• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      偏壓梯度TiAlN涂層對(duì)TC4鈦合金振動(dòng)與拉伸疲勞性能的影響與機(jī)理

      2023-11-06 07:45:58曹鑫王靜靜李聰健何衛(wèi)鋒汪路路何磊
      表面技術(shù) 2023年10期
      關(guān)鍵詞:沖蝕偏壓鈦合金

      曹鑫,王靜靜,李聰健,何衛(wèi)鋒,汪路路,何磊

      偏壓梯度TiAlN涂層對(duì)TC4鈦合金振動(dòng)與拉伸疲勞性能的影響與機(jī)理

      曹鑫1,王靜靜2*,李聰健1,何衛(wèi)鋒3,汪路路1,何磊1

      (1.中國(guó)空氣動(dòng)力研究與發(fā)展中心 高速空氣動(dòng)力研究所,四川 綿陽(yáng) 621000;2.東南大學(xué) 泰州生物醫(yī)藥與醫(yī)療器械研究院,江蘇 泰州 225300;3.空軍工程大學(xué) 等離子體動(dòng)力學(xué)重點(diǎn)實(shí)驗(yàn)室,西安 710038)

      探究偏壓梯度TiAlN涂層對(duì)基體疲勞性能的影響規(guī)律和疲勞損傷機(jī)理。利用磁過(guò)濾陰極真空弧技術(shù)和連續(xù)改變偏壓的沉積工藝,在TC4鈦合金表面沉積了偏壓梯度TiAlN涂層,并采用掃描電鏡、輪廓儀、納米壓痕和劃痕儀表征測(cè)試了TiAlN涂層的微觀結(jié)構(gòu)和內(nèi)應(yīng)力、表面硬度、膜基結(jié)合力等基本力學(xué)性能。對(duì)TiAlN涂層試件的振動(dòng)和拉伸疲勞性能分別進(jìn)行了考核,通過(guò)觀察試件疲勞斷口形貌,探究了偏壓梯度TiAlN涂層/基體的疲勞損傷機(jī)理。TiAlN涂層中Al元素含量沿深度方向一直在降低,偏壓工藝成功制備出梯度結(jié)構(gòu)涂層。偏壓梯度TiAlN涂層的內(nèi)應(yīng)力為壓縮狀態(tài),數(shù)值為(2.66±0.23) Gpa,顯著低于對(duì)應(yīng)恒壓涂層(?200 V)。偏壓梯度TiAlN涂層試件平均振動(dòng)強(qiáng)度和拉伸疲勞強(qiáng)度分別為370.90、377.90 MPa,前者相對(duì)于TC4基體提高了47.7%,后者幾乎保持不變。TiAlN涂層內(nèi)部存在殘余壓應(yīng)力,具有一定抗裂紋萌生能力,TC4鈦合金表面制備偏壓梯度TiAlN涂層后,兩種受載類型下的疲勞裂紋源均位于涂層與基體界面處。振動(dòng)受載時(shí),涂層中梯度結(jié)構(gòu)抑制了裂紋的擴(kuò)展,疲勞強(qiáng)度提高;拉伸受載時(shí),TiAlN涂層部分發(fā)生破碎,抑制裂紋萌生與促進(jìn)裂紋擴(kuò)展兩種機(jī)制同時(shí)存在,疲勞強(qiáng)度幾乎不變。

