鄭通 張立杰
摘要:為了研究中國(guó)服裝企業(yè)數(shù)字化轉(zhuǎn)型的主要影響因素和轉(zhuǎn)型程度,文章以中國(guó)服裝行業(yè)上市企業(yè)為研究對(duì)象,從技術(shù)變革能力、組織變革能力和業(yè)務(wù)變革能力3個(gè)維度建立了服裝行業(yè)上市企業(yè)數(shù)字化轉(zhuǎn)型評(píng)價(jià)指標(biāo)體系,并運(yùn)用熵權(quán)—TOPSIS評(píng)價(jià)法對(duì)中國(guó)24家服裝行業(yè)上市企業(yè)2018—2021年的企業(yè)面板數(shù)據(jù)進(jìn)行了分析。權(quán)重分析結(jié)果表明,業(yè)務(wù)變革能力權(quán)重為0.365,對(duì)中國(guó)服裝行業(yè)上市企業(yè)數(shù)字化轉(zhuǎn)型的影響最大。數(shù)字化轉(zhuǎn)型指數(shù)表明,超過(guò)50%的樣本企業(yè)數(shù)字化程度有所提升;2018—2021年的數(shù)字化指數(shù)平均值分別為0.288、0.292、0.333和0.336,整體取得一定進(jìn)展,但程度較低。最后基于企業(yè)層面,分析了數(shù)字化轉(zhuǎn)型程度低的原因并給出相關(guān)建議。
關(guān)鍵詞:數(shù)字化轉(zhuǎn)型;服裝企業(yè);熵權(quán)—TOPSIS;影響因素;權(quán)重;轉(zhuǎn)型指數(shù)
中圖分類號(hào):TS941.1; F407.86??? 文獻(xiàn)標(biāo)志碼:A???文章編號(hào): 10017003(2023)090001
引用頁(yè)碼:091101? ? DOI: 10.3969/j.issn.1001-7003.2023.09.001(篇序)
隨著數(shù)字化浪潮席卷全球,以大數(shù)據(jù)、互聯(lián)網(wǎng)、人工智能等新興數(shù)字技術(shù)驅(qū)動(dòng)的“數(shù)字經(jīng)濟(jì)”成為研究熱點(diǎn),傳統(tǒng)制造型企業(yè)數(shù)字化轉(zhuǎn)型成為未來(lái)發(fā)展趨勢(shì)[1]。服裝行業(yè)作為傳統(tǒng)制造業(yè)之一,在中國(guó)經(jīng)濟(jì)發(fā)展中占有重要地位。2016年G20峰會(huì)通過(guò)《二十國(guó)集團(tuán)數(shù)字經(jīng)濟(jì)發(fā)展與合作倡議》以來(lái),中國(guó)服裝企業(yè)數(shù)字化相關(guān)研究迅速增加,研究?jī)?nèi)容主要集中在對(duì)數(shù)字技術(shù)應(yīng)用介紹[2-3]、轉(zhuǎn)型路徑分析[4]等,缺乏基于企業(yè)層面的轉(zhuǎn)型效果評(píng)價(jià)。
TOPSIS法又稱為優(yōu)劣解距離法,本質(zhì)上是一種綜合排序方法,具有對(duì)數(shù)據(jù)信息利用充分、計(jì)算簡(jiǎn)單、精確反映評(píng)價(jià)對(duì)象與最優(yōu)目標(biāo)的接近程度等優(yōu)點(diǎn),常被用于解決多層次、多指標(biāo)的企業(yè)轉(zhuǎn)型評(píng)價(jià)[5]。熵權(quán)法是一種指標(biāo)權(quán)重的客觀賦權(quán)方法,熵值的大小反映了指標(biāo)數(shù)據(jù)信息量,權(quán)重計(jì)算完全按照指標(biāo)間的數(shù)值離散程度來(lái)設(shè)置,具有極強(qiáng)的客觀性和適應(yīng)性[6]。將熵權(quán)法與TOPSIS評(píng)價(jià)法結(jié)合,適用于本文構(gòu)建的多層次、多指標(biāo)的服裝企業(yè)數(shù)字化轉(zhuǎn)型指標(biāo)體系,并且評(píng)價(jià)結(jié)果客觀,邏輯清晰。
綜上所述,本文采用熵權(quán)法對(duì)指標(biāo)進(jìn)行賦權(quán),分析各個(gè)指標(biāo)在數(shù)字化轉(zhuǎn)型過(guò)程中的重要程度;將權(quán)重值帶入TOPSIS評(píng)價(jià)法,計(jì)算各個(gè)服裝企業(yè)數(shù)字化轉(zhuǎn)型指數(shù)并進(jìn)行評(píng)價(jià)。研究結(jié)果可為中國(guó)服裝企業(yè)順利進(jìn)行數(shù)字化轉(zhuǎn)型提供一定參考。
1 熵權(quán)—TOPSIS評(píng)價(jià)法和數(shù)據(jù)來(lái)源
1.1 熵權(quán)—TOPSIS評(píng)價(jià)法
綜合運(yùn)用熵權(quán)—TOPSIS評(píng)價(jià)法,可以克服TOPSIS方法無(wú)法反映變量之間相關(guān)性和重要程度的缺點(diǎn),通過(guò)無(wú)量綱化處理也可以有效避免逆序問(wèn)題[7]。熵權(quán)—TOPSIS評(píng)價(jià)法的計(jì)算原理如下:
