王語晴,劉欣欣,侯志濤,陳晶
〔摘要〕 神經(jīng)炎癥是卒中后認知障礙(post-stroke cognitive impairment, PSCI)神經(jīng)損傷、空間和記憶能力下降的主要機制之一。當中樞神經(jīng)系統(tǒng)受到刺激時,小膠質(zhì)細胞作為免疫效應細胞被激活,并通過自身表型轉(zhuǎn)換啟動免疫級聯(lián)反應,釋放細胞因子等參與神經(jīng)炎癥反應。誘導小膠質(zhì)細胞從促炎性M1表型向抗炎性M2表型極化,能夠促進組織神經(jīng)功能的修復再生,減輕腦卒中損傷后的炎癥反應和認知損害。中藥單體、活性成分及復方可以靶向調(diào)節(jié)小膠質(zhì)細胞表型轉(zhuǎn)化,保護大腦神經(jīng)元免受炎癥影響,通過減少神經(jīng)元凋亡來調(diào)節(jié)學習記憶能力?;诖?,本文就小膠質(zhì)細胞極化在PSCI神經(jīng)炎癥損傷中的作用及中醫(yī)藥潛在的調(diào)控機制進行綜述,以期為中醫(yī)藥治療PSCI提供新的研究思路。
〔關(guān)鍵詞〕 小膠質(zhì)細胞極化;神經(jīng)炎癥;卒中后認知障礙;中藥;作用機制
〔中圖分類號〕R255? ? ? ?〔文獻標志碼〕A? ? ? ? 〔文章編號〕doi:10.3969/j.issn.1674-070X.2023.08.027
Research progress on the mechanism of action for microglial polarization in neuroinflammatory injury in post-stroke cognitive impairment and pharmacological actions of related Chinese medicines
WANG Yuqing, LIU Xinxin, HOU Zhitao, CHEN Jing*
School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
〔Abstract〕 Neuroinflammation is one of the main mechanisms of neurological injury and spatial and memory decline in post-stroke cognitive impairment (PSCI). When the central nervous system is stimulated, microglia are activated as immune effector cells and participate in neuroinflammatory responses by switching their own phenotypes to initiate the immune cascade and releasing cytokines. Inducing microglia to polarize from proinflammatory M1 phenotype to anti-inflammatory M2 phenotype can promote repair and regeneration of tissue neurological function, and reduce post-stroke inflammatory responses and cognitive impairment. Single herbs and their active ingredients, as well as compound formulas of Chinese medicine can target and regulate microglial phenotypic transformation, protect brain neurons from inflammation, and modulate learning and memory ability by reducing neuronal apoptosis. Based on this, this paper reviews the role of microglial polarization in neuroinflammatory injury in PSCI and the potential regulatory mechanism of Chinese medicine, with the aim of providing new research ideas for the treatment of PSCI with Chinese medicine.
〔Keywords〕 microglial polarization; neuroinflammation; post-stroke cognitive impairment; Chinese medicines; mechanism of action
卒中后認知障礙(post-stroke cognitive impairment, PSCI)是指由腦卒中引起的從輕度認知障礙到癡呆的一系列綜合征,是腦卒中的主要并發(fā)癥之一[1]。流行病學資料顯示,腦卒中是導致患者發(fā)生血管性死亡的主要原因,新發(fā)病例以缺血性腦卒中為主,且超過1/3的中風患者可能會出現(xiàn)PSCI[2]。腦卒中發(fā)生后導致的認知功能障礙會持續(xù)存在,并可呈加速式下降[3]。因此,記憶和認知評估對于中風后的恢復具有重要意義。PSCI的潛在機制尚不清楚,可能是腦血管性機制和腦神經(jīng)退行性機制相互作用的結(jié)果。病理學研究發(fā)現(xiàn),當腦血管發(fā)生破裂或堵塞引發(fā)相應供血區(qū)腦灌注不足時,海馬CA1區(qū)內(nèi)的小膠質(zhì)細胞(microglia, MG)會被激活并誘導神經(jīng)炎癥反應,導致大量神經(jīng)元細胞凋亡,進而誘發(fā)相關(guān)認知功能障礙[4]。