付皖蘭 曹云祥 黃傳兵 徐昌萍 束開(kāi)艷
【摘 要】 巨噬細(xì)胞分布在類(lèi)風(fēng)濕關(guān)節(jié)炎患者滑膜、滑液、外周血中,在參與類(lèi)風(fēng)濕關(guān)節(jié)炎的炎性細(xì)胞中起著關(guān)鍵作用。巨噬細(xì)胞極化分為經(jīng)典激活(M1型)和替代激活(M2型)2種極端狀態(tài)。M1/M2型比例失衡是類(lèi)風(fēng)濕關(guān)節(jié)炎重要致病機(jī)制,在這一因素中多條信號(hào)通路參與調(diào)控。因此,通過(guò)對(duì)巨噬細(xì)胞來(lái)源及表型功能的探知,闡明其在類(lèi)風(fēng)濕關(guān)節(jié)炎炎癥組織中的分布特征,剖析類(lèi)風(fēng)濕關(guān)節(jié)炎相關(guān)信號(hào)通路傳導(dǎo)機(jī)制,掌握M1/M2表型轉(zhuǎn)換關(guān)鍵時(shí)間點(diǎn),將為類(lèi)風(fēng)濕關(guān)節(jié)炎科研工作和治療提供新視角。
【關(guān)鍵詞】 類(lèi)風(fēng)濕關(guān)節(jié)炎;巨噬細(xì)胞極化;經(jīng)典激活M1型;替代激活M2型;信號(hào)通路;研究進(jìn)展;綜述
類(lèi)風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis,RA)是一種自身免疫性疾病,其主要特征為滑膜組織炎癥、軟骨和骨質(zhì)破壞[1]。巨噬細(xì)胞作為先天性免疫和細(xì)胞免疫參與者,在RA疾病中起重要作用。根據(jù)其在不同免疫微環(huán)境和細(xì)胞因子影響下所表現(xiàn)出的特性,確定了兩類(lèi)不同的巨噬細(xì)胞極化狀態(tài):經(jīng)典激活(M1型)巨噬細(xì)胞,主要產(chǎn)生促炎細(xì)胞因子腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素(IL)-1等,可造成關(guān)節(jié)的損傷;替代激活(M2型)巨噬細(xì)胞,分泌抗炎細(xì)胞因子IL-10、轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)等,有助于血管生成、組織重塑和修復(fù)[2-3]。巨噬細(xì)胞M1/M2的不平衡通常與RA病情進(jìn)展相關(guān);因此,調(diào)節(jié)M1/M2平衡,有助于控制RA[4]。本文將系統(tǒng)闡述巨噬細(xì)胞極化在RA疾病中可能發(fā)揮的作用機(jī)制。
1 巨噬細(xì)胞的來(lái)源
巨噬細(xì)胞最初是在19世紀(jì)后期由ILYA MECHNIKOV通過(guò)其吞噬特性確定的[5]。人們普遍認(rèn)為,巨噬細(xì)胞來(lái)源于單核細(xì)胞。然而,這種觀(guān)點(diǎn)受到來(lái)自細(xì)胞追蹤、聯(lián)體共生和遺傳追蹤等挑戰(zhàn)[2,6]。研究證實(shí),巨噬細(xì)胞包括由胚胎祖細(xì)胞分化而來(lái)的組織駐留巨噬細(xì)胞和單核細(xì)胞來(lái)源的巨噬細(xì)胞。前者可分為肺泡巨噬細(xì)胞、小膠質(zhì)細(xì)胞、朗格漢斯細(xì)胞等,具有自我更新的能力[7]。而單核細(xì)胞來(lái)源的巨噬細(xì)胞似乎僅存在于腸道和真皮一些特定組織中[8],可以作為經(jīng)典的組織駐留巨噬細(xì)胞的補(bǔ)充劑,在炎癥的進(jìn)展中發(fā)揮調(diào)節(jié)作用[9]。我們通過(guò)對(duì)巨噬細(xì)胞起源的探索,為巨噬細(xì)胞多樣性的理解增加了一個(gè)新的方面。
2 巨噬細(xì)胞極化分型及其功能
巨噬細(xì)胞是多功能細(xì)胞,通過(guò)清除入侵病原體、癌癥和衰老細(xì)胞,重塑/修復(fù)受損組織,從而保護(hù)人體免受感染、損傷、自身免疫疾病或癌癥[10]。當(dāng)針對(duì)不同的病原體或其他刺激物時(shí),巨噬細(xì)胞在體內(nèi)外進(jìn)行調(diào)控,分化為不同表型的過(guò)程,被稱(chēng)為巨噬細(xì)胞極化[11]。目前被分為M1型巨噬細(xì)胞和M2型巨噬細(xì)胞2種極端子集[12]。
