陳鳳華 石麗敏 謝俊霞
[摘要]目的探討6-羥基多巴胺(6-OHDA)誘導(dǎo)的單側(cè)帕金森病(PD)模型小鼠的運(yùn)動(dòng)及焦慮癥狀。方法7周齡雄性C57BL/6小鼠20只,隨機(jī)分為對(duì)照組及模型組,每組10只。模型組小鼠通過(guò)左側(cè)紋狀體立體定位注入6-OHDA(2 g/L,2 μL)制備PD模型,對(duì)照組小鼠注入等量的生理鹽水。2周后進(jìn)行曠場(chǎng)實(shí)驗(yàn)檢測(cè)小鼠的移動(dòng)總距離和中心區(qū)探索時(shí)間,采用酪氨酸羥化酶(TH)免疫熒光染色檢測(cè)黑質(zhì)區(qū)多巴胺能神經(jīng)元數(shù)目。結(jié)果曠場(chǎng)實(shí)驗(yàn)結(jié)果顯示,與對(duì)照組相比,模型組小鼠移動(dòng)總距離明顯減少,中心區(qū)探索時(shí)間明顯增加,差異具有統(tǒng)計(jì)學(xué)意義(t=2.201、2.576,P<0.01)。免疫熒光染色結(jié)果顯示,與對(duì)照組相比,模型組小鼠黑質(zhì)區(qū)TH陽(yáng)性神經(jīng)元的數(shù)目明顯減少,差異有統(tǒng)計(jì)學(xué)意義(t=17.570,P<0.001)。結(jié)論6-OHDA誘導(dǎo)的單側(cè)PD模型小鼠黑質(zhì)-紋狀體系統(tǒng)功能受損,出現(xiàn)運(yùn)動(dòng)障礙但沒(méi)有產(chǎn)生焦慮。
[關(guān)鍵詞]帕金森?。涣u多巴胺;紋狀體;小鼠;癥狀評(píng)估
[中圖分類(lèi)號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0321-04
doi:10.11712/jms.2096-5532.2023.59.076[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230719.1611.001.html;2023-07-2013:27:08
MOTOR AND ANXIETY SYMPTOMS IN A MOUSE MODEL OF 6-HYDROXYDOPAMINE-INDUCED PARKINSONS DISEASE CHEN Fenghua, SHI Limin, XIE Junxia (Department of Physiology and Pathophysiology, School of Basic Medicine, Qing-dao University, Institute of Brain Sciences and Diseases, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the motor and anxiety symptoms in a mouse model of 6-hydroxydopamine (6-OHDA)-induced unilateral Parkinsons disease (PD). MethodsA total of 20 male C57BL/6 mice, aged 7 weeks, were randomly divided into control group and model group, with 10 mice in each group. The mice in the model group were given stereotactic injection of 2 μL 6-OHDA (2 g/L) into the left corpus striatum to establish a model of PD, and those in the control group were gi-ven injection of an equal volume of normal saline. Two weeks later, the open field test was used to measure total moving distance and time spent in the center of the open field, and tyrosine hydroxylase (TH) immunofluorescent staining was used to measure the number of dopaminergic neurons in the substantia nigra. ResultsThe open field test showed that compared with the control group, the model group had a significant reduction in total moving distance and a significant increase in time spent in the center of the open field (t=2.201,2.576;P<0.01). Immunofluorescent staining showed that compared with the control group, the model group had a significant reduction in the number of TH-positive neurons in the substantia nigra (t=17.570,P<0.001). ConclusionImpaired function of the substantia nigra-corpus striatum system is observed in a mouse model of 6-OHDA-induced unilateral PD, with the presence of movement disorders, but without the presence of anxiety.