BACK等[5]建立急性缺血性癡呆大鼠模型,通過組織學檢查發(fā)現(xiàn),大鼠同側(cè)皮質(zhì)中的星形膠質(zhì)細胞激活顯著增加,局部MG活化明顯,提示PSCI的發(fā)生可能與海馬CA1區(qū)神經(jīng)炎癥反應、MG被激活有關(guān),而非梗死體積本身。在腦組織發(fā)生缺血、低氧或在炎癥微環(huán)境的影響下,MG常常會被激活為功能狀態(tài)、基因表達模式與表面標志物迥異的兩種表型,即M1表型(經(jīng)典激活型)與M2表型(替代激活型),這一過程即小膠質(zhì)細胞極化[6]。目前,對于中樞炎癥反應的研究已不局限于廣泛地抑制MG活化,而是傾向于誘導MG從促炎性M1表型轉(zhuǎn)化為抗炎性M2表型,即調(diào)節(jié)M1與M2的比率[7],以MG表型為靶點有助于了解PSCI的病理過程。腦卒中在中醫(yī)學中又稱為“中風”,氣血逆亂,陰陽失衡,上犯于腦則發(fā)為中風。中醫(yī)文獻中并無有關(guān)PSCI的病名記載,但就反應遲緩、遇事善忘、呆傻愚笨等臨床癥狀而言,可將其歸屬于“癡呆”的范疇?!峨s病源流犀燭·中風》中就有“中風后善忘”之論。中醫(yī)藥以其多靶點、多成分、多通路的作用特點參與調(diào)控卒中后MG表型的早期轉(zhuǎn)變,以實現(xiàn)MG極化平衡,發(fā)揮靶向抑制炎癥反應、促進卒中后神經(jīng)元和腦組織損傷的修復作用[8]。基于此,文章就MG極化在PSCI中的作用及機制進行綜述,通過探討中藥調(diào)控相關(guān)信號因子和信號通路加快M2型極化的藥理作用,以期對阿爾茨海默?。ˋlzheimer's disease, AD)前期狀態(tài)PSCI提供一種新的靶向治療方法。
1 MG在PSCI中的作用及機制
1.1? MG介導PSCI的神經(jīng)炎癥反應
神經(jīng)炎癥屬于神經(jīng)系統(tǒng)的炎癥反應,涉及卒中的所有階段,包括腦組織前期神經(jīng)元損傷及后期修復。腦卒中后炎癥級聯(lián)反應的增加可加劇包括學習記憶、思維能力在內(nèi)的認知水平衰退。NARASIMHALU等[9]在研究炎癥水平與PSCI的關(guān)聯(lián)時發(fā)現(xiàn),白細胞介素(interleukin, IL)(IL-8、IL-12等)炎癥水平與患者的認知狀態(tài)密切相關(guān)。神經(jīng)炎癥反應是一個漸進發(fā)展的級聯(lián)過程,主要表現(xiàn)為神經(jīng)膠質(zhì)細胞的活化和增生、相關(guān)炎癥因子的表達以及神經(jīng)元的凋亡和壞死。MG屬于神經(jīng)膠質(zhì)細胞的一種,占中樞神經(jīng)系統(tǒng)(central nervous system, CNS)細胞總數(shù)的5%~10%,能夠向神經(jīng)元發(fā)送信號,通過高頻的交流溝通,加強對神經(jīng)元的支持和監(jiān)測以調(diào)節(jié)大腦行為反應。有研究發(fā)現(xiàn),神經(jīng)元與MG之間通過IL-33來調(diào)節(jié)神經(jīng)元突觸的形成和重塑,在海馬區(qū)驅(qū)動經(jīng)驗依賴性突觸重塑有助于小鼠記憶的鞏固,從而維持神經(jīng)回路的正常功能與發(fā)育[10]。MG作為腦內(nèi)的主要免疫細胞,其活化被認為是CNS促炎和抗炎環(huán)境的主要來源,其介導的神經(jīng)炎癥反應影響著認知功能。由缺血誘導的神經(jīng)炎癥反應過程中,激活的MG會釋放IL-12、白細胞介素-1β(interleukin-1β, IL-1β)、IL-6、腫瘤壞死因子-α(tumor necrosis factor-α, TNF-α)等多種損傷性炎癥因子,這將顯著降低神經(jīng)干細胞分化成功能性神經(jīng)元,特別是膽堿能神經(jīng)元的能力,引發(fā)認知障礙[11];另外研究還發(fā)現(xiàn),激活的MG會加重血腦屏障損傷,血腦屏障功能受損時,其表面的葡萄糖轉(zhuǎn)運蛋白數(shù)量減少或重新分布,導致腦能量代謝不足,引起腦組織受損,出現(xiàn)認知障礙[12]。當抑制MG激活后,受損的程度則會減輕。梔子的天然提取物GJ-4能夠顯著改善腦功能障礙,研究發(fā)現(xiàn)這與抑制MG的激活,減少炎癥蛋白的表達密切相關(guān)[13]。因此,抑制腦卒中后MG介導的神經(jīng)炎癥的激活,可以有效緩解認知功能的損傷。
1.2? MG極化對神經(jīng)炎癥的雙向調(diào)節(jié)作用
MG作為大腦神經(jīng)炎癥的主要參與者,在病理條件下具有經(jīng)典激活的促炎M1型和替代激活的抗炎M2型兩種不同的激活狀態(tài),且二者之間存在表型轉(zhuǎn)換,介導神經(jīng)炎癥或神經(jīng)保護效應。比如,在脊髓損傷中,增加鐵離子和TNF的濃度可以使MG由M1轉(zhuǎn)變?yōu)镸2表型[14]。MG存在的這種矛盾的雙向極化狀態(tài),既參與腦卒中損傷后“炎性損傷”導致的認知功能下降,也參與“促進修復”后的認知能力的改善[15]。在腦卒中損傷后早期,MG會迅速到達損傷部位,在脂多糖(lipopolysaccharide, LPS)、γ干擾素(interferon-γ, IFN-γ)等促炎分子誘導下,通過Toll樣受體(Toll-like receptor, TLR)等釋放大量炎癥因子,極化為M1型[16]。M1型MG可以上調(diào)誘導型一氧化氮合酶(inducible nitric oxide synthase, iNOS)、表面受體(CD16/32)、主要組織相容性復合體Ⅱ(major histocompatibility complex-Ⅱ, MHC-Ⅱ)的表達,還能釋放IFN-γ、IL-1β、TNF-α、IL-6、IL-12、IL-23等大量的炎癥因子以及趨化因子CC族趨化因子配體(CC chemokine ligand, CCL)(CCL2、CCL4、CCL5、CCL8等),提高CNS對傷害性刺激的防御清除能力[17]。