1) 正向化數(shù)據(jù)。本文所采集的指標(biāo)數(shù)據(jù)中,組織管理層級(jí)需要進(jìn)行正向化處理,其他指標(biāo)為正向數(shù)據(jù),不需要進(jìn)行正向化處理。
2) 構(gòu)建決策矩陣。有n個(gè)樣本企業(yè),m個(gè)可量化評(píng)價(jià)指標(biāo),用極差變換法對(duì)指標(biāo)數(shù)據(jù)進(jìn)行無(wú)量綱化處理,矩陣中每一個(gè)元素x*ij為:
4) 計(jì)算概率矩陣P。概率矩陣中每個(gè)元素pij計(jì)算公式為:
式中:j=1,2,…,m。
8) 基于歐氏距離,計(jì)算各指標(biāo)與最優(yōu)解和最劣解向量之間的距離。正理想解為X+0=(x+0(1),x+0(2),…,x+0(n)),負(fù)理想解為X-0=(x-0(1),x-0(2),…,x-0(n))。
1.2 數(shù)據(jù)來(lái)源
選擇中國(guó)A股服裝行業(yè)上市企業(yè),均為中國(guó)自主品牌服裝企業(yè)。通過(guò)上海證券交易所和深圳證券交易所,查詢到屬于紡織服裝業(yè)的上市企業(yè)41家。篩選出以多品種服裝服飾產(chǎn)品為主營(yíng)業(yè)務(wù),服裝服飾營(yíng)業(yè)收入大于企業(yè)總營(yíng)業(yè)收入50%的上市企業(yè),時(shí)間跨度為2018—2021年,剔除數(shù)據(jù)不連貫,沒(méi)有“數(shù)字化”“智能化”等相關(guān)內(nèi)容披露的企業(yè),最終找到符合條件的上市企業(yè)24家。數(shù)據(jù)主要來(lái)源于上海證券交易所、深圳證券交易所、企知道專利數(shù)據(jù)庫(kù)、國(guó)泰安金融數(shù)據(jù)庫(kù)等,同一企業(yè)不同年份的少數(shù)缺失數(shù)據(jù)采用移動(dòng)平均法補(bǔ)齊。
2 實(shí)證分析
2.1 指標(biāo)體系
服裝企業(yè)數(shù)字化轉(zhuǎn)型受到多個(gè)層次中多種因素的影響,為全面了解服裝企業(yè)數(shù)字化轉(zhuǎn)型中的影響因素,本文對(duì)相關(guān)的企業(yè)數(shù)字化評(píng)價(jià)文獻(xiàn)進(jìn)行梳理。部分具有代表性的文獻(xiàn)作者及指標(biāo)覆蓋維度如表1所示。
通過(guò)仔細(xì)閱讀企業(yè)數(shù)字化評(píng)價(jià)相關(guān)文獻(xiàn)發(fā)現(xiàn),指標(biāo)覆蓋維度以3~4個(gè)居多,其中數(shù)字技術(shù)和組織環(huán)境是指標(biāo)體系的研究重點(diǎn),其他維度由于研究對(duì)象不同而各有側(cè)重。不同行業(yè)之間的數(shù)字化轉(zhuǎn)型具有異質(zhì)性,本文研究對(duì)象為中國(guó)服裝行業(yè)上市企業(yè),參考杜勁松等[15]、舒?zhèn)ィ?6]、陳雁[17]等學(xué)者對(duì)服裝企業(yè)數(shù)字化的相關(guān)研究,認(rèn)為業(yè)務(wù)流程數(shù)字化是服裝企業(yè)數(shù)字化轉(zhuǎn)型的重點(diǎn)之一。因此,從技術(shù)變革能力、組織變革能力和業(yè)務(wù)變革能力3個(gè)方面構(gòu)建數(shù)字化轉(zhuǎn)型評(píng)價(jià)指標(biāo)體系。為最大程度保證評(píng)價(jià)的客觀性,本文所選具體指標(biāo)均可量化。
2.1.1 技術(shù)變革能力
數(shù)字技術(shù)是企業(yè)數(shù)字化轉(zhuǎn)型的關(guān)鍵驅(qū)動(dòng)因素,越來(lái)越多的學(xué)者認(rèn)可其在企業(yè)數(shù)字化轉(zhuǎn)型中的重要地位[18]。數(shù)字技術(shù)變革離不開數(shù)字化軟硬件基礎(chǔ)設(shè)施,數(shù)字化基礎(chǔ)設(shè)施對(duì)企業(yè)轉(zhuǎn)型升級(jí)的積極效應(yīng)得到了學(xué)術(shù)界的廣泛認(rèn)可[19]。數(shù)字化基礎(chǔ)設(shè)施帶來(lái)的積極效應(yīng)推動(dòng)企業(yè)研發(fā)創(chuàng)新,主要體現(xiàn)在研發(fā)投入強(qiáng)度和創(chuàng)新成果產(chǎn)出[20]。因此,技術(shù)變革能力包括數(shù)字化基礎(chǔ)設(shè)施建設(shè)和數(shù)字化研發(fā)2個(gè)二級(jí)指標(biāo)。
2.1.2 組織變革能力