[KEY WORDS]Parkinson disease; oxidopamine; corpus striatum; mice; symptom assessment
帕金森病(PD)是僅次于阿爾茨海默病的第二大神經(jīng)退行性疾病,其病理學(xué)特征為黑質(zhì)致密帶多巴胺能神經(jīng)元選擇性丟失和紋狀體軸突末梢多巴胺含量減少[1-3]。其運(yùn)動(dòng)癥狀主要有靜止性震顫、肌僵直、運(yùn)動(dòng)遲緩和姿勢(shì)不穩(wěn)等,非運(yùn)動(dòng)癥狀有嗅覺(jué)障礙、睡眠障礙、認(rèn)知障礙、焦慮和疲勞等。動(dòng)物模型在探究PD發(fā)病機(jī)制和尋找潛在治療靶點(diǎn)的過(guò)程中發(fā)揮著重要作用[4-6]。6-羥基多巴胺(6-OHDA)是一種兒茶酚胺選擇性神經(jīng)毒素,腦內(nèi)紋狀體注射6-OHDA會(huì)引起相應(yīng)的黑質(zhì)-紋狀體多巴胺系統(tǒng)進(jìn)行性和部分受損,可用于制備穩(wěn)定有效的大鼠PD模型[7-9]。盡管6-OHDA單側(cè)損傷大鼠模型是PD研究中最常用的模型之一,但隨著光遺傳和化學(xué)遺傳技術(shù)的發(fā)展,6-OHDA制備PD模型也逐步應(yīng)用于小鼠[10-14]。目前尚缺乏6-OHDA注射誘導(dǎo)的PD模型小鼠的系統(tǒng)性研究。本實(shí)驗(yàn)通過(guò)單側(cè)紋狀體立體定位注射6-OHDA制備小鼠PD模型,觀(guān)察其運(yùn)動(dòng)及焦慮癥狀,以期為PD模型小鼠的基礎(chǔ)研究提供實(shí)驗(yàn)證據(jù)。
322青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)59卷
1材料與方法
1.1動(dòng)物及主要試劑
SPF級(jí)雄性C57BL/6小鼠,7周齡,體質(zhì)量為(22±2)g,購(gòu)自北京維通利華公司。小鼠飼養(yǎng)于25 ℃、12 h晝夜循環(huán)光照的SPF級(jí)清潔環(huán)境中,可自由飲水、攝食、活動(dòng),適應(yīng)環(huán)境1周后開(kāi)始實(shí)驗(yàn)。6-OHDA購(gòu)于中國(guó)Absin公司,L-Ascorbic acid以及地昔帕明購(gòu)于美國(guó)Sigma公司,酪氨酸羥化酶(TH)抗體購(gòu)于美國(guó)Millipore公司,其他試劑均為國(guó)產(chǎn)分析純。
1.2動(dòng)物分組及處理
將小鼠隨機(jī)分為對(duì)照組和模型組,每組10只。術(shù)前30 min小鼠腹腔注射地昔帕明25 mg/kg。利用瑞沃德公司的呼吸麻醉機(jī)將小鼠麻醉后,固定在立體定位儀上。用耳桿適配器將小鼠固定好,調(diào)整高度使顱骨保持水平。剃除小鼠頭部毛發(fā),用碘附擦拭消毒,剪開(kāi)頭皮暴露顱骨的前囟和后囟。以前囟為零點(diǎn),前囟前0.4 mm、旁開(kāi)1.8 mm、深度-3.5 mm定位坐標(biāo)。模型組將2 μL溶于2 g/L抗壞血酸的6-OHDA(2 g/L)按立體定位坐標(biāo)注入左側(cè)紋狀體,流量6 nL/s,注射完成后停針10 min;對(duì)照組則以等量生理鹽水代替6-OHDA。在整個(gè)手術(shù)過(guò)程中,用異氟烷麻醉小鼠并用加熱墊維持體溫。
1.3曠場(chǎng)實(shí)驗(yàn)
實(shí)驗(yàn)前小鼠置于測(cè)試環(huán)境中適應(yīng)至少半小時(shí)。將小鼠放在一個(gè)27 cm×27 cm×35 cm大小不透明測(cè)試盒的中央,攝像機(jī)放于盒子的正上方。利用Smart v3.0系統(tǒng)記錄小鼠10 min的活動(dòng)情況。每只小鼠檢測(cè)結(jié)束后,用體積分?jǐn)?shù)0.75的乙醇清理曠場(chǎng)區(qū)域,并在測(cè)試時(shí)保持干燥。分析在10 min的曠場(chǎng)實(shí)驗(yàn)中小鼠的移動(dòng)總距離和中心區(qū)探索時(shí)間,評(píng)估小鼠的運(yùn)動(dòng)行為和焦慮程度。