但同時又會出現(xiàn)神經(jīng)炎癥反應導致神經(jīng)元損傷、丟失或脫髓鞘,發(fā)揮細胞毒性作用,所以M1型又被稱為促炎/神經(jīng)毒性型。在腦卒中損傷后期,MG則會向M2表型轉(zhuǎn)換。M2型MG能夠被IL-4/IL-3誘導,分泌IL-10、轉(zhuǎn)化生長因子-β(transforming growth factor-β, TGF-β)等高水平的抗炎細胞因子、胰島素生長因子(insulin-like growth factors, IGF)、腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor, BDNF)、血管內(nèi)皮生長因子(vascular endothelial growth factors, VEGF)等神經(jīng)營養(yǎng)因子,并表達與免疫分解相關(guān)的因子CD206和精氨酸酶-1(arginase-1, Arg-1來降解神經(jīng)毒性蛋白,最終阻斷促炎反應,促進組織愈合和神經(jīng)元修復,故M2型又稱抗炎/神經(jīng)保護型[18]。常用的M1表型MG特異性表面標志物包括MHC-Ⅱ、CD16/32/80/86/40等,M2表型表面標志物為Ym1、Arg-1、CD206/68等[19]。M1/M2表型細胞標志物的變化是機體腦卒中損傷后最早出現(xiàn)的炎癥表現(xiàn)。既往研究顯示,腦缺血模型腦組織中iNOS信號在3~4 d內(nèi)增加約為正常水平的3倍,達到峰值,隨后在第7天時開始降低,而Ym1在第11~13天才達到峰值[20]。觀察早期膠原酶誘導的小鼠腦出血模型發(fā)現(xiàn),M1表型MG占主導地位,此時小鼠體內(nèi)炎癥因子水平處于升高狀態(tài)且加劇了認知損傷,隨后被M2型所取代,起到改善中樞炎性損傷、抑制神經(jīng)元凋亡及修復損傷神經(jīng)等作用[21]。上述證據(jù)將MG極化與腦卒中后的炎癥反應聯(lián)系起來,理論上,如果維持正常的M2激活狀態(tài),減少M1的過度激活,不失為一種有效干預PSCI病理過程的研究策略。
1.3? M1/M2表型轉(zhuǎn)換的作用機制
炎癥因子、膜受體、轉(zhuǎn)錄因子、離子通道蛋白等表達水平是神經(jīng)疾病的重要調(diào)節(jié)靶標,能夠發(fā)出表型轉(zhuǎn)換信號。另外,不同信號轉(zhuǎn)導途徑也能靶向調(diào)控MG的極化過程。下文對調(diào)控MG表型轉(zhuǎn)換的相關(guān)信號因子以及遷移率族蛋白B1(high mobility group box 1, HMGB1)/TLR4/核轉(zhuǎn)錄因子κB(nuclear factor kappa-B, NF-κB)、Janus酪氨酸蛋白激酶/信號轉(zhuǎn)導和轉(zhuǎn)錄激活子蛋白(Janus kinase/signal transducers and activators of transcription, JAK/STAT)、白細胞介素-33/生長刺激表達基因2蛋白(interleukin-33/growth stimulation expressed gene 2, IL-33/ST2)等信號通路的作用和機制進行探討。
1.3.1? 相關(guān)信號因子對MG表型的調(diào)控? 腦缺血早期,受損神經(jīng)元會誘導大量谷氨酸釋放,介導Ca2+通道開放,引起Ca2+超載性損傷,誘導神經(jīng)元凋亡[22]。缺血腦損傷后期,內(nèi)流的Ca2+激活鈣調(diào)磷酸酶/活化T細胞核因子信號通路,促使缺血半暗帶存活的神經(jīng)元大量分泌IL-4。IL-4通過進一步誘導IL-4R和過氧化物酶體增殖物激活的受體-γ(peroxisome proliferators-activated receptor γ, PPAR-γ)的活化,導致MG從促炎表型極化為抗炎表型,促進腦缺血損傷修復及認知記憶的形成[4]。既往研究在認知功能損害的衰老動物體內(nèi)觀察到了IL-4的降低及炎癥因子的增加,而IL-4基因敲除的腦缺血小鼠則認知、感覺運動障礙加重,并伴有M2型極化障礙[23]。β淀粉樣蛋白(amyloid β-protein, Aβ)寡聚體是AD發(fā)病機制中的核心致病物質(zhì),在PSCI患者腦組織中,也發(fā)現(xiàn)了Aβ的沉積[24]。NOD樣受體蛋白3(NOD-like receptor protein 3, NLRP3)作為Aβ的感受器,參與炎癥MG的活化[25]。缺血性腦卒中發(fā)生后,MG內(nèi)NLRP3、凋亡相關(guān)斑點樣蛋白(apoptosis-associated speck-like protein containing a card domain, ASC)、procaspase-1效應蛋白會組裝成NLRP3炎癥小體,觸發(fā)pro-Caspase-1向Caspase-1轉(zhuǎn)化并催化IL-1β和IL-18的成熟與分泌,導致慢性神經(jīng)毒性,加重腦損傷[26]。研究發(fā)現(xiàn),下調(diào)NLRP3炎癥小體有助于誘導M2表型分化,減少APP/PS1小鼠體內(nèi)Aβ沉積[27]。髓系細胞觸發(fā)受體2(triggering receptor expressed on myeloid cells 2, TREM2)是一種主要表達于MG中的跨膜受體,TREM2的過表達可以通過降低iNOS和促炎細胞因子表達水平抑制M1活化,并通過增加Arg-1和抗炎細胞因子表達水平增強M2表達[28]。miR-124是一種在MG中高度表達的腦特異性miRNA,在神經(jīng)退行性功能方面發(fā)揮著重要作用[29]。病理條件下,miR-124下調(diào)可導致小膠質(zhì)細胞M1極化增加,加劇神經(jīng)炎癥損傷[30]。YANG等[31]研究發(fā)現(xiàn),通過上調(diào)腦損傷小鼠體內(nèi)的miR-124表達水平,可以抑制M1極化相關(guān)的TLR4信號傳導途徑,減少炎癥因子釋放,增加M2標志物表達,從而減輕神經(jīng)炎癥反應。CCAAT增強子結(jié)合蛋白-α(CCAAT/enhancer-binding protein-alpha, C/EBP-α)在M1型MG中存在高度表達,研究腦出血小鼠模型時發(fā)現(xiàn),miR-124可與C/EBP-α的3個非翻譯區(qū)結(jié)合并下調(diào)C/EBP-α表達水平,促進MG發(fā)生M2極化,有助于神經(jīng)元修復[32]。