M1型巨噬細(xì)胞主要由輔助性T細(xì)胞1(Th1)誘導(dǎo),如脂多糖(LPS)或γ干擾素(IFN-γ),可誘導(dǎo)不同細(xì)胞分泌TNF-α、IL-1β、IL-6、IL-12、IL-18、IL-23與趨化因子CXCL1、CXCL3、CXCL5、CXCL8、CXCL9、CCL2、CCL3、CCL4和CCL5,還可以分泌更低水平的IL-10,并產(chǎn)生誘導(dǎo)型一氧化氮合酶(iNOS)[13]。當(dāng)細(xì)菌感染或炎癥影響到組織臟器時(shí),巨噬細(xì)胞首先可能表現(xiàn)出M1表型,產(chǎn)生炎性細(xì)胞因子和介質(zhì),刺激先天免疫細(xì)胞,并在早期炎癥階段保護(hù)宿主免受病原體定植[14]。
M2型巨噬細(xì)胞主要存在于2型輔助性T細(xì)胞(Th2)相關(guān)環(huán)境中,由IL-4、IL-10和IL-13等誘導(dǎo),產(chǎn)生了IL-10、IL-6、IL-1β、TGF-β、胰島素樣生長(zhǎng)因子(IGF)、血管內(nèi)皮生長(zhǎng)因子(VEGF)、低水平IL-12、低水平TNF-α以及趨化因子CXCL1、CXCL2、CXCL3、CCL18、CCL17、CCL22、CCL24、CCL1、CCL20等[2,9]。基于它們對(duì)刺激的反應(yīng),M2型巨噬細(xì)胞進(jìn)一步分為M2a、M2b、M2c、M2d 4種子集,它們之間表現(xiàn)出不同的差異性。如M2a由IL-4和IL-13誘導(dǎo),促進(jìn)Ⅱ型免疫反應(yīng)和纖維化;M2b由Toll樣受體(TLR)和IL-1R誘導(dǎo),具有免疫調(diào)節(jié)、促進(jìn)腫瘤進(jìn)展作用;M2c由IL-10、TGF-β和糖皮質(zhì)激素誘導(dǎo),具有抗炎作用并啟動(dòng)組織重塑;M2d由TLR和腺苷A2A受體協(xié)同誘導(dǎo),具有促進(jìn)血管生成作用[10]。M2型巨噬細(xì)胞可以通過(guò)表達(dá)精氨酸1(Arg-1)、細(xì)胞因子信號(hào)抑制因子(SOCS)、環(huán)氧合酶-2(COX-2)、CD206和CD163等發(fā)揮抗炎和維持免疫耐受的作用[2]。
3 巨噬細(xì)胞在RA患者炎癥組織中的分布特征
RA發(fā)病機(jī)制涉及不同的解剖結(jié)構(gòu)和細(xì)胞,其中巨噬細(xì)胞起著關(guān)鍵作用[15]。巨噬細(xì)胞是RA患者滑膜、滑液、外周血中最豐富的細(xì)胞類(lèi)型之一[16]。掌握RA患者滑膜、滑液以及外周血中巨噬細(xì)胞表型分布特征,對(duì)于控制RA疾病進(jìn)展具有積極作用。
滑膜組織是RA患者關(guān)節(jié)炎癥的主要部位,大量學(xué)者聚焦于研究RA滑膜巨噬細(xì)胞的表型分布及致病作用[1]。研究顯示,在RA疾病活動(dòng)期間,滑膜組織中的巨噬細(xì)胞約占細(xì)胞含量的30%~40%;巨噬細(xì)胞被激活后,可產(chǎn)生炎性細(xì)胞因子,導(dǎo)致軟骨和骨質(zhì)破壞[17]?;そM織由襯里層和襯里下層2個(gè)層構(gòu)成[16]。CULEMANN等[18]
將滑膜襯里層和襯里下層巨噬細(xì)胞分別定義為Cx3cr1+和Cx3cr1-。結(jié)果發(fā)現(xiàn),Cx3cr1+襯里子集共同表達(dá)Trem2和Vsig4,表現(xiàn)出M2型抑炎作用。Cx3cr1-高表達(dá)MHCII、AQP1和Retnla,產(chǎn)生了促炎作用的M1型巨噬細(xì)胞,并在滑膜組織中累積。然而,其中一些M2型巨噬細(xì)胞標(biāo)記物(CD163和Mrc1)也在Cx3cr1- Retnla+簇中富集。因此,筆者認(rèn)為,RA患者的滑膜襯里層表達(dá)M2型巨噬細(xì)胞,而襯里下層由M1和M2型巨噬細(xì)胞聯(lián)合表達(dá)。
