王紫君 李昂 石麗敏
[摘要]目的研究一種新合成的吡啶類化合物對(duì)黑質(zhì)多巴胺能神經(jīng)元電活動(dòng)的調(diào)制作用。方法應(yīng)用全細(xì)胞膜片鉗技術(shù)觀察該化合物對(duì)黑質(zhì)多巴胺能神經(jīng)元自發(fā)放電頻率、誘發(fā)放電、內(nèi)向整流(Sag)幅度等電活動(dòng)相關(guān)指標(biāo)的影響。結(jié)果C57/BL6小鼠黑質(zhì)腦片灌流500 μmol/L化合物,多巴胺能神經(jīng)元自發(fā)放電頻率明顯受到抑制(t=5.396,P<0.05),0~40 pA的除極電流刺激后記錄的神經(jīng)元誘發(fā)放電次數(shù)明顯減少;給予神經(jīng)元40 pA的除極電流刺激,與基礎(chǔ)放電活動(dòng)相比,峰電位間隔時(shí)間、動(dòng)作電位的起始時(shí)間和時(shí)程均明顯增加(t=1.920~2.558,P<0.05);與基礎(chǔ)Sag幅度相比,-200 pA電流刺激后的Sag幅度明顯減小,差異具有統(tǒng)計(jì)學(xué)意義(t=3.149,P<0.05)。結(jié)論此化合物能夠抑制正常C57/BL6小鼠黑質(zhì)多巴胺能神經(jīng)元的興奮性并降低Sag幅度,對(duì)神經(jīng)元的電活動(dòng)發(fā)揮調(diào)控作用。
[關(guān)鍵詞]帕金森??;電生理學(xué);吡啶類;多巴胺能神經(jīng)元;動(dòng)作電位
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0341-04
doi:10.11712/jms.2096-5532.2023.59.085[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230731.1057.002.html;2023-07-3116:03:18
REGULATORY EFFECTS OF A NOVEL SYNTHESIZED PYRIDINE COMPOUND ON ELECTRICAL ACTIVITY OF DOPAMINERGIC NEURONS IN THE SUBSTANTIA NIGRA? WANG Zijun, LI Ang, SHI Limin (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the modulatory effects of a novel synthesized pyridine compound on the electrical activity of dopaminergic neurons in the substantia nigra. MethodsThe whole-cell patch clamp technique was used to record the changes induced by the compound in the electrical activity of substantia nigra dopaminergic neurons (spontaneous discharge frequency, evoked firing rate, and sag amplitude). ResultsWith C57/BL6 mouse substantia nigra slices under perfusion with the compound at a concentration of 500 μmol/L, dopaminergic neurons spontaneous firing rate was significantly decreased (t=5.396,P<0.05). The evoked firing rate was significantly reduced in response to depolarizing current pulses of 0-40 pA; in response to a depolarizing current pulse of 40 pA, the dopaminergic neurons interspike interval and action potential duration and initial time were significantly increased as compared with the baseline electrical activity (t=1.920-2.558,P<0.05). In response to a current pulse of -200 pA, the dopaminergic neurons exhibited a significantly lowered sag amplitude compared with the baseline sag amplitude (t=3.149,P<0.05). ConclusionThe novel synthesized compound could inhibit the excitability and decrease the sag amplitude of substantia nigra dopaminergic neurons in normal C57/BL6 mice, with a regulatory effect on the electrical activity of neurons.