數(shù)字技術(shù)幫助服裝企業(yè)員工更加有效地進(jìn)行溝通和獲取信息,提高數(shù)字化技能與管理能力,拉動(dòng)企業(yè)對(duì)數(shù)字化人才的需求,迫使服裝企業(yè)在數(shù)字化轉(zhuǎn)型過(guò)程中利用數(shù)字技術(shù)進(jìn)行組織結(jié)構(gòu)變革。數(shù)字技術(shù)的應(yīng)用幫助企業(yè)轉(zhuǎn)型成為高新技術(shù)企業(yè)、減少人員冗余,促使企業(yè)管理層級(jí)扁平化;數(shù)字化背景高管可以明確轉(zhuǎn)型方向、合理分配資源等。數(shù)字化人才是企業(yè)數(shù)字化轉(zhuǎn)型不可或缺的因素,體現(xiàn)在人才的培養(yǎng)、高學(xué)歷員工和研發(fā)人員占比。企業(yè)通過(guò)優(yōu)化組織結(jié)構(gòu)、引進(jìn)和培養(yǎng)數(shù)字化人才促進(jìn)企業(yè)數(shù)字化轉(zhuǎn)型,從而提高企業(yè)的運(yùn)營(yíng)效率和效益。因此,組織變革能力包括組織結(jié)構(gòu)轉(zhuǎn)型和數(shù)字化人才建設(shè)2個(gè)二級(jí)指標(biāo)。
2.1.3 業(yè)務(wù)變革能力
服裝行業(yè)既屬于制造業(yè),又屬于零售行業(yè),服裝產(chǎn)品容易受到人和市場(chǎng)的影響,數(shù)字系統(tǒng)應(yīng)貫穿服裝設(shè)計(jì)、生產(chǎn)、物流、營(yíng)銷、服務(wù)等環(huán)節(jié),滿足消費(fèi)者對(duì)服裝越來(lái)越偏向個(gè)性化、多樣化的需求[21]。業(yè)務(wù)核心環(huán)節(jié)之間系統(tǒng)集成可以提高企業(yè)對(duì)數(shù)據(jù)處理的效率和數(shù)據(jù)的自動(dòng)流動(dòng)水平。因此,業(yè)務(wù)變革能力包括設(shè)計(jì)、生產(chǎn)、物流、營(yíng)銷、服務(wù)和端到端集成6個(gè)二級(jí)指標(biāo)。
本文借鑒現(xiàn)有學(xué)者的數(shù)字化轉(zhuǎn)型研究,遵循科學(xué)性、客觀性、層次性等原則,構(gòu)建中國(guó)服裝行業(yè)上市企業(yè)數(shù)字化轉(zhuǎn)型評(píng)價(jià)指標(biāo)體系,并使用熵權(quán)法對(duì)三級(jí)指標(biāo)進(jìn)行賦權(quán),如表2所示。
2.2 指標(biāo)權(quán)重分析
一級(jí)指標(biāo)和二級(jí)指標(biāo)的權(quán)重由三級(jí)指標(biāo)的權(quán)重加和得到。業(yè)務(wù)變革能力在一級(jí)指標(biāo)中權(quán)重占比最大,為0.365。服裝企業(yè)需要研發(fā)和引進(jìn)新的數(shù)字系統(tǒng),促使各個(gè)業(yè)務(wù)環(huán)節(jié)之間有機(jī)連接,提高企業(yè)的運(yùn)營(yíng)效率,從而應(yīng)對(duì)快速變化的市場(chǎng)需求。
在二級(jí)指標(biāo)中,權(quán)重在前3位的是數(shù)字化基礎(chǔ)建設(shè)、組織結(jié)構(gòu)轉(zhuǎn)型和數(shù)字化人才建設(shè),分別為0.251、0.154和0.133。這3個(gè)二級(jí)指標(biāo)所包含的三級(jí)指標(biāo)較多,企業(yè)應(yīng)均衡發(fā)展每一個(gè)具體的影響因素。業(yè)務(wù)變革能力的6個(gè)二級(jí)指標(biāo)中,數(shù)字化設(shè)計(jì)系統(tǒng)數(shù)量所占權(quán)重為0.111,在二級(jí)指標(biāo)中排第4位,其他5個(gè)二級(jí)指標(biāo)權(quán)重均沒(méi)有達(dá)到0.100,端到端集成所占權(quán)重為0.016,說(shuō)明不同環(huán)節(jié)之間數(shù)字化發(fā)展不平衡,數(shù)據(jù)共享和系統(tǒng)集成程度低,沒(méi)有完全打破“信息孤島”,服裝企業(yè)更應(yīng)該關(guān)注業(yè)務(wù)流程總體的提升。
三級(jí)指標(biāo)中,服裝數(shù)字化設(shè)計(jì)系統(tǒng)數(shù)量在業(yè)務(wù)流程5個(gè)核心環(huán)節(jié)中權(quán)重占比最高,也是三級(jí)指標(biāo)中所占權(quán)重最大的項(xiàng)??梢钥闯霎?dāng)下中國(guó)服裝企業(yè)在數(shù)字化轉(zhuǎn)型過(guò)程中對(duì)服裝設(shè)計(jì)更為重視,服裝設(shè)計(jì)所用到的數(shù)字化技術(shù),如服裝顏色自動(dòng)搭配、風(fēng)格遷移、3D測(cè)量、新的工藝設(shè)計(jì)等成為當(dāng)下中國(guó)服裝企業(yè)數(shù)字化轉(zhuǎn)型的研究重點(diǎn)。數(shù)字化生產(chǎn)系統(tǒng)數(shù)量所占權(quán)
