dá)CALB。ITC接收參與情緒調(diào)控的谷氨酸能、多巴胺能、去甲腎上腺素能、5-羥色胺能、膽堿能神經(jīng)投射,這些神經(jīng)遞質(zhì)系統(tǒng)通過作用于不同受體調(diào)控神經(jīng)元的活性從而發(fā)揮情緒調(diào)節(jié)作用。近年來的研究顯示ITC抑制性神經(jīng)元在恐懼記憶的形成和消退中發(fā)揮重要作用,提示其可能是研究焦慮障礙的一個(gè)新靶點(diǎn)[53-55]。

      3 總結(jié)與展望

      杏仁核調(diào)控焦慮的機(jī)制一直是神經(jīng)精神科學(xué)領(lǐng)域研究的重點(diǎn)和難點(diǎn)。隨著光遺傳學(xué)等技術(shù)的應(yīng)用,出現(xiàn)了大量探究杏仁核內(nèi)不同種類抑制性神經(jīng)元在焦慮中作用的研究。相較于在分子和細(xì)胞水平的研究,通過對(duì)神經(jīng)元興奮性及其神經(jīng)投射通路的調(diào)控進(jìn)行研究能更好地體現(xiàn)神經(jīng)系統(tǒng)的作用特點(diǎn)。杏仁核中的抑制性神經(jīng)元種類繁多,相互之間以及與上下游神經(jīng)投射之間存在復(fù)雜的網(wǎng)絡(luò)連接,不同種類的神經(jīng)元在焦慮調(diào)控中發(fā)揮的作用不同,同一種神經(jīng)元也會(huì)由于其所在位置、興奮性程度差異產(chǎn)生不同的影響。還有一些結(jié)構(gòu),如ITC,雖然有許多恐懼記憶相關(guān)的報(bào)道,但其中抑制性神經(jīng)元的分類以及其對(duì)焦慮的調(diào)控還需要更多的研究。神經(jīng)系統(tǒng)的功能,尤其是涉及情緒調(diào)節(jié)等高級(jí)功能的實(shí)現(xiàn)需要復(fù)雜的網(wǎng)絡(luò)進(jìn)行精準(zhǔn)的調(diào)控以保持其穩(wěn)態(tài),未來如果能通過形態(tài)學(xué)、光遺傳學(xué)等技術(shù)的結(jié)合繪制出杏仁核調(diào)控焦慮的神經(jīng)網(wǎng)絡(luò)圖譜,不但有利于更好地了解焦慮調(diào)控機(jī)制,而且對(duì)揭示神經(jīng)系統(tǒng)功能也將具有重大意義。

      [1] Baxter AJ, Scott KM, Vos T, et al. Global prevalence of anxiety disorders: a systematic review and meta-regression[J]. Psychol Med, 2013, 43(5):897-910.

      [2] Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in china: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3):211-224.

      [3] Perumal MB, Sah P. Inhibitory circuits in the basolateral amygdala in aversive learning and memory[J]. Front Neural Circuits, 2021, 15:633235.

      [4] Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry[J]. Exp Mol Med, 2018, 50(4):1-16.

      [5] Hajos N. Interneuron types and their circuits in the basolateral amygdala[J]. Front Neural Circuits, 2021, 15:687257.

      [6] Alemany S, Mas A, Goldberg X, et al. Regional gray matter reductions are associated with genetic liability for anxiety and depression: an MRI twin study[J]. J Affect Disord, 2013, 149(1/2/3):175-181.

      [7] Machado-De-Sousa JP, Osorio Fde L, Jackowski AP, et al. Increased amygdalar and hippocampal volumes in young adults with social anxiety[J]. PLoS One, 2014, 9(2):e88523.

      [8] Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia[J]. Am J Psychiatry, 2007, 164(10):1476-1488.

      [9] Redlich R, Grotegerd D, Opel N, et al. Are you gonna leave me? Separation anxiety is associated with increased amygdala responsiveness and volume[J]. Soc Cogn Affect Neurosci, 2015, 10(2):278-284.

      [10] 劉紅霞, 潘虹, 王華, 等. 杏仁核腦區(qū)硫化氫對(duì)創(chuàng)傷后應(yīng)激障礙模型大鼠抑郁樣行為的影響[J]. 中國病理生理雜志, 2017, 33(6):988-992.