1.3.2? HMGB1/TLR4/NF-κB信號通路對MG表型的調(diào)控? HMGB1/TLR4/NF-κB信號通路是目前被研究較多且明確與MG表型轉(zhuǎn)化相關(guān)的通路。HMGB1廣泛表達于CNS中,是真核細胞廣泛表達的一種高度保守的細胞核非組蛋白,HMGB1可作為炎癥因子,激活MG并加劇腦損傷,腦中HMGB1水平升高也會引起記憶異常[33]。腦損傷狀況下,HMGB1由核進入細胞漿內(nèi),與TLR結(jié)合[34]。TLR是一類主要表達于免疫細胞上的跨膜受體,TLR4活化會招募下游的適配器蛋白髓樣分化因子88(myeloid differentiation factor 88, MyD88)快速激活NF-κB,促進TNF-α、iNOS、IFN-γ等炎癥介質(zhì)表達,引起細胞M1活化明顯增加,發(fā)生炎癥反應[35]。另外,核因子紅系相關(guān)因子2(nuclear factor erythroid 2 related factor 2, Nrf2)可以通過下調(diào)NF-κB促進抗炎表型轉(zhuǎn)化[36]。Nrf2是近年來發(fā)現(xiàn)的腦卒中和神經(jīng)退行性疾病中調(diào)節(jié)MG的重要靶點,影響腦出血后血腫清除、水腫形成,以及繼發(fā)性神經(jīng)功能缺損[37]。
1.3.3? JAK2/STAT3信號通路對MG表型的調(diào)控? JAK/STAT信號通路由酪氨酸激酶相關(guān)受體、JAK和STAT組成。STATs是JAK的下游靶點,STAT3與JAK2結(jié)合后可導致STAT3磷酸化并發(fā)生核轉(zhuǎn)移,隨后啟動編碼促炎細胞因子和趨化因子靶基因的轉(zhuǎn)錄。YANG等[38]發(fā)現(xiàn)激活JAK2/STAT3信號通路可通過增加IL-1β的表達,誘發(fā)缺血性腦病鼠腦部損傷和認知行為異常。STAT3在AD小鼠的腦組織中的表達增高,可能與AD的慢性炎性損傷有關(guān)[39]。細胞因子信號轉(zhuǎn)導抑制因子SOCS1、SOCS3通過與JAK結(jié)合能夠抑制STAT1及STAT3的促炎反應,增強SOCS信號來緩解炎癥反應并促使M2表型極化[40]。
1.3.4? IL-33/ST2信號通路對MG表型的調(diào)控? IL-33/ST2信號通路能夠通過影響神經(jīng)功能、腦梗死體積和調(diào)節(jié)卒中后炎癥反應等來影響卒中嚴重程度。大腦中動脈阻塞改善后的小鼠IL-33 mRNA和ST2表達水平顯著升高[41]。研究還發(fā)現(xiàn),MG通過吞噬作用可以清除Aβ以及修剪突觸來影響AD的發(fā)生,Aβ的過度刺激會使M1型大量表達,而M2型卻受到抑制,造成M1/M2穩(wěn)態(tài)失衡[42]。IL-33能夠抑制腦內(nèi)Aβ的分泌并加強MG的清除作用[43]。此外,IL-33通過誘導MG增殖上調(diào)促炎因子IL-1β和TNF-α的同時,對抗炎因子IL-10的表達也起到了上調(diào)作用[44]。通過激活I(lǐng)L-33/ST2信號通路,可以上調(diào)MG中IL-10及其他M2型基因的表達,有助于減輕腦卒中后的神經(jīng)炎癥反應和神經(jīng)元損傷;而IL-33的受體ST2缺乏將向M1型狀態(tài)轉(zhuǎn)變,加劇急性腦缺血再灌注損傷后的腦梗死面積[41]。但也有數(shù)據(jù)表明,IL-33對M1/M2表型轉(zhuǎn)換的調(diào)節(jié)作用以及延緩腦缺血損傷的有效期可能在24~72 h內(nèi),且IL-33的過表達也可能加劇中風小鼠的肺部感染和死亡[45]。
1.3.5? 其他信號通路對MG表型的調(diào)控? p38是促分裂原活化的蛋白激酶(mitogen-activated protein kinase, MAPK)的一個經(jīng)典分支,激活p38 MAPK途徑會產(chǎn)生促炎效應,促進MG向M1型極化[46]。研究顯示,IL、LPS、TNF-α的刺激可以激活p38而活化MG,促進炎癥因子和趨化因子的產(chǎn)生以及NLRP3炎癥小體的激活[47]。Notch與細胞內(nèi)炎性表達密切相關(guān),是參與調(diào)控MG功能、活化炎癥相關(guān)因子的重要信號通路之一。Notch通路比較復雜,主要由Notch受體、Notch配體、CSLDNA結(jié)合蛋白、下游靶基因4部分組成。缺血性腦卒中后損傷發(fā)生后,MG中Notch信號通路的表達增強,Notch受體被切割,釋放出Notch胞內(nèi)結(jié)構(gòu)域NICD,誘導下游靶基因如Hes家族成員和NF-κB發(fā)生活化,其中炎癥因子TNF-α、IL-1β,M1表型標志物iNOS以及Notch1、Hes1蛋白表達水平顯著升高[48]。此外,MG激活與PPAR通路也相關(guān),在缺血缺氧環(huán)境中,PPARγ蛋白和M2表型標志物CD206表達會上調(diào)[49]。研究發(fā)現(xiàn),安腦平?jīng)_方可能通過激活PPARγ信號通路發(fā)生M2型極化,減輕氯化血紅素干預BV2細胞的炎癥反應[50]。上述研究表明,促進M2表型極化,發(fā)揮M2型小膠質(zhì)細胞的修復抗炎特性,對腦卒中后的損傷及PSCI的防治具有重要意義。