1.4腦組織切片及TH免疫熒光染色
行為學(xué)檢測(cè)結(jié)束后,腹腔注射阿佛?。?0 mL/kg)麻醉小鼠。經(jīng)心灌注9 g/L NaCl和多聚甲醛溶液(用0.1 mol/L PBS配制,pH值為7.2~7.4),小心取出鼠腦。將鼠腦置于多聚甲醛溶液中,4 ℃固定6 h,然后分別用200、300 g/L的蔗糖溶液(用0.1 mol/L PBS配制)進(jìn)行梯度脫水。用冷凍切片機(jī)(Leica, CM1950)進(jìn)行冠狀面連續(xù)切片。參照小鼠腦圖譜,確定黑質(zhì)區(qū)域。進(jìn)行厚度為20 μm的冠狀面連續(xù)切片,每組10張,共4組。
取一組完整腦片進(jìn)行TH免疫熒光染色。將腦片置于多聚甲醛溶液中固定10 min,用0.01 mol/L PBS漂洗3次,每次10 min。用含有體積分?jǐn)?shù)0.05驢血清(Jackson)的PBST緩沖液室溫封閉1 h,然后置于用PBST配制的一抗稀釋液中4 ℃搖床孵育過(guò)夜。次日,用0.01 mol/L PBS漂洗3次,每次10 min。將腦片放于用PBST配制的熒光二抗稀釋液中室溫孵育2 h,之后用0.01 mol/L PBS漂洗3次,每次10 min。將腦片平鋪于載玻片上,避光保存。免疫熒光染色實(shí)驗(yàn)中用到的一抗為anti-tyrosine hydroxylase(1∶2 000,rabbit),二抗為donkey anti-rabbit 555(稀釋比為1∶500)。使用數(shù)字病理切片掃描系統(tǒng)(OLYMPUS,Tokyo,Japan,VS120)拍攝成像,應(yīng)用OlyVIA軟件對(duì)TH陽(yáng)性神經(jīng)元進(jìn)行計(jì)數(shù)。
1.5統(tǒng)計(jì)學(xué)分析
應(yīng)用GraphPad Prism 6軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。實(shí)驗(yàn)所得計(jì)量資料結(jié)果以±s形式表示,兩組比較采用t檢驗(yàn)。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.16-OHDA對(duì)小鼠運(yùn)動(dòng)行為的影響
曠場(chǎng)實(shí)驗(yàn)結(jié)果顯示,與對(duì)照組小鼠相比,模型組小鼠移動(dòng)總距離明顯減少,中心區(qū)探索時(shí)間明顯增加,差異有統(tǒng)計(jì)學(xué)意義(t=2.201、2.576,P<0.01)。見(jiàn)表1。
2.26-OHDA對(duì)小鼠黑質(zhì)TH陽(yáng)性神經(jīng)元的影響
免疫熒光染色結(jié)果顯示,對(duì)照組和模型組小鼠黑質(zhì)區(qū)TH陽(yáng)性神經(jīng)元的數(shù)目分別為10 852.0±209.8和6 072.0±173.3(n=10),與對(duì)照組相比,模型組小鼠黑質(zhì)區(qū)TH陽(yáng)性神經(jīng)元的數(shù)目明顯減少,差異有統(tǒng)計(jì)學(xué)意義(t=17.570,P<0.001)。
3討論
PD是常發(fā)生于中老年人的第二大神經(jīng)退行性疾病,其主要病理改變?yōu)楹谫|(zhì)多巴胺能神經(jīng)元進(jìn)行性丟失,其臨床表現(xiàn)除肌僵直、運(yùn)動(dòng)遲緩等運(yùn)動(dòng)癥狀外,還有嗅覺(jué)障礙、焦慮和抑郁等非運(yùn)動(dòng)癥狀。由于PD的病因病理尚未完全闡明,目前該病的治療主要是對(duì)癥治療[5,15-16]。為了闡明PD的發(fā)病機(jī)制和尋找潛在治療靶點(diǎn),已經(jīng)開(kāi)發(fā)了許多動(dòng)物模型[17-19]。6-OHDA可被黑質(zhì)內(nèi)含單胺氧化酶的多巴胺能神經(jīng)元特異性攝取,并在單胺氧化酶的作用下轉(zhuǎn)化成自由基損傷神經(jīng)元,故被廣泛應(yīng)用于損傷黑質(zhì)-紋狀體多巴胺能系統(tǒng)制備PD模型[10,20-21]。