單核細(xì)胞可分化為巨噬細(xì)胞,在血液中蓄積并不斷遷移至炎癥關(guān)節(jié)。RA患者中擴(kuò)增的單核細(xì)胞可導(dǎo)致慢性關(guān)節(jié)炎癥和骨破壞。根據(jù)細(xì)胞表型結(jié)構(gòu)特征,人單核細(xì)胞可分為CD14+CD16+和CD14+CD16-單核細(xì)胞,而CD14+CD16+單核細(xì)胞又可分成非經(jīng)典(CD14+CD16++)和中間型(CD14++CD16+)單核細(xì)胞[19]。研究人員從RA患者的外周血中純化CD14+單核細(xì)胞,并與健康者進(jìn)行比較,然后評(píng)估M1和M2離體和體外極化標(biāo)志物,結(jié)果顯示,M1或M2標(biāo)志物表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)意義[20]。由此推測(cè),RA患者外周血似乎是由混合的M1和M2單核細(xì)胞亞群組成[21]。于是進(jìn)行深入研究,發(fā)現(xiàn)CD14+單核細(xì)胞在急性發(fā)作時(shí)顯示混合M1/M2型,在靜止時(shí)僅顯示M2型。而CD16+單核細(xì)胞在發(fā)作期或靜止期其表面標(biāo)志物沒(méi)有改變,被認(rèn)為與M1標(biāo)志物的產(chǎn)生相關(guān)。另一項(xiàng)研究發(fā)現(xiàn),在RA活動(dòng)期外周血M1型巨噬細(xì)胞不斷增多,炎癥加劇,病情加重[22]。綜上,筆者認(rèn)為,RA患者外周血巨噬細(xì)胞呈現(xiàn)M1和M2混合型;而在RA疾病活動(dòng)期,M1/M2的平衡將被打破,逐漸傾向于M1型。
發(fā)生在RA患者滑液內(nèi)的病理過(guò)程可能引起巨噬細(xì)胞活化,導(dǎo)致關(guān)節(jié)周?chē)茐模?5]。MAF等[23]發(fā)現(xiàn),RA患者的滑液中高表達(dá)IL-17,與RA疾病活動(dòng)參數(shù)呈正相關(guān)。研究表明,IL-17由IL-23促進(jìn)Th17細(xì)胞的發(fā)育產(chǎn)生;活化的巨噬細(xì)胞分泌IL-23,表現(xiàn)出M1表型,可誘導(dǎo)Th17細(xì)胞的分化和IL-17的產(chǎn)生,使疾病惡化;通過(guò)阻斷M1巨噬細(xì)胞來(lái)源的細(xì)胞因子,可以實(shí)現(xiàn)IL-17的下調(diào),改善RA病情進(jìn)展[13,24]。FUKUI等[25]發(fā)現(xiàn),RA患者的滑液中存在巨噬細(xì)胞亞群不平衡,與OA患者相比,RA患者的M1/M2比率更高。因此,筆者認(rèn)為,RA患者滑液中以M1型巨噬細(xì)胞為主。
4 RA中巨噬細(xì)胞極化相關(guān)信號(hào)通路及其調(diào)控作用
研究表明,包括Notch、C-Jun N-末端激酶(JNK)、細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)、磷脂酰肌醇3激酶/絲氨酸蘇氨酸激酶(PI3K/AKT)、核轉(zhuǎn)錄因子-κB(NF-κB)和Janus激酶/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子(JAK/STAT)等,多條信號(hào)通路均參與調(diào)控RA中巨噬細(xì)胞極化[26]。
4.1 Notch信號(hào)通路 Notch信號(hào)通路在巨噬細(xì)胞中的作用已被廣泛報(bào)道。RA的發(fā)病機(jī)制涉及Notch信號(hào)的激活。研究表明,Notch信號(hào)在M1型極化中發(fā)揮作用,導(dǎo)致TNF-α、iNOS、IL-6等促炎細(xì)胞因子的過(guò)表達(dá)[27]。靶向抑制Notch信號(hào),能改善炎癥,并減少相關(guān)組織損傷[28]。SUN等[28]使用Hes1-GFP/TNF轉(zhuǎn)基因(TNF-Tg)小鼠研究具有活性Notch信號(hào)(GFP+)的細(xì)胞在RA中的作用。結(jié)果顯示,Hes1-GFP/TNF-Tg小鼠滑膜中GFP+細(xì)胞的數(shù)量顯著增加,其中約60%表達(dá)為具有M1型巨噬細(xì)胞標(biāo)志的F4/80+巨噬細(xì)胞。此外,他們報(bào)道一種毒胡蘿卜素(THAP)能夠有效抑制Notch信號(hào),可減少TNF誘導(dǎo)的M1型極化,促進(jìn)M2型極化,從而達(dá)到治療RA的效果。