2 中藥調(diào)控MG表型轉(zhuǎn)化改善PSCI的藥理作用
2.1? 單味中藥及有效成分作用機制
雷公藤紅素為雷公藤根莖的提取物,具有良好的抗炎活性[51]。JIANG等[52]研究腦缺血模型大鼠時發(fā)現(xiàn),雷公藤紅素能夠有效調(diào)節(jié)IL-33/ST2信號通路,介導MG向M2表型極化,顯著抑制大鼠體內(nèi)炎癥反應,減少神經(jīng)元壞死,改善顱腦損傷。此外,積雪草提取物積雪草酸改善大鼠蛛網(wǎng)膜下腔出血后細胞凋亡的作用機制可能也與激活I(lǐng)L-33/ST2信號通路相關(guān)[53]。楊云方等[30]發(fā)現(xiàn),五味子能夠上調(diào)miR-124,促進TLR4下游蛋白MyD88的表達,抑制TLR4信號通路,阻止NF-κB入核,減少炎癥因子的表達。白藜蘆醇能夠激活JAK/STAT/SOCS3信號通路,釋放抗炎因子IL-10,限制MG活化[54]。姜黃素通過JAK/STAT/SOCS1信號通路誘導M2樣MG表型,改善神經(jīng)功能[55],還能激活磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳動物雷帕霉素蛋白(phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin, PI3K/AKT/mTOR)信號通路[56],促進短暫性腦缺血小鼠體內(nèi)發(fā)生M2型極化,減少小鼠腦梗死體積,減輕神經(jīng)炎癥[57]。此外,研究還發(fā)現(xiàn),姜黃素的有效物質(zhì)苯丙?;梢砸种芅otch信號通路的激活,減少白三烯、前列腺素等炎癥因子的釋放[58]。Tau蛋白的過度磷酸化在胞內(nèi)形成神經(jīng)元纖維結(jié),誘導MG激活并釋放促炎因子是AD的發(fā)病機制之一,也是PSCI的重要影響因素[59]。遠志皂苷具有消除神經(jīng)炎癥的作用,可以抑制MG中的NLRP3炎性體活化,保護大腦神經(jīng)元免受炎癥影響,減少Aβ和磷酸化Tau蛋白的異常聚集[60]。同時,遠志皂苷可以調(diào)節(jié)多條神經(jīng)信號通路,通過下調(diào)NF-κB信號通路來保護SH-SY5Y細胞免受Aβ42寡聚體誘導的MG所介導的炎癥[61],也能夠以激活Nrf2介導的血紅素加氧酶-1(heme oxygenase-1, HO-1)信號通路的方式來減輕MG炎癥反應,抑制TNF-α、IL-1β、IL-6的釋放[62],即增加Nrf2活性,可降低M1型MG的活化和增殖。研究顯示,Nrf2/HO-1信號通路負調(diào)控IL-6、IL-1β、TNF-α和Cleaved Caspase-3表達,發(fā)揮抗炎、抗氧化、抗凋亡、抑制細胞毒性的作用,而Caspase-3水平升高會增加缺血再灌注后的腦損傷[63]。此外,在缺血性腦卒中模型中,人參皂苷Rg1[64]、青蒿提取物異澤蘭黃素[65]、紅景天苷[66]等可以調(diào)節(jié)MG介導的細胞因子和相關(guān)介質(zhì),誘導M1促炎向M2抗炎表型轉(zhuǎn)變,發(fā)揮保護神經(jīng)元活性、促進神經(jīng)可塑性以及改善認知功能的作用,但具體機制尚不明確。
2.2? 中藥復方作用機制
大量動物實驗證實,補陽還五湯對腦缺血后的炎癥反應具有保護和修復作用,有助于腦神經(jīng)功能恢復。甘海燕等[67]認為,補陽還五湯通過抑制大腦中動脈阻塞模型大鼠M1型MG表面標志物iNOS及其分泌的促炎因子TNF-α、IL-6和IL-1β的mRNA表達,促進M2型MG表面標志物CD206、Arg-1及其分泌的抗炎因子IL-10和TGF-β mRNA表達以實現(xiàn)M1型向M2型轉(zhuǎn)化。蘇合香丸也可以降低血清中IL-6、TNF-α等炎癥因子的表達,抑制Aβ誘導的p38 MAPK、JNK、Tau蛋白磷酸化水平,提高神經(jīng)遞質(zhì)轉(zhuǎn)運活性,保持大腦興奮性[68]。龍血通絡膠囊通過靶向JAK1/STAT3信號通路的磷酸化,下調(diào)iNOS、環(huán)氧合酶-2(cyclooxygenase-2, COX-2)蛋白的表達來治療恢復期的缺血性中風[69]。戴建業(yè)等[34]發(fā)現(xiàn),加味溫膽湯能夠升高M2型MG比例,增加血清中抗炎因子IL-4、IL-10、IL-13的表達,并下調(diào)海馬區(qū)HMGB1、TLR4、NF-κB蛋白的表達水平,其作用機制可能是通過抑制HMGB1/TLR4/NF-κB通路,使MG由M1型向M2型轉(zhuǎn)化,從而加速神經(jīng)元修復。
3 總結(jié)與展望
神經(jīng)炎癥對腦卒中后腦神經(jīng)元的影響作用,取決于炎癥反應的持續(xù)時間和MG激活的表型,通過干預MG極化,啟動M1向M2表型轉(zhuǎn)化,被認為是治療神經(jīng)退行性疾病的一種有效策略。綜上所述,MG激活所介導的神經(jīng)炎癥反應是PSCI發(fā)病的關(guān)鍵作用機制,其中NLRP3、HMGB1/TLR4/NF-κB、JAK2-STAT3、p38 MAPK和Notch信號通路可以促進MG表型極化為M1,發(fā)生炎癥反應。而IL-4、TREM2、miR-124、IL-33/ST2、PPAR信號通路則與M2抗炎表型相關(guān)。中藥單體、活性成分及復方可以靶向調(diào)節(jié)MG表型轉(zhuǎn)化,在防治PSCI方面發(fā)揮了神經(jīng)保護以及促進腦損傷修復的作用。陰陽學說是中醫(yī)學理論體系的研究基礎,任何陰陽的偏盛、偏衰均會造成機體的病理性表現(xiàn)。腦卒中損傷發(fā)生后,MG發(fā)生極化,其中M1型較M2型占優(yōu)勢,此時促炎與抗炎之間的平衡被打破,并在一定條件下發(fā)生表型轉(zhuǎn)化。因此,從中藥治療的角度通過一系列信號轉(zhuǎn)導途徑靶向調(diào)節(jié)MG極化狀態(tài)的平衡,探討中藥對腦卒中后神經(jīng)炎癥的影響,協(xié)調(diào)兩種表型在腦損傷微環(huán)境中促炎與抗炎的關(guān)系,才能達到陰陽平衡的目的。但M1/M2型極化方向不能完整地顯示MG的作用,對于其免疫功能的認識也并不全面,臨床研究較少。另外,目前中醫(yī)藥對MG表型轉(zhuǎn)化的調(diào)控機制研究尚淺,今后中醫(yī)藥干預PSCI的研究應主要集中于表型極化的具體調(diào)控機制。