長(zhǎng)期以來(lái)6-OHDA多用于大鼠PD模型的制備,近年來(lái)隨著光遺傳學(xué)、化學(xué)遺傳學(xué)的發(fā)展以及各種Cre小鼠的應(yīng)用,6-OHDA也逐漸用于小鼠PD模型的制備。6-OHDA參與氧化應(yīng)激反應(yīng),通過(guò)和多巴胺競(jìng)爭(zhēng),可與高親和力的多巴胺轉(zhuǎn)運(yùn)體結(jié)合進(jìn)入黑質(zhì)-紋狀體多巴胺能神經(jīng)元,并迅速被氧化,生成大量的活性氧(ROS),發(fā)揮毒性作用損傷細(xì)胞。還有研究結(jié)果表明,6-OHDA可以抑制線(xiàn)粒體呼吸鏈的功能,從而引起神經(jīng)毒性[10,22-24]。由于6-OHDA不能通過(guò)血-腦脊液屏障,因此必須通過(guò)立體定位技術(shù)將它直接注射到黑質(zhì)、內(nèi)側(cè)前腦束或紋狀體中。研究表明,6-OHDA單側(cè)紋狀體注射具有較大的優(yōu)勢(shì):首先,注射到紋狀體引起的多巴胺能神經(jīng)元進(jìn)行性丟失和區(qū)域性的病變與PD病理進(jìn)展最為相似;其此,小鼠腦內(nèi)紋狀體是一個(gè)較大的區(qū)域,為立體定位注射減輕了難度[2,25-27]。
TH是多巴胺合成的限速酶,其功能缺失或表達(dá)不足直接影響多巴胺的合成與分泌。因此,檢測(cè)模型動(dòng)物TH免疫陽(yáng)性細(xì)胞的數(shù)目不僅可以反映多巴胺能神經(jīng)元的數(shù)目和功能狀態(tài),同時(shí)還可評(píng)估模型多巴胺水平[28-30]。本實(shí)驗(yàn)采用單側(cè)紋狀體注射4 μg 6-OHDA的方法制備PD模型,結(jié)果顯示,單側(cè)紋狀體注射2周后,損傷側(cè)黑質(zhì)TH陽(yáng)性神經(jīng)元減少了約44%,提示多巴胺能神經(jīng)元丟失;同時(shí)模型小鼠出現(xiàn)運(yùn)動(dòng)缺陷,在曠場(chǎng)實(shí)驗(yàn)中的運(yùn)動(dòng)總距離減少。但是本實(shí)驗(yàn)中PD模型小鼠在曠場(chǎng)中心區(qū)探索時(shí)間與對(duì)照組小鼠相比顯著增加,提示小鼠并未出現(xiàn)焦慮癥狀。以往有研究顯示,紋狀體注射5 μg以上6-OHDA,3周后小鼠黑質(zhì)多巴胺能神經(jīng)元丟失超過(guò)50%,并出現(xiàn)運(yùn)動(dòng)障礙以及焦慮等非運(yùn)動(dòng)癥狀[31-34]。與之相比,本實(shí)驗(yàn)中6-OHDA用藥劑量低、作用時(shí)間較短,因此推測(cè)這可能是小鼠未出現(xiàn)焦慮癥狀的原因。
綜上,本研究通過(guò)單側(cè)紋狀體注射6-OHDA觀(guān)察其對(duì)小鼠運(yùn)動(dòng)和焦慮癥狀以及黑質(zhì)-紋狀體系統(tǒng)功能的影響,結(jié)果表明4 μg的6-OHDA單側(cè)紋狀體注射在2周后可以造成黑質(zhì)-紋狀體通路的部分損失,小鼠出現(xiàn)運(yùn)動(dòng)障礙。本實(shí)驗(yàn)為6-OHDA制備小鼠PD模型提供了良好的注射位點(diǎn),為PD的研究提供了有效的實(shí)驗(yàn)工具。
[參考文獻(xiàn)]
[1]BALESTRINO R, SCHAPIRA A H V. Parkinson disease[J].? European Journal of Neurology, 2020,27(1):27-42.
[2]JANKOVIC J, TAN E K. Parkinsons disease: etiopathoge-nesis and treatment[J].? Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(8):795-808.
[3]GRAYSON M. Parkinsons disease[J].? Nature, 2016,538(7626):S1.