4.2 JNK信號(hào)通路 JNK信號(hào)通路屬于絲裂原活化蛋白激酶(MAPK)家族[29]。AKHTER等[30]發(fā)現(xiàn),LPS通過(guò)TLR4/MyD88信號(hào)誘導(dǎo)單核巨噬細(xì)胞中的CCL-2,活化JNK,從而激活NF-κB/AP-1轉(zhuǎn)錄因子,促進(jìn)M1型極化。此外,在類(lèi)風(fēng)濕關(guān)節(jié)炎-成纖維樣滑膜細(xì)胞(RA-FLS)中存在利用JNK通路的MMP-3抑制機(jī)制。一旦激活JNK通路,磷酸化的JNK激活核轉(zhuǎn)錄因子AP-1,促進(jìn)MMP-3蛋白的產(chǎn)生,將誘導(dǎo)炎癥[31]。研究者通過(guò)建立RA滑膜細(xì)胞模型,同樣證實(shí)JNK抑制劑能夠有效抑制炎癥和關(guān)節(jié)破壞,其可能是通過(guò)促進(jìn)抗炎細(xì)胞因子分泌和M2型極化實(shí)現(xiàn)的[31-32]。
4.3 ERK信號(hào)通路 ERK信號(hào)通路同樣屬于MAPKs家族成員,目前已發(fā)現(xiàn)的亞型,即ERK1~ERK5[33]。研究發(fā)現(xiàn),ERK1/2通路是巨噬細(xì)胞表型的關(guān)鍵調(diào)控信號(hào)通路。在LPS誘導(dǎo)的炎癥反應(yīng)中,ERK1/2通路的激活可促使M1型極化,通過(guò)抑制ERK1/2通路的激活可緩解炎癥反應(yīng)[34]。在對(duì)RA疾病研究中,這個(gè)結(jié)論同樣成立,如miR-483-3p的過(guò)表達(dá)可以激活RA-FLSs中的ERK信號(hào)通路[35]。使用ERK信號(hào)通路抑制劑可逆轉(zhuǎn)IL-33在RA-FLSs中的促炎作用,減弱M1型極化[36]。相反,使用抗瓜氨酸蛋白抗體(ACPAs)選擇性激活ERK1/2,可產(chǎn)生大量M1型炎癥細(xì)胞因子,導(dǎo)致RA的進(jìn)展[37]。
4.4 NF-κB信號(hào)通路 NF-κB是一種關(guān)鍵的轉(zhuǎn)錄因子,參與諸多炎癥過(guò)程[38]。研究發(fā)現(xiàn),LPS刺激巨噬細(xì)胞后,其趨化性和分泌功能均有所提高;阻斷TLR4/NF-κB信號(hào)通路,可下調(diào)促炎細(xì)胞因子水平,發(fā)揮M2型抑炎作用[39]。此外,一項(xiàng)糖生物學(xué)與巨噬細(xì)胞極化的作用研究發(fā)現(xiàn),CD147的高n-糖基化形式對(duì)M1型極化有直接的影響,并通過(guò)激活NF-κB和ERK1/2通路產(chǎn)生促炎作用,而低糖基化將抑制M2向M1表型轉(zhuǎn)變[9,40]。并且有報(bào)道稱(chēng),在RA患者和膠原誘導(dǎo)的關(guān)節(jié)炎小鼠滑膜組織中高表達(dá)B7-H3,表現(xiàn)為M1促炎表型。而B(niǎo)7-H3可能通過(guò)NF-κB信號(hào)通路增強(qiáng)巨噬細(xì)胞調(diào)節(jié)炎癥的能力,參與RA的進(jìn)展[41]。
4.5 PI3K/AKT信號(hào)通路 PI3K/AKT是細(xì)胞內(nèi)重要的信號(hào)調(diào)節(jié)通路,可協(xié)調(diào)巨噬細(xì)胞對(duì)不同炎癥信號(hào)的反應(yīng)[42]。據(jù)報(bào)道,PI3K或AKT激酶過(guò)表達(dá)可抑制巨噬細(xì)胞的激活;在TLR激活的細(xì)胞中,對(duì)PI3K信號(hào)的非特異性抑制增強(qiáng)了NF-κB和iNOS的表達(dá),表現(xiàn)為M1型極化[43]。而細(xì)胞因子TGF-β、IL-10等通過(guò)PI3K/AKT信號(hào)通路可誘導(dǎo)M2型極化[44]。PI3K/AKT信號(hào)通路參與RA的病理過(guò)程[45]。QI等[26]通過(guò)動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),PI3K/AKT信號(hào)通路在RA疾病發(fā)展階段被激活,一些導(dǎo)致關(guān)節(jié)軟骨和軟骨基質(zhì)降解的蛋白增加,隨后誘導(dǎo)巨噬細(xì)胞向M1型極化;進(jìn)行藥物干預(yù)后,滑膜組織中M1巨噬細(xì)胞明顯減少,炎癥反應(yīng)減輕。