      Liu HX, Pan H, Wang H, et al. Effect of amygdala H2S system on depression-like behavior in posttraumatic stress disorder rats[J]. Chin J Pathophysiol, 2017, 33(6):988-992.

      [11] Tye KM, Prakash R, Kim SY, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety[J]. Nature, 2011, 471(7338):358-362.

      [12] Vereczki VK, Veres JM, Muller K, et al. Synaptic organization of perisomatic gabaergic inputs onto the principal cells of the mouse basolateral amygdala[J]. Front Neuroanat, 2016, 10:20.

      [13] Lukkes JL, Burke AR, Zelin NS, et al. Post-weaning social isolation attenuates c-Fos expression in GABAergic interneurons in the basolateral amygdala of adult female rats[J]. Physiol Behav, 2012, 107(5):719-725.

      [14] Yamaguchi T, Minami S, Ueda S. Effects of methylazoxymethanol-induced micrencephaly on parvalbumin-positive gabaergic interneurons in the rat rostral basolateral amygdala[J]. Brain Res, 2021, 1762:147425.

      [15] Hale MW, Johnson PL, Westerman AM, et al. Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of gabaergic interneurons in the basolateral amygdala[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(7):1285-1293.

      [16] Urakawa S, Takamoto K, Hori E, et al. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats[J]. BMC Neurosci, 2013, 14:13.

      [17] Luo ZY, Huang L, Lin S, et al. Erbin in amygdala parvalbumin-positive neurons modulates anxiety-like behaviors[J]. Biol Psychiatry, 2020, 87(10):926-936.

      [18] Englund J, Haikonen J, Shteinikov V, et al. Downregulation of kainate receptors regulating gabaergic transmission in amygdala after early life stress is associated with anxiety-like behavior in rodents[J]. Transl Psychiatry, 2021, 11(1):538.

      [19] Muller JF, Mascagni F, Mcdonald AJ. Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala[J]. J Comp Neurol, 2007, 500(3):513-529.

      [20] Krabbe S, Paradiso E, D'aquin S, et al. Adaptive disinhibitory gating by vip interneurons permits associative learning[J]. Nat Neurosci, 2019, 22(11):1834-1843.

      [21] Butler RK, White LC, Frederick-Duus D, et al. Comparison of the activation of somatostatin- and neuropeptide y-containing neuronal populations of the rat amygdala following two different anxiogenic stressors[J]. Exp Neurol, 2012, 238(1):52-63.

      [22] Miyata S, Kumagaya R, Kakizaki T, et al. Loss of glutamate decarboxylase 67 in somatostatin-expressing neurons leads to anxiety-like behavior and alteration in the Akt/GSK3β signaling pathway[J]. Front Behav Neurosci, 2019, 13:131.

      [23] Fuchs T, Jefferson SJ, Hooper A, et al. Disinhibition of somatostatin-positive gabaergic interneurons results in an anxiolytic and antidepressant-like brain state[J]. Mol Psychiatry, 2017, 22(6):920-930.

      [24] Mackay JP, Bompolaki M, Dejoseph MR, et al. Npy2 receptors reduce tonic action potential-independent gabab currents in the basolateral amygdala[J]. J Neurosci, 2019, 39(25):4909-4930.

      [25] Michaelson SD, Miranda Tapia AP, Mckinty A, et al. Contribution of NPY Y5receptors to the reversible structural remodeling of basolateral amygdala dendrites in male rats associated with NPY-mediated stress resilience[J]. J Neurosci, 2020, 40(16):3231-3249.

      [26] Joffe ME, Maksymetz J, Luschinger JR, et al. Acute restraint stress redirects prefrontal cortex circuit function through mGlu5receptor plasticity on somatostatin-expressing interneurons[J]. Neuron, 2022, 110(6):1068-1083.

      [27] Kim S, Park D, Kim J, et al. Npas4 regulates IQSEC3 expression in hippocampal somatostatin interneurons to mediate anxiety-like behavior[J]. Cell Rep, 2021, 36(3):109417.

      [28] Yang XY, Ma ZL, Storm DR, et al. Selective ablation of type 3 adenylyl cyclase in somatostatin-positive interneurons produces anxiety- and depression-like behaviors in mice[J]. World J Psychiatry, 2021, 11(2):35-49.

      [29] Mascagni F, Mcdonald AJ. Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala[J]. Brain Res, 2003, 976(2):171-184.