重較小,為0.035,這與服裝的特點(diǎn)相關(guān),服裝種類和樣式繁多,大型服裝企業(yè)在服裝制作過(guò)程中都采用“自主生產(chǎn)+勞務(wù)外包”的模式,企業(yè)自身生產(chǎn)系統(tǒng)和設(shè)備的數(shù)字化程度較低,服裝制造過(guò)程仍然嚴(yán)重依賴傳統(tǒng)手工作業(yè)。數(shù)字化物流系統(tǒng)數(shù)量所占權(quán)重為0.046,中國(guó)服裝企業(yè)的物流環(huán)節(jié)主要使用RFID、自動(dòng)識(shí)別等系統(tǒng)實(shí)現(xiàn)倉(cāng)儲(chǔ)智能化,而運(yùn)輸業(yè)務(wù)會(huì)外包給物流企業(yè),造成該環(huán)節(jié)數(shù)字化系統(tǒng)數(shù)量相對(duì)較少。營(yíng)銷階段有2個(gè)三級(jí)指標(biāo),數(shù)字化營(yíng)銷系統(tǒng)數(shù)量和電商平臺(tái)數(shù)量。大多數(shù)服裝行業(yè)上市企業(yè)都有成熟的精準(zhǔn)營(yíng)銷,部分企業(yè)與京東合作,開發(fā)無(wú)界營(yíng)銷系統(tǒng)等。企業(yè)在天貓、京東等電商平臺(tái)上有自己的店鋪,并通過(guò)抖音、小紅書等流量平臺(tái)進(jìn)行品牌營(yíng)銷。數(shù)字化服務(wù)系統(tǒng)數(shù)量的權(quán)重為0.077,高于生產(chǎn)和物流2個(gè)環(huán)節(jié)所占比重,多數(shù)服裝企業(yè)意識(shí)到企業(yè)數(shù)字化轉(zhuǎn)型是以消費(fèi)者需求為核心,為提高服務(wù)質(zhì)量,從傳統(tǒng)服務(wù)轉(zhuǎn)向數(shù)字化服務(wù),開始布局智慧店鋪、3D虛擬試衣、個(gè)性化定制系統(tǒng)、智能會(huì)員管理系統(tǒng)等新型數(shù)字化服務(wù)系統(tǒng),數(shù)字化服務(wù)為服裝企業(yè)與消費(fèi)者之間增添了互動(dòng),提升了消費(fèi)者的購(gòu)物體驗(yàn)。
2.3 轉(zhuǎn)型指數(shù)分析
將權(quán)重值代入TOPSIS評(píng)價(jià)法,計(jì)算2018—2021年樣本企業(yè)數(shù)字化轉(zhuǎn)型指數(shù),如表3所示。表3按照各企業(yè)在2018—2021年數(shù)字化轉(zhuǎn)型指數(shù)平均值進(jìn)行降序排序。
從表3可以看到,2018—2021年數(shù)字化轉(zhuǎn)型指數(shù)在波動(dòng)中上升的企業(yè)有11家,森馬服飾的轉(zhuǎn)型指數(shù)連續(xù)4年最高,均在0.460以上,2020年開始迅速增加,2021年轉(zhuǎn)型指數(shù)達(dá)到0.683。樣本企業(yè)在2018—2021年平均轉(zhuǎn)型指數(shù)中,排名在前3位的為森馬服飾、紅豆實(shí)業(yè)和安正時(shí)尚,平均值均大于0.400,這3家企業(yè)的研發(fā)投入強(qiáng)度、研發(fā)人員占比、員工高學(xué)歷人才占比等處于領(lǐng)先地位,業(yè)務(wù)流程中數(shù)字系統(tǒng)使用更為全面。2018—2021年,數(shù)字化轉(zhuǎn)型指數(shù)持續(xù)上升的有6家企業(yè),占比25.00%;數(shù)字化轉(zhuǎn)型進(jìn)程較為穩(wěn)定的有3家企業(yè),占比1250%;轉(zhuǎn)型指數(shù)在波動(dòng)中處于下降的有4家企業(yè),占比1667%。由此看出,中國(guó)大多數(shù)服裝行業(yè)上市企業(yè)數(shù)字化轉(zhuǎn)型都取得了進(jìn)步。
2.4 數(shù)字化轉(zhuǎn)型管理啟示
樣本企業(yè)2018—2021年當(dāng)年的數(shù)字化轉(zhuǎn)型平均指數(shù)由0.288逐漸升高至0.336,可以看出中國(guó)服裝企業(yè)數(shù)字化轉(zhuǎn)型整體正在穩(wěn)步進(jìn)行中,但是當(dāng)年的數(shù)字化轉(zhuǎn)型平均指數(shù)低于0.400,整體數(shù)字化水平較低,結(jié)合指標(biāo)體系分析,得出以下原因和相關(guān)建議。
1) 數(shù)字化投入有限。數(shù)字技術(shù)和設(shè)備投入花費(fèi)資金較大,新的數(shù)字技術(shù)更新迭代迅速,加上企業(yè)受到近幾年疫情、國(guó)際貿(mào)易摩擦等影響,企業(yè)面臨轉(zhuǎn)型失敗的風(fēng)險(xiǎn),對(duì)數(shù)字化建設(shè)投入有限。隨著數(shù)字化技術(shù)日漸成熟,企業(yè)應(yīng)增加投入資金來(lái)引進(jìn)和研發(fā)數(shù)字技術(shù)和設(shè)備,必要時(shí)向政府?dāng)?shù)字化相關(guān)部門尋求幫助,政府的財(cái)政科技支持可以顯著提高服裝企業(yè)數(shù)字化轉(zhuǎn)型效率[28]。