[KEY WORDS]Parkinson disease; electrophysiology; pyridines; dopaminergic neurons; action potentials
帕金森?。≒D)是以中腦黑質(zhì)致密帶多巴胺(DA)能神經(jīng)元變性、缺失為主要特征的慢性神經(jīng)系統(tǒng)疾病,出現(xiàn)α-突觸核蛋白(α-syn)積聚沉淀以及紋狀體DA分泌減少等病理變化[1]。中國(guó)人口老齡化現(xiàn)象的日益加重導(dǎo)致PD的發(fā)病率逐年升高,嚴(yán)重影響了人們的生活質(zhì)量。目前PD主要以左旋多巴類藥物干預(yù)治療為主,但長(zhǎng)期服用該藥物會(huì)出現(xiàn)療效不穩(wěn)定、發(fā)生胃腸道反應(yīng)等副作用[2]。因此,尋求一種有效且副作用少的新型防治藥物成為PD治療領(lǐng)域的熱點(diǎn)研究問題。本實(shí)驗(yàn)室前期工作觀察到,4-氨基吡啶(4-AP)對(duì)神經(jīng)毒素1-甲基-4-苯基吡啶離子(MPP+)以及1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)的PD模型障礙具有一定的改善作用[3-4];WEI等合成的5種吡啶類衍生物,也具有良好的生物效應(yīng)[5-6]?;谝陨涎芯拷Y(jié)果,本研究團(tuán)隊(duì)與成都中醫(yī)藥大學(xué)開展合作,對(duì)新合成的19種吡啶類化合物進(jìn)行生物學(xué)研究,初步證實(shí)12號(hào)化合物能誘導(dǎo)細(xì)胞自噬、減輕α-syn聚集,提示它在PD中具有潛在的保護(hù)作用。已知黑質(zhì)DA能神經(jīng)元具有自發(fā)放電活動(dòng),其生理功能的維持與神經(jīng)元電活動(dòng)密切相關(guān),因此本實(shí)驗(yàn)應(yīng)用腦片膜片鉗技術(shù),從電生理的角度探討12號(hào)化合物對(duì)DA能神經(jīng)元電活動(dòng)的調(diào)制作用,從而為PD的臨床治療提供潛在靶點(diǎn)?,F(xiàn)將結(jié)果報(bào)告如下。
1材料與方法
1.1動(dòng)物及主要試劑
出生15~20 d的C57/BL6小鼠由北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司提供,動(dòng)物的飼養(yǎng)及手術(shù)符合青島大學(xué)動(dòng)物倫理學(xué)要求。實(shí)驗(yàn)所用化合物由成都中醫(yī)藥大學(xué)合成提供,用二甲基亞砜(DMSO)配制成濃度為200 mmol/L的儲(chǔ)存液,-20 ℃保存,工作液濃度500 μmol/L。
1.2溶液配制
人工腦脊液(ACSF)的配制:124.0 mmol/L NaCl、3.0 mmol/L的KCl、2.4 mmol/L的CaCl2、1.3 mmol/L的MgCl2、1.3 mmol/L的NaH2PO4、26.0 mmol/L NaHCO3、10.0 mmol/L Glucose混合,調(diào)整pH值為7.4(1 mol/L NaOH稀釋)、滲透壓為310 mOsm。低鈣切片液的配制:124.0 mmol/L NaCl、3.0 mmol/L KCl、0.5 mmol/L的CaCl2、1.0 mmol/L的MgCl2、1.3 mmol/L的NaH2PO4、26.0 mmol/L NaHCO3、10.0 mmol/L Glucose混合,用1 mol/L NaOH 調(diào)節(jié)pH值至7.4,用滲透壓測(cè)量?jī)x調(diào)節(jié)滲透壓至310 mOsm,并持續(xù)通體積分?jǐn)?shù)0.05 CO2及體積分?jǐn)?shù)0.95 O2的混合氣進(jìn)行氧合(切片液需提前放入冰箱-80 ℃冷凍40 min成冰沙狀)。電極內(nèi)液的配制:120.0 mmol/L K-gluconate、10.0 mmol/L的HEPES、10.0 mmol/L的EGTA、2.0 mmol/L的MgCl2、2.0 mmol/L的Na2ATP、0.3 mmol/L Na2GTP、20.0 mmol/L KCl混合,用1 mmol/L KOH調(diào)節(jié)pH值至7.3,將滲透壓調(diào)節(jié)至290 mOsm,-20 ℃保存分裝備用。