[4]TIEU K. A guide to neurotoxic animal models of Parkinsons disease[J].? Cold Spring Harbor Perspectives in Medicine, 2011,1(1):a009316.
[5]CHIA S J, TAN E K, CHAO Y X. Historical perspective: models of Parkinsons disease[J].? International Journal of Molecular Sciences, 2020,21(7):2464.
[6]MUSTAPHA M, MAT TAIB C N. MPTP-induced mouse model of Parkinsons disease: a promising direction of therapeutic strategies[J].? Bosnian Journal of Basic Medical Sciences, 2021,21(4):422-433.
[7]SAUER H, OERTEL W H. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tra-cing and immunocytochemical study in the rat[J].? Neuroscience, 1994,59(2):401-415.
[8]PRZEDBORSKI S, LEVIVIER M, JIANG H, et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine[J].? Neuroscience, 1995,67(3):631-647.
[9]IRAVANPOUR F, DARGAHI L, REZAEI M, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinsons disease[J].? CNS Neuroscience & Therapeutics, 2021,27(3):308-319.
[10]SIMOLA N, MORELLI M, CARTA A R. The 6-Hydroxydopamine model of Parkinsons disease[J].? Neurotoxicity Research, 2007,11(3):151-167.
[11]GUIMARES R P, LEANDRO RIBEIRO D, DOS SANTOS K B, et al. The 6-hydroxydopamine rat model of Parkinsons disease[J].? Journal of Visualized Experiments, 2021(176):1-17.
[12]BOUCHATTA O, ABY F, SIFEDDINE W, et al. Pain hypersensitivity in a pharmacological mouse model of attention-deficit/hyperactivity disorder[J].? Proceedings of the National Academy of Sciences of the United States of America, 2022,119(30):e2114094119.
[13]MAGNO L A V, TENZA-FERRER H, COLLODETTI M, et al. Optogenetic stimulation of the M2 cortex reverts motor dysfunction in a mouse model of Parkinsons disease[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2019,39(17):3234-3248.
[14]ZHANG H, ZHANG C K, QU Z W, et al. STN-ANT plasti-city is crucial for the motor control in Parkinsons disease mo-del[J].? Signal Transduction and Targeted Therapy, 2021,6(1):215.