2) 組織結(jié)構(gòu)轉(zhuǎn)型能力弱。中國(guó)服裝企業(yè)已經(jīng)開始注重?cái)?shù)字化人才建設(shè),但是員工高學(xué)歷人才比重較低,24家上市企業(yè)均沒(méi)有超過(guò)10%;與高校產(chǎn)學(xué)研合作強(qiáng)度不夠;對(duì)數(shù)字化背景高管的重視有待加強(qiáng),24家上市企業(yè)中只有紅豆實(shí)業(yè)一家設(shè)有信息化部門。數(shù)字化背景高管在企業(yè)數(shù)字化資源分配、數(shù)字化戰(zhàn)略制定等方面起到關(guān)鍵作用。人才是企業(yè)數(shù)字化轉(zhuǎn)型的基石,企業(yè)應(yīng)完善引進(jìn)和培養(yǎng)數(shù)字化人才的相關(guān)制度,增設(shè)數(shù)字化相關(guān)部門和數(shù)字化高管職位,制定數(shù)字化轉(zhuǎn)型路徑,最大程度利用企業(yè)資源,為數(shù)字化轉(zhuǎn)型提速。
3) 業(yè)務(wù)流程變革困難。中國(guó)服裝企業(yè)已經(jīng)開始在設(shè)計(jì)、生產(chǎn)、營(yíng)銷等環(huán)節(jié)使用新的數(shù)字系統(tǒng),新系統(tǒng)與傳統(tǒng)信息系統(tǒng)之間集成困難,數(shù)據(jù)傳輸不便,不能很好解決“信息孤島”問(wèn)題,數(shù)據(jù)及新舊系統(tǒng)接口之間缺乏統(tǒng)一標(biāo)準(zhǔn)。企業(yè)應(yīng)重視數(shù)據(jù)治理,制定數(shù)據(jù)傳輸標(biāo)準(zhǔn);運(yùn)用人工智能、大數(shù)據(jù)等相關(guān)技術(shù),充分挖掘線上線下數(shù)據(jù),完善數(shù)據(jù)收集、清洗、分析等流程,充分發(fā)揮數(shù)據(jù)的價(jià)值。完善數(shù)據(jù)中臺(tái)的建設(shè),利用數(shù)據(jù)中臺(tái)連接業(yè)務(wù)流程各個(gè)環(huán)節(jié),解決數(shù)據(jù)傳輸過(guò)程中新舊系統(tǒng)難以集成的問(wèn)題,打破“信息孤島”,實(shí)現(xiàn)信息在消費(fèi)者和企業(yè)之間快速、無(wú)障礙傳遞。
3 結(jié) 語(yǔ)
服裝企業(yè)數(shù)字化轉(zhuǎn)型關(guān)系到中國(guó)服裝企業(yè)未來(lái)發(fā)展,本文以中國(guó)24家服裝行業(yè)上市企業(yè)2018—2021年面板數(shù)據(jù)為依據(jù),綜合運(yùn)用熵權(quán)—TOPSIS評(píng)價(jià)法對(duì)指標(biāo)數(shù)據(jù)進(jìn)行分析和評(píng)價(jià)。熵權(quán)法計(jì)算得出技術(shù)變革能力、組織變革能力和業(yè)務(wù)變革能力3個(gè)維度(一級(jí)指標(biāo))的19個(gè)影響因素在數(shù)字化轉(zhuǎn)型過(guò)程中所占權(quán)重;TOPSIS評(píng)價(jià)法計(jì)算得出24家上市企業(yè)的數(shù)字化轉(zhuǎn)型指數(shù)。結(jié)果表明,業(yè)務(wù)變革能力所占權(quán)重最高;2018—2021年超過(guò)半數(shù)的樣本企業(yè)數(shù)字化轉(zhuǎn)型指數(shù)得到了提升,但總體水平不高;最后根據(jù)指標(biāo)體系分析其原因并給出了合理建議。
本文主要聚焦于中國(guó)服裝行業(yè)上市企業(yè),囿于數(shù)據(jù)可得性,未關(guān)注中小型服裝企業(yè)數(shù)字化轉(zhuǎn)型。在條件允許的情況下,今后的研究可以將中國(guó)中小型服裝企業(yè)納入研究范圍,在更大范圍內(nèi)收集服裝企業(yè)的數(shù)字化轉(zhuǎn)型數(shù)據(jù),以更準(zhǔn)確地反映中國(guó)服裝企業(yè)的整體水平。本文構(gòu)建的指標(biāo)體系完全客觀,未考慮定性指標(biāo),之后可以根據(jù)服裝企業(yè)的實(shí)際情況,對(duì)指標(biāo)體系進(jìn)行修改,加入定性指標(biāo),從定性和定量?jī)蓚€(gè)方面共同衡量企業(yè)的數(shù)字化水平。
參考文獻(xiàn):
[1]鄭瓊潔, 姜衛(wèi)民. 數(shù)字經(jīng)濟(jì)視域下制造業(yè)企業(yè)數(shù)字化轉(zhuǎn)型研究: 基于企業(yè)問(wèn)卷調(diào)查的實(shí)證分析[J]. 江蘇社會(huì)科學(xué), 2022, 320(1): 137-149.
ZHENG Qiongjie, JIANG Weimin. Research on the digital transformation of manufacturing enterprises from the perspective of digital economy: An empirical analysis based on an enterprise questionnaire survey[J]. Jiangsu Social Sciences, 2022, 320(1): 137-149.
[2]張輝, 信曉瑜, 康曉靜, 等. 基于服裝數(shù)字化技術(shù)的尼雅“萬(wàn)世如意”錦袍復(fù)原[J]. 絲綢, 2021, 58(9): 73-79.