4.6 JAK/STAT信號(hào)通路 JAKs家族包括JAK1~JAK3和TYK2,STATs家族由STAT1~STAT6組成[46]。研究顯示,JAK-STAT在多種炎癥因子刺激下激活,影響巨噬細(xì)胞的分化和炎癥。例如,IFN-γ介導(dǎo)的JAK/STAT1信號(hào)通路能夠促進(jìn)M1巨噬細(xì)胞分泌促炎因子,STAT1其活性對(duì)M1型極化具有促進(jìn)作用[14],抑制STAT1可誘導(dǎo)M2型極化[47]。另有研究發(fā)現(xiàn),JAK2-STAT3信號(hào)通路的激活,可以抑制促炎細(xì)胞因子生成,發(fā)揮M2型抑炎作用[48]。在RA疾病過(guò)程中,IL-4被證實(shí)可以通過(guò)JAK/STAT信號(hào)通路促進(jìn)M2型極化,發(fā)揮抗炎作用。其作用機(jī)制可能是通過(guò)抗炎細(xì)胞因子IL-4與受體結(jié)合,激活JAK,導(dǎo)致STAT6磷酸化,引發(fā)M2型極化,從而延緩RA病情進(jìn)展[49]。
5 M1/M2型極化在RA中的轉(zhuǎn)換
RA的進(jìn)展包括不同的轉(zhuǎn)換點(diǎn),在這些轉(zhuǎn)換點(diǎn)上,疾病進(jìn)程發(fā)生了變化。因此,掌握急性炎癥如何以及何時(shí)發(fā)展成為全身性、慢性炎癥,對(duì)于剖析RA發(fā)病機(jī)制至關(guān)重要。有學(xué)者對(duì)此展開(kāi)研究,發(fā)現(xiàn)TNF-α、IL-17和IL-6調(diào)節(jié)了RA疾病進(jìn)展的不同階段。TNF-α(1~4周)是急性期的主要細(xì)胞因子,IL-17(8~12周)負(fù)責(zé)過(guò)渡階段,IL-6( > 12周)維持慢性狀態(tài)[50-51]。在急性期,滑膜細(xì)胞和巨噬細(xì)胞的初始炎癥和嚴(yán)重增殖導(dǎo)致急性缺氧,有利于過(guò)渡期M2型極化,降低M1與M2型巨噬細(xì)胞的比例。在慢性炎癥狀態(tài)下,長(zhǎng)期缺氧有利于M1型極化,加劇了RA的進(jìn)展[4]。研究者建立RA小鼠模型進(jìn)行驗(yàn)證,結(jié)果顯示,M1/M2巨噬細(xì)胞比例在RA初期較高,第4周下降,
第8周逐漸恢復(fù),第12周維持在較高水平,M1/M2極化的切換時(shí)間發(fā)生在4~8周。M1/M2極化的變化表明炎癥由急性狀態(tài)向慢性狀態(tài)過(guò)渡,這種時(shí)間表達(dá)模式可影響RA的進(jìn)展[52]。因此,通過(guò)對(duì)M1和M2型極化時(shí)間點(diǎn)的準(zhǔn)確把握進(jìn)行藥物干預(yù),將為RA的治療開(kāi)辟新路徑。
6 小 結(jié)
巨噬細(xì)胞是參與RA發(fā)病機(jī)制的重要細(xì)胞,M1/M2型巨噬細(xì)胞失衡是RA發(fā)病的重要因素[2]。本文首先從巨噬細(xì)胞來(lái)源、極化分型及其功能進(jìn)行說(shuō)明;然后從巨噬細(xì)胞在RA患者炎癥組織中的分布特征、涉及的信號(hào)通路以及M1/M2型極化在RA不同階段的轉(zhuǎn)換,闡述了RA的發(fā)病機(jī)制。但是,仍存在許多問(wèn)題:①巨噬細(xì)胞的異質(zhì)性群體與RA發(fā)病機(jī)制之間的因果關(guān)系。②除了巨噬細(xì)胞極化中促炎因子或抗炎因子的釋放外,是否還有其他因素影響RA。③巨噬細(xì)胞靶向治療不能專(zhuān)門(mén)針對(duì)不同的巨噬細(xì)胞亞群。今后,我們可以此為切入點(diǎn)進(jìn)一步研究,制定不同的RA治療策略,尋找具有高特異性和不良反應(yīng)小的新靶點(diǎn)。