      TiAlN涂層;偏壓梯度結(jié)構(gòu);TC4鈦合金;疲勞性能;損傷機(jī)理

      直升機(jī)和運(yùn)輸機(jī)在沙漠等惡劣環(huán)境下執(zhí)行任務(wù)時(shí),大量砂塵粒子被吸入發(fā)動(dòng)機(jī)內(nèi),對(duì)航空發(fā)動(dòng)機(jī)壓氣機(jī)葉片造成嚴(yán)重的沖蝕損傷,大幅降低了發(fā)動(dòng)機(jī)的使用壽命,影響發(fā)動(dòng)機(jī)運(yùn)行的安全性和可靠性[1-2]。壓氣機(jī)葉片表面制備抗沖蝕涂層是解決這一問(wèn)題的有效手段[3],學(xué)者們開展了大量研究工作。早期研究主要集中在二元氮化物涂層,如TiN、CrN、ZrN等。Rickerby等[4]進(jìn)行了不銹鋼表面TiN涂層的沖蝕考核試驗(yàn),驗(yàn)證了TiN涂層抗沖蝕性能的有效性,且在45°條件下抗沖蝕性能提升尤為顯著。Cai等[5]研究了制備工藝和涂層成分對(duì)CrN基和TiN基涂層沖蝕率的影響,結(jié)果表明低沖蝕角度下,涂層3/2值越高,沖蝕率越低,高沖蝕角度下則結(jié)果相反。隨著對(duì)涂層沖蝕行為研究的深入,涂層的韌性逐漸受到重視。二元涂層基礎(chǔ)上增加合金元素,是提高涂層韌性的途徑之一。Yang等[6]、鄧建新等[7]研究發(fā)現(xiàn),TiAlN涂層相對(duì)于TiN、CrN和CrAlN等涂層,硬度和韌性更高,抗沖蝕性能也因此提高。改進(jìn)涂層結(jié)構(gòu)是提高涂層韌性另一種重要途徑,例如多層結(jié)構(gòu)、梯度結(jié)構(gòu)等。梯度結(jié)構(gòu)是指在成分或功能特性上呈現(xiàn)連續(xù)變化的一種涂層結(jié)構(gòu)[8],可進(jìn)一步提升涂層的性能。Zhang等[9]提出一種連續(xù)調(diào)節(jié)襯底負(fù)偏壓制備梯度結(jié)構(gòu)涂層的工藝,可實(shí)現(xiàn)涂層自底部至表面由軟變硬的連續(xù)變化。軟質(zhì)逐漸過(guò)渡為表面硬質(zhì)。課題組前期采用該工藝成功制備出偏壓梯度TiAlN抗沖蝕涂層,實(shí)現(xiàn)了涂層高硬度和良好韌性的結(jié)合,并驗(yàn)證了其優(yōu)異的抗沖蝕性能[10]。

      抗沖蝕涂層可提高葉片材料表面的砂塵防護(hù)性能,但航空發(fā)動(dòng)機(jī)壓氣機(jī)葉片在運(yùn)行時(shí)過(guò)程承受氣流激振力,引起低階模態(tài)共振;同時(shí),葉片工作時(shí)高速旋轉(zhuǎn)對(duì)帶來(lái)較高的離心力。因此長(zhǎng)期服役過(guò)程葉片受到振動(dòng)與拉伸兩種不同形式的交變載荷。葉片材料表面制備抗沖蝕涂層后,易在交變載荷作用下與基體一同發(fā)生疲勞損傷,并對(duì)基體疲勞性能造成影響[11]。疲勞問(wèn)題是目前造成零部件斷裂的主要原因之一[12],研究人員針對(duì)交變載荷作用下涂層試件的疲勞性能開展了大量工作。Gryaznov[13]研究了多層TiN涂層對(duì)GTE葉片疲勞性能的影響,結(jié)果表明制備涂層后葉片的疲勞極限提高,且數(shù)據(jù)分散度降低。Berrios-Ortiz等[14]研究了采用磁控濺射在316L不銹鋼表面制備ZrN涂層后的疲勞特性,結(jié)果表明涂層內(nèi)部的殘余壓應(yīng)力及較高的膜基結(jié)合強(qiáng)度提升了基體的疲勞強(qiáng)度。Peraud等[15]在鈦合金表面分別制備了NiTi和SiC合金涂層,著重研究了鈦合金制備涂層后疲勞斷裂行為。研究發(fā)現(xiàn)試件的疲勞壽命與涂層特性和交變載荷的強(qiáng)度均相關(guān)。鈦合金表面涂層的存在改變了表面層的變形機(jī)制,可阻止試件表面裂紋源的萌生,疲勞壽命顯著提高。