1.3離體黑質(zhì)腦片制備
小鼠迅速斷頭取腦,置于4 ℃ ACSF中,1 min后將修剪好的腦切成250 μm厚的腦切片,放入連續(xù)通入體積分?jǐn)?shù)0.95 O2及體積分?jǐn)?shù)0.05 CO2混合氣體的ACSF中,孵育1 h,然后將腦片室溫下放置。隨機(jī)取其中1片進(jìn)行腦片全細(xì)胞膜片鉗實(shí)驗(yàn),其余腦片放在ACSF中,用于后續(xù)實(shí)驗(yàn)。
1.4腦片全細(xì)胞膜片鉗電生理學(xué)記錄
將離體腦片轉(zhuǎn)移至持續(xù)灌流ACSF(持續(xù)通入體積分?jǐn)?shù)0.95 O2及體積分?jǐn)?shù)0.05 CO2的混合氣體)的浴槽內(nèi),選擇健康、飽滿、邊界清晰的細(xì)胞進(jìn)行全細(xì)胞膜片鉗記錄。將拋光的玻璃微電極注入合適體積的電極內(nèi)液,直至電極尖端進(jìn)入液面以下,使電極尖端慢慢接近細(xì)胞表面直至在細(xì)胞表面壓出類似“酒窩”的形狀,此時(shí)電流變小,電阻慢慢變大。迅速釋放正壓,快速達(dá)到千兆封接。如果電阻沒有達(dá)到千兆,則通過注射器給予細(xì)胞膜片一個(gè)負(fù)壓,使之達(dá)到千兆封接,并補(bǔ)償快電容。之后,采用負(fù)壓法吸破電極與細(xì)胞相接觸的膜片,使電極與細(xì)胞內(nèi)液相通,并補(bǔ)償慢電容。轉(zhuǎn)換至電流鉗模式,將電流鉗置于0 pA,完成全細(xì)胞電流鉗模式記錄,判斷為黑質(zhì)DA能神經(jīng)元后,轉(zhuǎn)換至全細(xì)胞電壓鉗模式,將電壓鉗置于-70 mV,完成全細(xì)胞電壓鉗模式電流記錄。數(shù)據(jù)用Patch master軟件采集并儲(chǔ)存,用Minianaly-sis、Clamfit等軟件分析。
1.5統(tǒng)計(jì)學(xué)分析
應(yīng)用SPSS 20.0和GraPhPad Prism 5 統(tǒng)計(jì)軟件進(jìn)行處理,實(shí)驗(yàn)結(jié)果以±s形式表示,配對(duì)樣本間比較采用配對(duì)t檢驗(yàn),P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1化合物對(duì)黑質(zhì)DA能神經(jīng)元自發(fā)放電頻率的影響
參考本實(shí)驗(yàn)室之前的研究報(bào)道[7],主要根據(jù)位置、形態(tài)、放電特征等指標(biāo)鑒定DA能神經(jīng)元:位于中腦腹側(cè)邊緣;細(xì)胞一般呈紡錘、三角或多極形,胞體較大,直徑大于25 μm;在電流鉗模式下,給予神經(jīng)元-100 pA的超極化電流刺激后,神經(jīng)元膜電位出現(xiàn)顯著的內(nèi)向整流(Sag)特征;在全細(xì)胞模式下,神經(jīng)元表現(xiàn)出頻率1~5 Hz的自發(fā)放電活動(dòng)。
本實(shí)驗(yàn)共記錄到了7個(gè)DA能神經(jīng)元,其基礎(chǔ)自發(fā)放電頻率為(1.46±0.53)Hz,當(dāng)灌流500 μmol/L的化合物10 min后,其放電頻率降低為(0.33±0.10)Hz,差異有顯著性(t=5.396,P<0.05),延長(zhǎng)至15 min后細(xì)胞的自發(fā)放電活動(dòng)被完全抑制。
2.2化合物對(duì)黑質(zhì)DA能神經(jīng)元誘發(fā)放電活動(dòng)的影響