參考文獻(xiàn)
[1] BOUTET MA,COURTIES G,NERVIANI A,et al.Novel insights into macrophage diversity in rheumatoid arthritis synovium[J].Autoimmun Rev,2021,20(3):102758-102768.
[2] WANG Y,HAN CC,CUI D,et al.Is macrophage polarization important in rheumatoid arthritis?[J].Int Immunopharmacol,2017,50(24):345-352.
[3] TARDITO S,MARTINELLI G,SOLDANO S,et al.Macrophage M1/M2 polarization and rheumatoid arthritis:a systematic review[J].Autoimmun Rev,2019,18(11):102397-102406.
[4] KUNG CC,DAI SP,CHIANG H,et al.Temporal expression patterns of distinct cytokines and M1/M2 macrophage polarization regulate rheumatoid arthritis progression[J].Mol Biol Rep,2020,47(5):3423-3437.
[5] BRAGA TT,AGUDELO JS,CAMARA NO.Macrophages during the fibrotic process:M2 as friend and?foe[J].Front Immunol,2015,25(6):602-613.
[6] LOCATI M,CURTALE G,MANTOVANI A.Diversity,mechanisms,and significance of macrophage plas-ticity[J].Annu Rev Pathol,2020,24(15):123-147.
[7] KONO Y,COLLEY T,TO M,et al.Cigarette smoke-induced impairment of autophagy in macrophages increases galectin-8 and inflammation[J].Sci Rep,2021,11(1):335-343.
[8] WYNN TA,CHAWLA A,POLLARD JW.Macrophage biology in development,homeostasis and disease[J].Nature,2013,496(7446):445-455.
[9] YANG D,YANG L,CAI J,et al.A sweet spot for macrophages:focusing on polarization[J].Pharmacol Res,2021,167(1):105576-105585.
[10] WANG LX,ZHANG SX,WU HJ,et al.M2b macrophage polarization and its roles in diseases[J].J Leukoc Biol,2019,106(2):345-358.
[11] SHAPOURI-MOGHADDAM A,MOHAMMADIAN S,VAZINI H,et al.Macrophage plasticity,polarization,and function in health and disease[J].J Cell Physiol,2018,233(9):6425-6440.
[12] CHEN Y,HU M,WANG L,et al.Macrophage M1/M2 polarization[J].Eur J Pharmacol,2020,15(877):173090-173098.