      [30] Whissell PD, Bang JY, Khan I, et al. Selective activation of cholecystokinin-expressing GABA (CCK-GABA) neurons enhances memory and cognition[J]. eNeuro, 2019, 6(1):ENEURO.0360-18.2019.

      [31] Truitt WA, Johnson PL, Dietrich AD, et al. Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala[J]. Neuroscience, 2009, 160(2):284-294.

      [32] Mcdonald AJ. Expression of the type 1 cannabinoid receptor (CB1R) in cck-immunoreactive axon terminals in the basolateral amygdala of the rhesus monkey ()[J]. Neurosci Lett, 2021, 745:135503.

      [33] Ye J, Veinante P. Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse[J]. Brain Struct Funct, 2019, 224(3):1067-1095.

      [34] Chen WH, Lien CC, Chen CC. Neuronal basis for pain-like and anxiety-like behaviors in the central nucleus of the amygdala[J]. Pain, 2022, 163(3):e463-e475.

      [35] Fadok JP, Krabbe S, Markovic M, et al. A competitive inhibitory circuit for selection of active and passive fear responses[J]. Nature, 2017, 542(7639):96-100.

      [36] Sun Y, Qian L, Xu L, et al. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala[J/OL]. Mol Psychiatry, 2020 (2020-10-01) [2023-01-08]. https://www.nature.com/articles/s41380-020-00894-1.

      [37] Penzo MA, Robert V, Li B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala[J]. J Neurosci, 2014, 34(7):2432-2437.

      [38] Ahrens S, Wu MV, Furlan A, et al. A central extended amygdala circuit that modulates anxiety[J]. J Neurosci, 2018, 38(24):5567-5583.

      [39] Li KX, He M, Ye W, et al. Tmem16b regulates anxiety-related behavior and gabaergic neuronal signaling in the central lateral amygdala[J]. Elife, 2019, 8:e47106.

      [40] Haubensak W, Kunwar PS, Cai H, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear[J]. Nature, 2010, 468(7321):270-276.

      [41] Cai H, Haubensak W, Anthony TE, et al. Central amygdala PKC-δ+neurons mediate the influence of multiple anorexigenic signals[J]. Nat Neurosci, 2014, 17(9):1240-1248.

      [42] Botta P, Demmou L, Kasugai Y, et al. Regulating anxiety with extrasynaptic inhibition[J]. Nat Neurosci, 2015, 18(10):1493-1500.

      [43] Walker LC, Hand LJ, Letherby B, et al. Cocaine and amphetamine regulated transcript (CART) signalling in the central nucleus of the amygdala modulates stress-induced alcohol seeking[J]. Neuropsychopharmacology, 2021, 46(2):325-333.

      [44] Li JN, Chen K, Sheets PL. Topographic organization underlies intrinsic and morphological heterogeneity of central amygdala neurons expressing corticotropin-releasing hormone[J]. J Comp Neurol, 2022, 530(13):2286-2303.

      [45] Kalin NH, Fox AS, Kovner R, et al. Overexpressing corticotropin-releasing factor in the primate amygdala increases anxious temperament and alters its neural circuit[J]. Biol Psychiatry, 2016, 80(5):345-355.

      [46] Mazzitelli M, Yakhnitsa V, Neugebauer B, et al. Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats[J]. Neuropharmacology, 2022, 210:109031.

      [47] Mccall JG, Al-Hasani R, Siuda ER, et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety[J]. Neuron, 2015, 87(3):605-620.

      [48] Pomrenze MB, Tovar-Diaz J, Blasio A, et al. A corticotropin releasing factor network in the extended amygdala for anxiety[J]. J Neurosci, 2019, 39(6):1030-1043.

      [49] Regev L, Tsoory M, Gil S, et al. Site-specific genetic manipulation of amygdala corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge[J]. Biol Psychiatry, 2012, 71(4):317-326.

      [50] Johnson C, Kretsge LN, Yen WW, et al. Highly unstable heterogeneous representations in VIP interneurons of the anterior cingulate cortex[J]. Mol Psychiatry, 2022, 27(5):2602-2618.

      [51] Ren W, Kiritoshi T, Gregoire S, et al. Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors[J]. J Neurophysiol, 2013, 110(8):1765-1781.