在電流鉗模式下,給予DA能神經(jīng)元0~40 pA的除極電流刺激后記錄誘發(fā)放電活動(dòng)的相關(guān)指標(biāo)。在記錄到的7個(gè)神經(jīng)元中,隨著除極電流幅度的增加,動(dòng)作電位爆發(fā)次數(shù)增多,以40 pA的除極電流刺激為例分析數(shù)據(jù),在未灌流化合物前40 pA除極電流誘發(fā)的動(dòng)作電位個(gè)數(shù)是3,當(dāng)灌流500 μmol/L化合物后誘發(fā)動(dòng)作電位個(gè)數(shù)為1,灌流后除極電流誘發(fā)的動(dòng)作電位個(gè)數(shù)明顯減少。分析動(dòng)作電位其他指標(biāo)的變化情況結(jié)果顯示,灌流化合物后,峰電位間隔時(shí)間從(0.083 4±0.020 1)s增加至(0.110 6±0.017 2)s,動(dòng)作電位時(shí)程從(0.998 0±0.415 7)s增加至(1.427 6±0.763 7)s,動(dòng)作電位起始時(shí)間從(0.984 4±0.784 0)s增加至(2.911 8±0.255 1)s,差異均具有統(tǒng)計(jì)學(xué)意義(t=1.920~2.558,P<0.05)。
2.3化合物對(duì)黑質(zhì)DA能神經(jīng)元Sag的影響
在電流鉗記錄模式下,給予一系列的超極化電流刺激(-200~0 pA,2 s)后,DA能神經(jīng)元表現(xiàn)出顯著的Sag特征,即電位出現(xiàn)先快速超極化后除極,這種電位反轉(zhuǎn)的變化形成了典型的Sag。在灌流500 μmol/L化合物后再次給予相同的超極化電流刺激,每個(gè)電流刺激下的Sag幅度均明顯減小。以-200 pA 的超極化電流刺激為例,Sag幅度由灌流前的(47.29±11.33)mV 減少至灌流后的(30.27±13.31)mV,其差異具有統(tǒng)計(jì)學(xué)意義(t=3.149,P<0.05)。
3討論
以往我們觀察到,4-AP對(duì)MPP+引起的DA能MES23.5細(xì)胞和原代培養(yǎng)的中腦腹側(cè)神經(jīng)元的損傷有明顯的保護(hù)作用[3],能夠有效改善MPTP誘導(dǎo)的PD小鼠的運(yùn)動(dòng)行為,如運(yùn)動(dòng)速度和運(yùn)動(dòng)平衡能力[4]。由WEI等合成的吡啶類衍生物被證實(shí)能夠在PD的體外模型中減少α-syn積累,減輕氧化應(yīng)激損傷和炎癥,誘導(dǎo)Rho激酶激活[5-6]。此外有研究表明,4-AP類化合物還可以防止中樞神經(jīng)系統(tǒng)的神經(jīng)軸索損失,包括促進(jìn)髓鞘再生、改善神經(jīng)導(dǎo)電性和加速功能恢復(fù)等[8-9];利用4-AP合成的熱凝膠聚合物能夠促進(jìn)創(chuàng)傷性周圍神經(jīng)損傷后的功能恢復(fù)[10]。以上研究均提示吡啶類化合物對(duì)于神經(jīng)系統(tǒng)疾病具有一定的保護(hù)作用。本實(shí)驗(yàn)主要觀察了新合成的化合物是否影響黑質(zhì)DA能神經(jīng)元的電活動(dòng),結(jié)果表明該化合物能顯著降低DA能神經(jīng)元的自發(fā)及誘發(fā)放電頻率,并降低Sag幅度。
黑質(zhì)DA能神經(jīng)元在正常生理狀態(tài)下的電活動(dòng)是維持其基本功能的關(guān)鍵,電活動(dòng)紊亂是其發(fā)病機(jī)制的重要影響因素。黑質(zhì)DA能神經(jīng)元在全細(xì)胞電流鉗模式下主要表現(xiàn)為規(guī)則的緊張性放電,即起搏放電,少數(shù)細(xì)胞無(wú)自發(fā)放電[7]。對(duì)于緊張性放電的神經(jīng)元,其動(dòng)作電位頻率較低,本實(shí)驗(yàn)記錄到的DA能神經(jīng)元基礎(chǔ)放電頻率為1~2 Hz。DA能神經(jīng)元的異常放電活動(dòng)與PD的發(fā)病相關(guān)。α-syn沉積是PD病人的主要病理改變,在PD中黑質(zhì)DA能神經(jīng)元的缺損導(dǎo)致丘腦底核被過度激活,神經(jīng)遞質(zhì)谷氨酸過量累積[11]。此外,環(huán)境毒素也能夠增加谷氨酸的產(chǎn)生。過量的谷氨酸結(jié)合其受體(NMDA或者AMPA)并打開電壓門控鈣通道,引起Ca2+由細(xì)胞外大量?jī)?nèi)流,提高了DA能神經(jīng)元內(nèi)的Ca2+濃度,導(dǎo)致氧化應(yīng)激和Ca2+興奮性毒性[12-13]。而興奮性毒性可能是DA能神經(jīng)元的死亡機(jī)制之一[14-17]。本實(shí)驗(yàn)觀察到,新合成的化合物能抑制神經(jīng)元放電,提示該化合物在對(duì)抗興奮性毒性、平衡神經(jīng)元電活動(dòng)中起到調(diào)制作用。