[13] ATRI C,GUERFALI FZ,LAOUINI D.Role of human macrophage polarization in inflammation during infectious diseases[J].Int J Mol Sci,2018,19(6):1801-1811.
[14] IVASHKIV LB.IFNγ:signalling,epigenetics and roles in immunity,metabolism,disease and cancer immunotherapy[J].Nat Rev Immunol,2018,18(9):545-558.
[15] MCGONAGLE D,WATAD A,SAVIC S.Mechanistic immunological based classification of rheumatoid arthritis[J].Autoimmun Rev,2018,17(11):1115-1123.
[16] ROSZKOWSKI L,CIECHOMSKA M.Tuning monocytes and macrophages for personalized therapy and diagnostic challenge in rheumatoid arthritis[J].Cells,2021,10(8):1860-1872.
[17] GU Q,YANG H,SHI Q.Macrophages and bone inflammation[J].J Orthop Translat,2017,23(10):86-93.
[18] CULEMANN S,GRUNEBOOM A,NICOLAS-AVILA JA,et al.Locally renewing resident synovial macrophages provide a protective barrier for the joint[J].Nature,2019,572(7771):670-675.
[19] RANA AK,LI Y,DANG Q,et al.Monocytes in rheumatoid arthritis:circulating precursors of macrophages and osteoclasts and,their heterogeneity and plasticity role in RA pathogenesis[J].Int Immunopharmacol,2018,65(23):348-359.
[20] QUERO L,HANSER E,MANIGOLD T,et al.TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages,generating a chimeric M1/M2 phenotype[J].Arthritis Res Ther,2017,19(1):245-257.
[21] ZHAO J,YUAN W,TAO C,et al.M2 polarization of monocytes in ankylosing spondylitis and relationship with inflammation and structural damage[J].APMIS,2017,125(12):1070-1075.
[22] VANDOOREN B,NOORDENBOS T,AMBARUS C,et al.Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis,including psoriatic arthritis[J].Arthritis Rheum,2009,60(4):966-975.
[23] MAF A,F(xiàn)EED A,ER A,et al.Serum and synovial fluid interleukin-17 concentrations in rheumatoid arthritis patients:relation to disease activity,radiographic severity and power Doppler ultrasound[J].Egypt Rheumatol,2020,42(3):171-175.
[24] ALSHEIKH MM,EL-SHAFEY AM,GAWISH HH,et al.
Serum interleukin-23 level in rheumatoid arthritis patients:relation to disease activity and severity[J].Egypt Rheumatol,2019,41(2):99-103.
[25] FUKUI S,IWAMOTO N,TAKATANI A,et al.M1 and M2 monocytes in rheumatoid arthritis:a contribution of imbalance of M1/M2 monocytes to osteoclastog-enesis[J].Front Immunol,2017,8(8):1958-1967.
[26] QI W,LIN C,F(xiàn)AN K,et al.Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT pathway in complete Freund's adjuvant-induced arthritis in mice[J].Chem Biol Interact,2019,306(1):19-28.
[27] MONSALVE E,RUIZ-GARCIA A,BALADRON V,et al.Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity[J].Eur J Immunol,2009,39(9):2556-2570.
[28] SUN W,ZHANG H,WANG H,et al.Targeting notch-activated M1 macrophages attenuates joint tissue damage in a mouse model of inflammatory arthritis[J].J Bone Miner Res,2017,32(7):1469-1480.
[29] CHEN G,ZHANG YQ,QADRI YJ,et al.Microglia in pain:detrimental and protective roles in pathogenesis and resolution of pain[J].Neuron,2018,100(6):1292-1311.
[30] AKHTER N,HASAN A,SHENOUDA S,et al.TLR4/MyD88-mediated CCL2 production by lipopolysaccharide(endotoxin):implications for metabolic inflammation[J].J Diabetes Metab Disord,2018,17(1):77-84.
[31] KANAI T,KONDO N,OKADA M,et al.The JNK pathway represents a novel target in the treatment of rheumatoid arthritis through the suppression of MMP-3[J].J Orthop Surg Res,2020,15(1):87-95.
[32] HAO J,HU Y,LI Y,et al.Involvement of JNK signaling in IL4-induced M2 macrophage polarization[J].Exp Cell Res,2017,357(2):155-162.
[33] MININGOU N,BLACKWELL KT.The road to ERK activation:do neurons take alternate routes?[J].Cell Signal,2020,68(13):109541-109549.