ZHANG Hui, XIN Xiaoyu, KANG Xiaojing, et al. Restoration of “Wan Shi Ru Yi”brocade robe unearthed from Niya relics[J]. Journal of Silk, 2021, 58(9): 73-79.
[3]雷鴿, 李小輝. 數(shù)字化服裝結(jié)構(gòu)設(shè)計(jì)技術(shù)的研究進(jìn)展[J]. 紡織學(xué)報(bào), 2022, 43(4): 203-209.
LEI Ge, LI Xiaohui. Review of digital pattern-making technology in garment production[J]. Journal of Textile Research, 2022, 43(4): 203-209.
[4]任若安, 陳涵. “十四五”規(guī)劃下服裝企業(yè)數(shù)字化轉(zhuǎn)型升級(jí)路徑研究[J]. 毛紡科技, 2022, 50(4): 104-111.
REN Ruo’an, CHEN Han. Research on digital transformation and upgrading path of garment enterprises under the 14th Five-Year Plan[J]. Wool Textile Journal, 2022, 50(4): 104-111.
[5]楊瑾, 王忠偉, 龐燕. 基于熵權(quán)TOPSIS法的油茶產(chǎn)業(yè)發(fā)展績(jī)效評(píng)價(jià)[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 2021, 41(12): 168-177.
YANG Jin, WANG Zhongwei, PANG Yan. Performance evaluation of camellia industry development based on entropy TOPSIS method[J]. Journal of Central South University of Forestry & Technology, 2021, 41(12): 168-177.
[6]張莉, 許君, 馬大力, 等. 基于主觀評(píng)價(jià)和熵權(quán)—TOPSIS的虛擬試衣軟件評(píng)價(jià)[J]. 毛紡科技, 2022, 50(11): 80-87.
ZHANG Li, XU Jun, MA Dali, et al. Evaluation of virtual fitting software based on subjective evaluation and entropy-TOPSIS[J]. Wool Textile Journal, 2022, 50(11): 80-87.
[7]傅為忠, 儲(chǔ)劉平. 長(zhǎng)三角一體化視角下制造業(yè)高質(zhì)量發(fā)展評(píng)價(jià)研究: 基于改進(jìn)的CRITIC-熵權(quán)法組合權(quán)重的TOPSIS評(píng)價(jià)模型[J]. 工業(yè)技術(shù)經(jīng)濟(jì), 2020, 39(9): 145-152.
FU Weizhong, CHU Liuping. Research on the evaluation of high quality development of manufacturing industry from the perspective of integration of the Yangtze River Delta: TOPSIS evaluation model based on improved CRITICAL-Entropy wight method[J]. Journal of Industrial Technological Economics, 2020, 39(9): 145-152.
[8]萬(wàn)倫, 王順強(qiáng), 陳希, 等. 制造業(yè)數(shù)字化轉(zhuǎn)型評(píng)價(jià)指標(biāo)體系構(gòu)建與應(yīng)用研究[J]. 科技管理研究, 2020, 40(13): 142-148.
WAN Lun, WANG Shunqiang, CHEN Xi, et al. Research on construction and application of evaluation index system for digital transformation of manufacturing[J]. Science and Technology Management Research, 2020, 40(13): 142-148.
[9]陳疇鏞, 許敬涵. 制造企業(yè)數(shù)字化轉(zhuǎn)型能力評(píng)價(jià)體系及應(yīng)用[J]. 科技管理研究, 2020, 40(11): 46-51.
CHEN Chouyong, XU Jinghan. Manufacturing enterprise digital transformation ability evaluation system and application[J]. Science and Technology Management Research, 2020, 40(11): 46-51.
[10]王和勇, 何泓漫. 制造企業(yè)數(shù)字化轉(zhuǎn)型評(píng)價(jià)及影響機(jī)制研究: 以汽車制造企業(yè)為例[J]. 工業(yè)技術(shù)經(jīng)濟(jì), 2022, 41(8): 3-11.
WANG Heyong, HE Hongman. Research on evaluation and influence mechanism of digital transformation of manufacturing enterprises: Take automobile manufacturing enterprises as an example[J]. Journal of Industrial Technological Economics, 2022, 41(8): 3-11.
[11]王瑞, 董明, 侯文皓. 制造型企業(yè)數(shù)字化成熟度評(píng)價(jià)模型及方法研究[J]. 科技管理研究, 2019, 39(19): 57-64.
WANG Rui, DONG Ming, HOU Wenhao. Evaluation model and method of digital maturity of manufacturing enterprises[J]. Science and Technology Management Research, 2019, 39(19): 57-64.
[12]陳群, 李佳昕, 陳哲. 我國(guó)建筑企業(yè)數(shù)字化發(fā)展水平測(cè)度研究[J]. 建筑經(jīng)濟(jì), 2023, 44(1): 21-28.
CHEN Qun, LI Jiaxin, CHEN Zhe. Research on measurement of digital development level of construction enterprises in China[J]. Construction Economy, 2023, 44(1): 21-28.
[13]范德成, 王婭. 傳統(tǒng)企業(yè)數(shù)字化轉(zhuǎn)型對(duì)其創(chuàng)新的影響研究: 以汽車制造企業(yè)為例[J]. 軟科學(xué), 2022, 36(6): 63-70.
FAN Decheng, WANG Ya. Research on the impact of traditional enterprise digital transformation on its innovation: Taking automobile manufacturing companies as an example[J]. Soft Science, 2022, 36(6): 63-70.