該化合物通過何種機(jī)制影響神經(jīng)元的電活動(dòng)尚不清楚。本實(shí)驗(yàn)觀察到,應(yīng)用化合物處理細(xì)胞后,Sag的幅度明顯降低。Sag是黑質(zhì)DA能神經(jīng)元受到超極化電流刺激時(shí),膜電位出現(xiàn)的先快速超極化再除極的電位反轉(zhuǎn),一直被認(rèn)為是DA能神經(jīng)元的重要識(shí)別標(biāo)志[18],該特性由超極化激活的環(huán)核苷酸門控通道(HCN通道)介導(dǎo)[19-21]。HCN通道在調(diào)節(jié)神經(jīng)元的興奮性、節(jié)律性以及突觸傳遞等活動(dòng)中發(fā)揮著重要作用,應(yīng)用HCN通道阻斷劑可以顯著減少神經(jīng)元放電[22-27]。結(jié)合本文實(shí)驗(yàn)結(jié)果,我們推測(cè)該化合物的作用靶點(diǎn)可能與HCN通道有關(guān),通過抑制HCN通道,可降低神經(jīng)元Sag幅度,減少自發(fā)及誘發(fā)放電活動(dòng)。
綜上所述,本研究證實(shí)新合成化合物對(duì)黑質(zhì)DA能神經(jīng)元電活動(dòng)有調(diào)制作用,這為論證該化合物在PD中的應(yīng)用提供了新的實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]DEL TREDICI K, BRAAK H. Review: sporadic Parkinsons disease: development and distribution of α-synuclein pathology[J]. Neuropathology and Applied Neurobiology, 2016,42(1):33-50.
[2]BROTCHIE J M, LEE J, VENDEROVA K. Levodopa-induced dyskinesia in Parkinsons disease[J]. Journal of Neural Transmission, 2005,112(3):359-391.
[3]王怡云. 4-氨基吡啶在帕金森病黑質(zhì)多巴胺能神經(jīng)元損傷中的保護(hù)作用研究[D]. 青島:青島大學(xué), 2021.
[4]賈璐,石麗敏,謝俊霞. 4-AP對(duì)MPTP誘導(dǎo)PD模型小鼠運(yùn)動(dòng)行為影響[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2019,55(1):44-46.
[5]RODRGUEZ-RANGEL S, BRAVIN A D, RAMOS-TORRES K M, et al. Structure-activity relationship studies of four novel 4-aminopyridine K+ channel blockers[J]. Scientific Reports, 2020,10:52.
[6]LI S L, WEI D Y, MAO Z, et al. Design, synthesis, immunocytochemistry evaluation, and molecular docking investigation of several 4-aminopyridine derivatives as potential neuroprotective agents for treating Parkinsons disease[J]. Bioorganic Chemistry, 2017,73:63-75.