參考文獻
[1] MIJAJLOVI M D, PAVLOVI A, BRAININ M, et al. Post-stroke dementia-a comprehensive review[J]. BMC Medicine, 2017, 15(1): 11.
[2] SEMINOG O O, SCARBOROUGH P, WRIGHT F L, et al. Determinants of the decline in mortality from acute stroke in England: Linked national database study of 795 869 adults[J]. British Medical Journal, 2019, 365: l1778.
[3] LEVINE D A, GALECKI A T, LANGA K M, et al. Trajectory of cognitive decline after incident stroke[J]. JAMA, 2015, 314(1): 41-51.
[4] 李倩倩, 李小黎, 陳雨菲, 等. IL-4調(diào)控小膠質(zhì)細胞極化在血管性認知障礙中的作用機制研究進展[J]. 中國實用神經(jīng)疾病雜志, 2022, 25(6): 785-788.
[5] BACK D B, KWON K J, CHOI D H, et al. Chronic cerebral hypoperfusion induces post-stroke dementia following acute ischemic stroke in rats[J]. Journal of Neuroinflammation, 2017, 14(1): 216.
[6] XUE Y M, NIE D, WANG L J, et al. Microglial polarization: Novel therapeutic strategy against ischemic stroke[J]. Aging and Disease, 2021, 12(2): 466-479.
[7] 李? 瑤, 陳? 旖, 朱丹妮, 等. 重組人神經(jīng)生長因子抑制小膠質(zhì)細胞炎癥反應發(fā)揮神經(jīng)保護作用[J/OL].中國藥理學與毒理學雜志:1-9[2023-03-25].http://kns.cnki.net/kcms/detail/11.1155.R.20220427.1620.002.html.
[8] 安蘭花, 胡家力, 劉雪曼, 等. 中醫(yī)藥調(diào)控微環(huán)境促進缺血性卒中后腦功能重塑的關(guān)鍵信號通路[J]. 中華中醫(yī)藥學刊, 2022, 40(6): 192-196.
[9] NARASIMHALU K, LEE J, LEONG Y L, et al. Inflammatory markers and their association with post stroke cognitive decline[J]. International Journal of Stroke, 2015, 10(4): 513-518.
[10] NGUYEN P T, DORMAN L C, PAN S, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity[J]. Cell, 2020, 182(2): 388-403.
[11] 徐家歡, 王? 瑋. 小膠質(zhì)細胞在慢性間歇低氧相關(guān)認知障礙中的作用[J]. 中國病理生理雜志, 2022, 38(3): 566-571.
[12] V?魣ZQUEZ-ROSA E, SHIN M K, DHAR M, et al. P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27667-27675.
[13] LIU H, ZHANG Z H, ZANG C X, et al. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation[J]. Journal of Ethnopharmacology, 2021, 267: 113491.
[14] BURGUILLOS M A, SVENSSON M, SCHULTE T, et al. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation[J]. Cell Reports, 2015, 10(9): 1626-1638.
[15] GANT J C, BLALOCK E M, CHEN K C, et al. FK506-binding protein 12.6/1b, a negative regulator of[Ca2+], rescues memory and restores genomic regulation in the Hippocampus of aging rats[J]. The Journal of Neuroscience, 2018, 38(4): 1030-1041.