[14]MIRJANA K B, ANDREJA P. Multi-attribute assessment of digital maturity of SMEs[J]. Electronics, 2021, 10(8): 1-15.
[15]杜勁松, 余雅蕓, 趙妮, 等. 不同類型服裝企業(yè)智能制造能力成熟度評(píng)價(jià)模型[J]. 紡織學(xué)報(bào), 2021, 42(5): 162-167.
DU Jinsong, YU Yayun, ZHAO Ni, et al. Evaluation modelling for maturity in intelligent manufacturing for multi-type clothing factories[J]. Journal of Textile Research, 2021, 42(5): 162-167.
[16]舒?zhèn)? 紡織智能制造任重而道遠(yuǎn): 第11期紡織科技新見(jiàn)解學(xué)術(shù)沙龍后記[J]. 紡織學(xué)報(bào), 2017, 38(10): 184-186.
SHU Wei. Textile intelligent manufacturing has a long way to go: Postscript of the 11th issue of the academic salon on new insights in textile technology[J]. Journal of Textile Research, 2017, 38(10): 184-186.
[17]陳雁. 服裝設(shè)計(jì)與工程學(xué)科發(fā)展趨勢(shì)與關(guān)鍵議題[J]. 紡織學(xué)報(bào), 2019, 40(1): 182-188.
CHEN Yan. Trends and key subjects of apparel design and engineering[J]. Journal of Textile Research, 2019, 40(1): 182-188.
[18]胡元林, 莊永耀. 企業(yè)數(shù)字化轉(zhuǎn)型的影響因素及其績(jī)效研究進(jìn)展[J]. 昆明理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2023, 48(1): 160-169.
HU Yuanlin, ZHUANG Yongyao. Research progress on influencing factors and performance of enterprise digital transformation[J]. Journal of Kunming University of Science and Technology (Natural Science), 2023, 48(1): 160-169.
[19]趙宸宇, 王文春, 李雪松. 數(shù)字化轉(zhuǎn)型如何影響企業(yè)全要素生產(chǎn)率[J]. 財(cái)貿(mào)經(jīng)濟(jì), 2021, 42(7): 114-129.
ZHAO Chenyu, WANG Wenchun, LI Xuesong. How does digital transformation affect the total factor productivity of enterprises[J]. Finance & Trade Economics, 2021, 42(7): 114-129.
[20]白雪潔, 李琳, 宋培. 數(shù)字化改造能否推動(dòng)中國(guó)行業(yè)技術(shù)升級(jí)[J]. 上海經(jīng)濟(jì)研究, 2021, 397(10): 62-76.
BAI Xuejie, LI Lin, SONG Pei. Can digital transformation promote the technological upgrading of China’s industry[J]. Shanghai Journal of Economics, 2021, 397(10): 62-76.
[21]毛雅菲. TOC理論在零售行業(yè)的應(yīng)用研究[J]. 商業(yè)經(jīng)濟(jì)研究, 2018, 763(24): 97-100.
MAO Yafei. Research on the application of TOC theory in the retail industry[J]. Journal of Commercial Economics, 2018, 763(24): 97-100.
[22]鄭衛(wèi)華. 制造企業(yè)數(shù)字化轉(zhuǎn)型路徑研究: 基于acatech工業(yè)4.0成熟度指數(shù)[J]. 科技與經(jīng)濟(jì), 2018, 31(4): 51-55.
ZHENG Weihua. Research on digital transformation path of manufacturing enterprises: Based on acatech industry 4.0 maturity index[J]. Science & Technology and Economy, 2018, 31(4): 51-55.
[23]萬(wàn)曉榆, 趙寒, 張炎. 我國(guó)智能化發(fā)展評(píng)價(jià)指標(biāo)體系構(gòu)建與測(cè)度[J]. 重慶社會(huì)科學(xué), 2020, 306(5): 84-97.
WAN Xiaoyu, ZHAO Han, ZHANG Yan. Construction and measurement of intelligent development evaluation index system in China[J]. Chongqing Social Sciences, 2020, 306(5): 84-97.
[24]單志廣, 徐清源, 馬潮江, 等. 基于三元空間理論的數(shù)字經(jīng)濟(jì)發(fā)展評(píng)價(jià)體系及展望[J]. 宏觀經(jīng)濟(jì)管理, 2020, 436(2): 42-49.
SHAN Zhiguang, XU Qingyuan, MA Chaojiang, et al. Evaluation system and prospect of digital economy development based on the theory of ternary space[J]. Macroeconomic Management, 2020, 436(2): 42-49.
[25]李小青, 何瑋萱, 李子彪, 等. 制造企業(yè)數(shù)字化創(chuàng)新能力影響因素識(shí)別及評(píng)價(jià)[J]. 科技管理研究, 2022, 42(16): 1-10.
LI Xiaoqing, HE Weixuan, LI Zibiao, et al. Identification and evaluation of influencing factors of digital innovation capability of manufacturing enterprises[J]. Science and Technology Management Research, 2022, 42(16): 1-10.
[26]童雨. 中國(guó)制造業(yè)數(shù)字化轉(zhuǎn)型的影響因素研究[J]. 技術(shù)經(jīng)濟(jì)與管理研究, 2022, 308(3): 124-128.
TONG Yu. Research on the influencing factors of manufacturing digital transformation[J]. Journal of Technical Economics & Management, 2022, 308(3): 124-128.
[27]王核成, 王思惟, 劉人懷. 企業(yè)數(shù)字化成熟度模型研究[J]. 管理評(píng)論, 2021, 33(12): 152-162.