[15]ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J].? JAMA, 2020,323(6):548-560.
[16]VIJIARATNAM N, SIMUNI T, BANDMANN O, et al. Progress towards therapies for disease modification in Parkinsons disease[J].? The Lancet Neurology, 2021,20(7):559-572.
[17]TAGUCHI T, IKUNO M, YAMAKADO H, et al. Animal model for prodromal Parkinsons disease[J].? International Journal of Molecular Sciences, 2020,21(6):1961.
[18]DAUER W, PRZEDBORSKI S. Parkinsons disease: mechanisms and models[J].? Neuron, 2003,39(6):889-909.
[19]KIN K, YASUHARA T, KAMEDA M, et al. Animal models for Parkinsons disease research: trends in the 2000s[J].? International Journal of Molecular Sciences, 2019,20(21):5402.
[20]ASANUMA M, HIRATA H, CADET J L. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice[J].? Neuroscience, 1998,85(3):907-917.
[21]SCHWARTING R K W, HUSTON J P. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae[J].? Progress in Neurobiology, 1996,49(3):215-266.
[22]KONNOVA E A, SWANBERG M. Animal models of Parkinsons disease[M]//STOKER T B, GREENLAND J C. Parkinsons disease: Pathogenesis and clinical aspects. Brisbane (AU): Codon Publications Copyright. 2018.
[23]THIRUGNANAM T, SANTHAKUMAR K. Chemically induced models of Parkinsons disease[J].? Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2022,252:109213.
[24]TRONCI E, FRANCARDO V. Animal models of L-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse[J].? Journal of Neural Transmission (Vienna, Austria:1996), 2018,125(8):1137-1144.
[25]TRIPANICHKUL W, JAROENSUPPAPERCH E O. Ame-liorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice[J].? European Review for Medical and Pharmacological Sciences, 2013,17(10):1360-1368.
[26]VARCIN M, BENTEA E, MERTENS B, et al. Acute versus long-term effects of 6-hydroxydopamine on oxidative stress and dopamine depletion in the striatum of mice[J].? Journal of Neuroscience Methods, 2011,202(2):128-136.
[27]KABUTO H, NISHIZAWA M, TADA, et al. Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hyd-roxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum[J].? Neurochemical Research, 2005,30(3):325-332.
[28]COLETTE S, DAUBNER. Tyrosine hydroxylase and regulation of dopamine synthesis[J].? Archives of Biochemistry and Biophysics, 2011,508(1):1-12.
[29]NAGATSU T, NAKASHIMA A, WATANABE H, et al. Neuromelanin in Parkinsons disease: tyrosine hydroxylase and tyrosinase[J].? International Journal of Molecular Sciences, 2022,23(8):4176.
[30]NAGATSU T, NAKASHIMA A, ICHINOSE H, et al. Human tyrosine hydroxylase in Parkinsons disease and in related disorders[J].? Journal of Neural Transmission, 2019,126(4):397-409.
[31]ANTUNES M S, CATTELAN SOUZA L, LADD F V L, et al. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of Parkinsons disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice[J].? Molecular Neuro-biology, 2020,57(7):3027-3041.
[32]MENDES-PINHEIRO B, SOARES-CUNHA C, MAROTE A, et al. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: a closer look into non-motor phenotype and glial response[J].? International Journal of Molecular Sciences, 2021,22(21):11530.
[33]LIU X J, YU H, CHEN B X, et al. CB2 agonist GW842166x protected against 6-OHDA-induced anxiogenic- and depressive-related behaviors in mice[J].? Biomedicines, 2022,10(8):1776.
[34]MASINI D, PLEWNIA C, BERTHO M, et al. A guide to the generation of a 6-hydroxydopamine mouse model of Parkin-sons disease for the study of non-motor symptoms[J].? Biomedicines, 2021,9(6):598.
(本文編輯馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2023年3期