[16] YANG Z Y, LIU B P, YANG L E, et al. Platycodigenin as potential drug candidate for Alzheimer's disease via modulating microglial polarization and neurite regeneration[J]. Molecules, 2019, 24(18): 3207.
[17] ZHOU X, ZHANG J Y, LI Y X, et al. Astaxanthin inhibits microglia M1 activation against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-31-5p[J]. Life Sciences, 2021, 267: 118943.
[18] GUO S R, WANG H, YIN Y F. Microglia polarization from M1 to M2 in neurodegenerative diseases[J]. Frontiers in Aging Neuroscience, 2022, 14: 815347.
[19] XU H Z, WANG Z J, LI J R, et al. The polarization states of microglia in TBI: A new paradigm for pharmacological intervention[J]. Neural Plasticity, 2017, 2017: 5405104.
[20] COLLMANN F M, PIJNENBURG R, HAMZEI-TAJ S, et al. Individual in vivo profiles of microglia polarization after stroke, represented by the genes iNOS and Ym1[J]. Frontiers in Immunology, 2019, 10: 1236.
[21] LAN X, HAN X N, LI Q, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia[J]. Brain, Behavior, and Immunity, 2017, 61: 326-339.
[22] PAOLETTI P, BELLONE C, ZHOU Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease[J]. Nature Reviews Neuroscience, 2013, 14(6): 383-400.
[23] TING S M, ZHAO X R, ZHENG X P, et al. Excitatory pathway engaging glutamate, calcineurin, and NFAT upregulates IL-4 in ischemic neurons to polarize microglia[J]. Journal of Cerebral Blood Flow & Metabolism, 2020, 40(3): 513-527.
[24] ROST N S, BRODTMANN A, PASE M P, et al. Post-stroke cognitive impairment and dementia[J]. Circulation Research, 2022, 130(8): 1252-1271.
[25] HALLE A, HORNUNG V, PETZOLD G C, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta[J]. Nature Immunology, 2008, 9(8): 857-865.
[26] LIU X, LEI Q. TRIM62 knockout protects against cerebral ischemic injury in mice by suppressing NLRP3-regulated neuroinflammation[J]. Biochemical and Biophysical Research Communications, 2020, 529(2): 140-147.
[27] HENEKA M T, KUMMER M P, STUTZ A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493(7434): 674-678.
[28] WANG Q, YANG W X, ZHANG J M, et al. TREM2 overexpression attenuates cognitive deficits in experimental models of vascular dementia[J]. Neural Plasticity, 2020, 2020: 8834275.
[29] 施昌勝, 孫彩霞, 胡? 琪, 等. 微小RNA在缺血性腦卒中的研究進展[J]. 南京醫(yī)科大學學報(自然科學版), 2023, 43(4): 582-588.
[30] 楊云方, 張? 悅, 彭? 景, 等. 五味子基于miR-124調(diào)控TLR4通路介導小膠質(zhì)細胞表型轉(zhuǎn)化機制[J]. 藥學學報, 2023, 58(2): 377-385.
[31] YANG Y X, YE Y Q, KONG C G, et al. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced Hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway[J]. Neurochemical Research, 2019, 44(4): 811-828.
[32] YU A Y, ZHANG T X, DUAN H Z, et al. MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage[J]. Immunology Letters, 2017, 182: 1-11.
[33] 韓莉花, 袁? 欣, 楊真兒, 等. 葛根知母藥對調(diào)控HMGB1/RAGE/NF-κB通路改善糖尿病大鼠認知障礙[J]. 中藥藥理與臨床, 2020, 36(1): 124-130.
[34] 戴建業(yè), 張? 齊, 張? 曼, 等. 加味溫膽湯對抑郁大鼠HMGB1/TLR4/NF-κB通路及小膠質(zhì)細胞極化的影響[J]. 中國中醫(yī)基礎醫(yī)學雜志, 2022, 28(5): 723-727.
[35] TABETA K, GEORGEL P, JANSSEN E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(10): 3516-3521.
[36] WANG Y J, HUANG Y, XU Y Z, et al. A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization[J]. Antioxidants & Redox Signaling, 2018, 28(2): 141-163.
[37] 包霜謹, 劉麗榮, 要振佳, 等. Nrf2調(diào)控小膠質(zhì)細胞功能轉(zhuǎn)化在腦出血后血腫清除中的作用機制[J]. 中國現(xiàn)代醫(yī)學雜志, 2022, 32(17): 38-47.
[38] YANG X L, WANG X, SHAO L, et al. TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI)[J]. Journal of Neuroinflammation, 2019, 16(1): 114.
[39] WAN J, FU A K Y, IP F C F, et al. Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: Implications in Alzheimer's disease[J]. The Journal of Neuroscience, 2010, 30(20): 6873-6881.
[40] BOSCO J, RUGANZU. TREM2 overexpression rescues cognitive deficits in APP/PS1 transgenic mice by reducing neuroinflammation via the JAK/STAT/SOCS signaling pathway[J]. Experimental Neurology, 2021, 336: 113506.
[41] YANG Y Y, LIU H, ZHANG H Y, et al. ST2/IL-33-dependent microglial response limits acute ischemic brain injury[J]. The Journal of Neuroscience, 2017, 37(18): 4692-4704.
[42] JIE F, YANG X, YANG B W, et al. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation[J]. Biomedecine & Pharmacotherapie, 2022, 153: 113317.
[43] 李虹瑩, 沈? 緣, 謝璐霜, 等. 艾灸通過IL-33/ST2通路促進阿爾茨海默病海馬小膠質(zhì)細胞向M2方向極化[J/OL]. 針刺研究:1-10[2023-03-25].https://doi.org/10.13702/j.1000-0607.20220877.