[7]SHI L M, BIAN X L, QU Z Q, et al. Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels[J]. Nature Communications, 2013,4:1435.
[8]CLARK A R, HSU C G, HASSAN TALUKDER M A H, et al. Transdermal delivery of 4-aminopyridine accelerates motor functional recovery and improves nerve morphology following sciatic nerve crush injury in mice[J]. Neural Regeneration Research, 2020,15(1):136-144.
[9]DIETRICH M, KOSKA V, HECKER C, et al. Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis[J]. Brain: a Journal of Neurology, 2020,143(4):1127-1142.
[10]MANTO K M, GOVINDAPPA P K, PARISI D, et al. (4-aminopyridine)-PLGA-PEG as a novel thermosensitive and locally injectable treatment for acute peripheral nerve injury[J]. ACS Applied Bio Materials, 2021,4(5):4140-4151.
[11]RAZA C, ANJUM R, SHAKEEL N U A. Parkinsons di-sease: mechanisms, translational models and management strategies[J]. Life Sciences, 2019,226:77-90.
[12]DONG X X, WANG Y, QIN Z H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases[J]. Acta Pharmacologica Sinica, 2009,30(4):379-387.
[13]LASSER-KATZ E, SIMCHOVITZ A, CHIU W H, et al. Mutant α-synuclein overexpression induces stressless pacema-king in vagal motoneurons at risk in Parkinsons disease[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2017,37(1):47-57.
[14]LIU M, LIU C, XIAO X, et al. Role of upregulation of the KATP channel subunit SUR1 in dopaminergic neuron degeneration in Parkinsons disease[J]. Aging Cell, 2022,21(5):e13618.
[15]SURMEIER D J, GUZMAN J N, SANCHEZ-PADILLA J. Calcium, cellular aging, and selective neuronal vulnerability in Parkinsons disease[J]. Cell Calcium, 2010,47(2):175-182.
[16]BISHOP M W, CHAKRABORTY S, MATTHEWS G A C, et al. Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi-deficient mice[J]. Journal of Neurophysiology, 2010,104(6):3009-3020.
[17]KIM S, KWON S H, KAM T I, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain mo-dels Parkinsons disease[J]. Neuron, 2019,103(4):627-641.e7.
[18]GRACE A A, ONN S P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1989,9(10):3463-3481.
[19]ZOBEIRI M, CHAUDHARY R, DATUNASHVILI M, et al. Modulation of thalamocortical oscillations by TRIP8b, an au-xiliary subunit for HCN channels[J]. Brain Structure & Function, 2018,223(3):1537-1564.
[20]NOLAN M F, MALLERET G, LEE K H, et al. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells[J]. Cell, 2003,115(5):551-564.
[21]NOLAN M F, MALLERET G, DUDMAN J T, et al. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons[J]. Cell, 2004,119(5):719-732.
[22]CHAN C S, GUZMAN J N, ILIJIC E, et al. ‘Rejuvenation protects neurons in mouse models of Parkinsons disease[J]. Nature, 2007,447(7148):1081-1086.
[23]SULZER D, SCHMITZ Y. Parkinsons disease: return of an old prime suspect[J]. Neuron, 2007,55(1):8-10.
[24]PUTZIER I, KULLMANN P H M, HORN J P, et al. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons[J]. The Journal of Neuroscience, 2009,29(49):15414-15419.
[25]NGUYEN M, WONG Y C, YSSELSTEIN D, et al. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinsons di-sease[J]. Trends in Neurosciences, 2019,42(2):140-149.
[26]DING W H, YOU Z R, SHEN S Q, et al. Increased HCN channel activity in the gasserian ganglion contributes to trigeminal neuropathic pain[J]. The Journal of Pain, 2018,19(6):626-634.
[27]CHANG X L, MA Z G, SHI L M, et al. Effects of ghrelin on the electrical activities of substantia nigra dopaminergic neurons treated with MPP[J]. Neurochemistry International, 2020,138:104780.
(本文編輯馬偉平)