WANG Hecheng, WANG Siwei, LIU Renhuai. Research on enterprise digital maturity model[J]. Management Review, 2021, 33(12): 152-162.
[28]王浩然, 李欣華. 數(shù)字化時(shí)尚策展在服裝品牌文化構(gòu)建及傳播中的探索[J]. 絲綢, 2022, 59(6): 95-102.
WANG Haoran, LI Xinhua. Exploration of digital fashion curation in constructing and communication of fashion brand culture[J]. Journal of Silk, 2022, 59(6): 95-102.
Evaluation on the digital transformation of listed enterprises in China’s clothing industry
ZHENG Tong, ZHANG Lijie
(College of Textiles and Clothing, Xinjiang University, Urumqi 830046, China)
Abstract:
With the rapid development of related technologies such as the Internet, big data, and artificial intelligence, the digital economy has gradually become an important factor to drive economic development. After several years’ continuous growth, the scale of China’s digital economy reached about 39. 2 trillion yuan by 2020, accounting for 38.6% of GDP. The rapid development of the digital economy promotes the digital transformation of China’s traditional manufacturing enterprises. As one of the traditional manufacturing industries in China, the clothing industry should follow the trend of digitalization and utilize digital technology to comprehensively reform the organizational structure and business processes of enterprises, so as to eliminate issues such as personnel redundancy and low production efficiency, improve operational efficiency and market competitiveness, and better meet the growing personalized needs of consumers. Therefore, the digital transformation of garment enterprises has become a hot topic at present. It is found through literature related to the digitalization of garment enterprises that relevant studies on digitalization of garment enterprises mainly focus on the application aspect of digital technology, lacking analysis of influencing factors and evaluation of transformation degree from the perspective of enterprise.
To promote the digital transformation of China’s garment enterprises, listed enterprises in China’s clothing industry were selected as the sample enterprises, the main influencing factors of transformation were analyzed at the enterprise level, the degree of digital transformation was measured, and digital transformation evaluation was carried out. The research time interval is from 2018 to 2021. By analyzing the annual reports of listed enterprises in the China’s clothing industry, the enterprises mainly engaged in clothing and accessory product business were selected, and the enterprises with inconsistent data and no digital related information disclosure were excluded. Finally, 24 sample enterprises were obtained. To cover as many aspects as possible of the digital transformation of sample enterprises, the relevant literature on digital transformation evaluation and the annual reports of listed clothing companies were sorted out, and the results show that the main changes of garment enterprises of digital transformation are reflected in three dimensions: digital technology, organizational environment and business processes. By comparing relevant evaluation methods, it was found that the entropy-TOPSIS evaluation method has the advantages of objective results and strong logic in dealing with multilevel and multi-index digital transformation indicator systems, which meets the research needs. Therefore, this paper constructed an evaluation indicator system for the digital transformation of listed enterprises in China’s clothing industry, which contains 19 specific indicators in three dimensions: technological transformation capability, organizational transformation capability and business transformation capability. Based on the panel data of 24 listed enterprises in the clothing industry in China from 2018 to 2021, the entropy weight method was employed to assign weights to quantitative indicators, with the weight value representing the influence degree of indicators in the digital transformation process; the weight value was substituted into the TOPSIS evaluation method to calculate and evaluate the digital transformation indicator of each sample enterprise. The weight analysis results show that: among the three primary indicators, the weight of business transformation capability is 0365, indicating the greatest impact on the digital transformation of listed enterprises in China’s clothing industry. Among the 10 secondary indicators, the top three weights are digital infrastructure construction, organizational structure transformation, and digital personnel training, with values of 0.251, 0.154, and 0.133, respectively. These three secondary indicators contain many tertiary indicators, and enterprises should balance the development of each specific influencing factor. Among the tertiary indicators, digital design system has the highest weight of 0.111, which indicates that design is an important part of garment enterprises’ digital transformation in the context of consumers’ pursuit for personalization. The digital transformation index shows that more than 50% of sample enterprises have improved their digital degree; the average digital indexes of full samples from 2018 to 2021 are 0.288, 0.292, 0.333 and 0.336, respectively, showing an upward trend, and indicating that China’s listed garment enterprises have made some progress in digital transformation overall, but the degree of digitalization is low. The sample enterprises could do better in the future. Finally, based on the enterprise level, we summarized three main reasons for the low degree of digital transformation: (i) limited digital investment; (ii) weak ability to transform organizational structure; (iii) difficulties in business process transformation. In view of the three main reasons for the low degree of digital transformation, three suggestions were proposed: (i) increasing investment in digital technology and equipment; (ii) creating a digital environment, cultivating, and introducing relevant people; (iii) emphasizing standardized data transmission and promoting business process transformation.
The evaluation indicator system for digital transformation of garment enterprises constructed in this paper is objective, scientific and hierarchical, which can provide reference for the digital transformation of China’s garment enterprises. In the future, the indicator system could be modified and improved on the basis of the indicator system built in this paper; the small and medium-sized garment enterprises could be included in the research scope, and then the number of sample enterprises could be expanded. In this way, the influencing factors and transformation effects of digital transformation in China’s garment enterprises could be analyzed more comprehensively. We could also compare domestic and foreign garment enterprises, to analyze the advantages and disadvantages of China’s garment enterprises in the process of digital transformation, so as to accelerate the digital transformation.
Key words: digital transformation; garment enterprises; entropy-TOPSIS; influence factor; weight; transformation index