[34] YU YB,ZHUANG HZ,JI XJ,et al.Hydroxytyrosol suppresses LPS-induced intrahepatic inflammatory responses via inhibition of ERK signaling pathway activation in acute liver injury[J].Eur Rev Med Pharmacol Sci,2020,24(11):6455-6462.
[35] ZHANG K,F(xiàn)U W,ZHAO S,et al.miR-483-3p promotes IL-33 production from fibroblast-like synoviocytes by regulating ERK signaling in rheumatoid arthritis[J].Inflammation,2021,44(6):2302-2308.
[36] LV YP,TENG YS,MAO FY,et al.Helicobacter pylori-induced IL-33 modulates mast cell responses,benefits bacterial growth,and contributes to gastritis[J].Cell Death Dis,2018,9(5):457-466.
[37] LU MC,LAI NS,YIN WY,et al.Anti-citrullinated protein antibodies activated ERK1/2 and JNK mitogen-activated protein kinases via binding to surface-expressed citrullinated GRP78 on mononuclear cells[J].J Clin Immunol,2013,33(3):558-566.
[38] VUONG TT,RONNING SB,SUSO HP,et al.The extracellular matrix of eggshell displays anti-inflammatory activities through NF-kappaB in LPS-triggered human immune cells[J].J Inflamm Res,2017,4(10):83-96.
[39] ZENG MY,TONG QY.Anti-inflammation effects of sinomenine on macrophages through suppressing activated TLR4/NF-kappaB signaling pathway[J].Curr Med Sci,2020,40(1):130-137.
[40] ZHU P,DING J,ZHOU J,et al.Expression of CD147 on monocytes/macrophages in rheumatoid arthritis:its potential role in monocyte accumulation and matrix metalloproteinase production[J].Arthritis Res Ther,2005,7(5):R1023-R1033.
[41] YANG J,XIONG J,GUO Y,et al.B7-H3 blockade decreases macrophage inflammatory response and alleviates clinical symptoms of arthritis[J].Immunol Lett,2022,242(1):46-53.
[42] 劉瓊,李永樂(lè),董平,等.PI3K/AKT信號(hào)通路與類(lèi)風(fēng)濕關(guān)節(jié)炎相關(guān)性探討[J].風(fēng)濕病與關(guān)節(jié)炎,2021,10(3):62-66.
[43] LUYENDYK JP,SCHABBAUER GA,TENCATI M,et al.Genetic analysis of the role of the PI3K-AKT pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages[J].J Immunol,2008,180(6):4218-4226.
[44] GONG D,SHI W,YI SJ,et al.TGF-β signaling plays a critical role in promoting alternative macrophage activation[J].BMC Immunol,2012,15(13):31-39.
[45] YU Z,XU H,WANG H,et al.Foxc1 promotes the proliferation of fibroblast-like synoviocytes in rheumatoid arthritis via PI3K/AKT signalling pathway[J].Tissue Cell,2018,53(22):15-22.
[46] HU Q,BIAN Q,RONG D,et al.JAK/STAT pathway:extracellular signals,diseases,immunity,and therapeutic regimens[J].Front Bioeng Biotechnol,2023,23(11):765-773.
[47] HAYDAR D,CORY TJ,BIRKET SE,et al.Azithromycin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF-kappaB signaling path-ways[J].J Immunol,2019,203(4):1021-1030.
[48] HUANG SP,GUAN X,KAI GY,et al.Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway[J].Chin J Nat Med,2019,17(5):372-380.
[49] DANIEL B,NAGY G,HORVATH A,et al.The IL-4/STAT6/PPAR-γ signaling axis is driving the expansion of the RXR heterodimer cistrome,providing complex ligand responsiveness in macrophages[J].Nucleic Acids Res,2018,46(9):4425-4439.
[50] KOKKONEN H,SODERSTROM I,ROCKLOV J,et al.Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis[J].Arthritis Rheum,2010,62(2):383-391.
[51] KOLLS JK,LINDEN A.Interleukin-17 family members and inflammation[J].Immunity,2004,21(4):467-476.
[52] HSIEH WS,KUNG CC,HUANG SL,et al.TDAG8,TRPV1,and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis[J].Sci Rep,2017,7(1):8870-8883.
收稿日期:2023-03-07;修回日期:2023-04-20