[44] YASUOKA S, KAWANOKUCHI J, PARAJULI B, et al. Production and functions of IL-33 in the central nervous system[J]. Brain Research, 2011, 1385: 8-17.
[45] 李虹瑩, 沈? 緣, 吳巧鳳, 等. 小膠質(zhì)細胞極化信號通路在神經(jīng)炎癥中的研究進展[J]. 實用醫(yī)學雜志, 2022, 38(14): 1838-1841.
[46] ZHOU L, WANG D S, QIU X J, et al. DHZCP modulates microglial M1/M2 polarization via the p38 and TLR4/NF-κB signaling pathways in LPS-stimulated microglial cells[J]. Frontiers in Pharmacology, 2020, 11: 1126.
[47] 楊樹升, 林? 麗. 大承氣湯對腦出血模型大鼠小膠質(zhì)細胞的作用及機制探討[J]. 華中科技大學學報(醫(yī)學版), 2021, 50(6): 728-733.
[48] LI Q Q, DING D H, WANG X Y, et al. Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway[J]. Experimental Neurology, 2021, 339: 113645.
[49] ZHOU D D, JI L, CHEN Y G. TSPO modulates IL-4-induced microglia/macrophage M2 polarization via PPAR-γ pathway[J]. Journal of Molecular Neuroscience, 2020, 70(4): 542-549.
[50] 張? 瑛, 高曉峰, 郭? 純, 等. 基于PPARγ信號通路探討安腦平?jīng)_方極化M2型小膠質(zhì)細胞減輕腦出血后神經(jīng)炎癥的作用機制[J]. 湖南中醫(yī)藥大學學報, 2023, 43(3): 405-412.
[51] 徐資怡, 石金鳳, 鮮? 靜, 等. 雷公藤紅素單用和聯(lián)用抗腫瘤作用機制的研究進展[J]. 中草藥, 2021, 52(14): 4372-4385.
[52] JIANG M, LIU X H, ZHANG D H, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization[J]. Journal of Neuroinflammation, 2018, 15(1): 78.
[53] 胡? 煒, 劉建敏, 金海濤, 等. 積雪草酸對大鼠蛛網(wǎng)膜下腔出血后IL-33/ST2信號通路及小膠質(zhì)細胞的影響[J]. 山西醫(yī)科大學學報, 2021, 52(10): 1319-1324.
[54] CIANCIULLI A, CALVELLO R, PORRO C, et al. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts[J]. Cytokine & Growth Factor Reviews, 2017, 37: 67-79.
[55] PORRO C, CIANCIULLI A, TROTTA T, et al. Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in BV-2 microglial cells[J]. Biology, 2019, 8(3): 51.
[56] YANG S L, WANG H G, YANG Y L, et al. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage[J]. Biomedicine & Pharmacotherapy, 2019, 117: 109102.
[57] LIU Z J, RAN Y Y, HUANG S, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization[J]. Frontiers in Aging Neuroscience, 2017, 9: 233.
[58] 吳? 非, 周長甫, 黎紅華, 等. 姜黃素對BV2小膠質(zhì)細胞Notch信號通路的調(diào)控作用[J]. 華南國防醫(yī)學雜志, 2015, 29(7): 499-502, 522.
[59] TANG S C, YANG K C, CHEN C H, et al. Plasma β-amyloids and tau proteins in patients with vascular cognitive impairment[J]. Neuromolecular Medicine, 2018, 20(4): 498-503.
[60] FAN Z, LIANG Z G, YANG H, et al. Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia[J]. Journal of Neuroinflammation, 2017, 14(1): 256.
[61] CHEN S Q, JIA J P. Tenuifolin attenuates amyloid-β42-induced neuroinflammation in microglia through the NF-κB signaling pathway[J]. Journal of Alzheimer's Disease, 2020, 76(1): 195-205.
[62] WANG X K, LI M, CAO Y Z, et al. Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway[J]. European Journal of Pharmacology, 2017, 809: 196-202.
[63] WANG X J, REN J L, ZHANG A H, et al. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence[J]. Mass Spectrometry Reviews, 2019, 38(4/5): 380-402.
[64] SHI D D, HUANG Y H, LAI C S W, et al. Ginsenoside Rg1 prevents chemotherapy-induced cognitive impairment: Associations with microglia-mediated cytokines, neuroinflammation, and neuroplasticity[J]. Molecular Neurobiology, 2019, 56(8): 5626-5642.
[65] QIAO H B, LI J, LV L J, et al. Eupatilin inhibits microglia activation and attenuates brain injury in intracerebral hemorrhage[J]. Experimental and Therapeutic Medicine, 2018, 16(5): 4005-4009.
[66] XIE Z P, LU H, YANG S X, et al. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis[J]. Frontiers in Pharmacology, 2020, 11: 568423.
[67] 甘海燕, 李? 琳, 楊? 琰, 等. 補陽還五湯調(diào)控小膠質(zhì)細胞/巨噬細胞極化抑制大鼠腦缺血后炎癥反應研究[J]. 浙江中醫(yī)藥大學學報, 2019, 43(1): 1-6.
[68] 丁志敏, 高? 靜, 蘇凱奇, 等. p38 MAPK信號通路在腦卒中后認知障礙中的作用及在中藥防治中的藥理研究進展[J]. 中國藥房, 2022, 33(8): 1014-1020.
[69] HONG Q, YANG Y, WANG Z H, et al. Longxuetongluo capsule alleviates lipopolysaccharide-induced neuroinflammation by regulating multiple signaling pathways in BV2 microglia cells[J]. Journal of the Chinese Medical Association, 2020, 83(3): 255-265.
(本文編輯? 周? 旦)