      [52] Zikopoulos B, John YJ, Garcia-Cabezas MA, et al. The intercalated nuclear complex of the primate amygdala[J]. Neuroscience, 2016, 330:267-290.

      [53] Likhtik E, Popa D, Apergis-Schoute J, et al. Amygdala intercalated neurons are required for expression of fear extinction[J]. Nature, 2008, 454(7204):642-645.

      [54] Hagihara KM, Bukalo O, Zeller M, et al. Intercalated amygdala clusters orchestrate a switch in fear state[J]. Nature, 2021, 594(7863):403-407.

      [55] Chen M, Li Y, Liu Y, et al. Neuregulin-1-dependent control of amygdala microcircuits is critical for fear extinction[J]. Neuropharmacology, 2021, 201:108842.

      Role of amygdala inhibitory neurons in regulating anxiety

      ZHOU Han, GUO Ming△

      (,,,,256603,)

      The amygdala is an important brain region, where inhibitory neurons play key roles in the modulation of anxiety. The major subregions of the amygdala, including the basolateral amygdala (BLA) and the central amygdala (CeA), have different subtypes of inhibitory neurons that are categorized by specific protein expressions. Understanding how these inhibitory neuron subtypes regulate anxiety is important for identifying the neurological basis of anxiety disorders. However, little progress has been made in this regard due to the limitations of experimental techniques. The development and application of genetic engineering and optogenetics in the field of neuroscience enables precise manipulation of the activity and investigation of the function of a locally dense group of neurons expressing the same biomarker. Moreover, they provide effective methods for the functional study of different subtypes of inhibitory neurons in the amygdala. This study presents a literature review on inhibitory neurons in the amygdala in anxiety and, in particular, the neuronal activity and molecular mechanisms that modulate anxiety, to promote a better understanding of the mechanisms underlying anxiety and provide new strategies for the treatment of associated disorders.

      amygdala; inhibitory neuron; anxiety; optogenetics

      1000-4718(2023)07-1296-06

      2023-01-09

      2023-07-12

      R749.7+2; Q421; R363

      A

      10.3969/j.issn.1000-4718.2023.07.017

      [基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No. 81771458);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No. 2018GSF118181)

      0543-3258861; E-mail: byfygm@126.com

      (責(zé)任編輯:余小慧,羅森)

      猜你喜歡
      抗焦慮抑制性杏仁核
      李曉明、王曉群、吳倩教授團(tuán)隊(duì)合作揭示大腦情感重要中樞杏仁核的跨物種保守性和差異
      抑制性建言影響因素研究評(píng)述與展望
      基于抑制性自突觸的快慢對(duì)神經(jīng)元簇放電節(jié)律模式的研究
      顳葉內(nèi)側(cè)癲癇患者杏仁核體積變化的臨床研究
      磁共振成像(2022年6期)2022-07-30 08:05:14
      MRI測量中國健康成人腦杏仁核體積
      論我國民間借貸法律規(guī)制的發(fā)展和完善——從抑制性規(guī)制到激勵(lì)性規(guī)制
      法大研究生(2020年2期)2020-01-19 01:42:24
      簡述杏仁核的調(diào)控作用
      音樂生活(2020年12期)2020-01-05 05:38:51
      逍遙散對(duì)卵巢切除聯(lián)合慢性應(yīng)激大鼠的抗焦慮和抗抑郁作用
      中成藥(2018年9期)2018-10-09 07:18:28
      在神經(jīng)病理性疼痛大鼠中脊髓背角III層甘氨酸能神經(jīng)元投射至II層放射狀神經(jīng)元的抑制性環(huán)路發(fā)生功能障礙
      咪達(dá)唑侖抗焦慮治療對(duì)擇期腰椎手術(shù)患者術(shù)中麻醉藥用量及術(shù)后恢復(fù)的影響
      凌海市| 都兰县| 顺义区| 威信县| 娄烦县| 丁青县| 神池县| 平昌县| 石河子市| 龙泉市| 达拉特旗| 泸州市| 美姑县| 福贡县| 临泽县| 四子王旗| 赤峰市| 宜丰县| 通海县| 安塞县| 大竹县| 恩平市| 九台市| 福安市| 耒阳市| 万州区| 景德镇市| 临澧县| 辰溪县| 东明县| 仪征市| 九台市| 乐业县| 方城县| 安阳市| 宝清县| 长岭县| 黄大仙区| 昂仁县| 阜康市| 平塘县|