      上述研究表明涂層能夠改善基體的疲勞性能,但也有較多文獻(xiàn)指出涂層的制備不利于基體的疲勞性能。賈大煒等[16]研究了高溫防護(hù)涂層對(duì)鎳基合金疲勞性能及裂紋萌生與擴(kuò)展的影響。涂層制備后其表面存在松散顆粒,易導(dǎo)致裂紋萌生并迅速擴(kuò)展,降低了基體疲勞極限。Costa等[17]在Ti6Al4V鈦合金表面分別制備了TiN、CrN和WC: H等涂層,涂層試件的疲勞極限相對(duì)于原始基體均有所下降。黃海鴻等[18]、熊曉晨等[19]也得出了類似的研究結(jié)果??梢?jiàn),涂層制備后試件的疲勞性能很難準(zhǔn)確預(yù)測(cè),與涂層、基體各自性能以及界面特性、膜基結(jié)合強(qiáng)度等多方面因素有關(guān)。為保證壓氣機(jī)葉片制備抗沖蝕涂層后安全服役,亟需開展抗沖蝕涂層對(duì)基體疲勞性能影響及機(jī)理研究。目前,對(duì)于梯度結(jié)構(gòu)抗沖蝕涂層對(duì)基體疲勞性能影響的研究較少,本文以偏壓梯度TiAlN涂層為研究對(duì)象,針對(duì)壓氣機(jī)葉片工作中存在的振動(dòng)、拉伸形式的交變載荷,對(duì)涂層試件進(jìn)行疲勞考核,研究TiAlN涂層對(duì)鈦合金基體振動(dòng)與拉伸疲勞性能的影響,并結(jié)合疲勞斷口損傷形貌,探究涂層/基體的疲勞損傷機(jī)理。

      1 試驗(yàn)

      1.1 涂層制備

      涂層制備基體選用航空發(fā)動(dòng)機(jī)壓氣機(jī)葉片常用材料Ti6Al4V(TC4)鈦合金,該合金為α+β相的雙相結(jié)構(gòu)。表1給出了室溫下TC4鈦合金主要力學(xué)性能參數(shù)。

      表1 室溫下TC4鈦合金力學(xué)性能

      Tab.1 Mechanical properties of TC4 alloy at room temperature

      振動(dòng)高周疲勞試件根據(jù)HB 5277—84相關(guān)要求進(jìn)行加工,試件尺寸如圖1a所示,試件圓弧短邊一側(cè)均為夾持區(qū)域。拉伸高周疲勞試件按照國(guó)家標(biāo)準(zhǔn)GB/T 3075—2008相關(guān)要求進(jìn)行加工,試件尺寸如圖1b所示,試件兩端各18 mm長(zhǎng)度部分為夾持區(qū)域。采用磁過(guò)濾陰極真空弧(Filtered Cathodic Vacuum Arc,F(xiàn)CVA)技術(shù)在試件雙面均進(jìn)行涂層制備,制備前將基材材料進(jìn)行拋磨至表面粗糙度<0.1 μm。為了提高結(jié)合力,采用金屬蒸汽真空弧(Metal Vapor Vacuum Arc,MEVVA)注入與FCVA沉積相結(jié)合的工藝沉積TiAl結(jié)合層,具體工藝步驟及參數(shù)見(jiàn)表2中步驟1~4。TiAl結(jié)合層沉積之后,通入氮?dú)忾_始沉積TiAlN層,氮?dú)饬髁繌? ml/min逐漸增加到50 ml/min(增加速率為0.2 sccm/s,共計(jì)4 min),并在50 ml/min流量速率下維持46 min,具體工藝如表2步驟5所示。沉積梯度TiAlN層期間,襯底負(fù)偏壓以每分鐘增加?3 V的速率從?50 V逐漸調(diào)節(jié)至200 V,其中電源占空比為90%,弧流為100 A。MEVVA陰極靶材為99.999%高純Ti靶,F(xiàn)CVA陰極靶材為99.9% Ti0.3Al0.7合金靶。為了阻止TiAlN層的柱狀晶體生長(zhǎng)過(guò)大,在TiAlN層沉積的第34分鐘停止通入氮?dú)猓⑦M(jìn)行高能Ti/Al離子濺射(負(fù)偏壓分別調(diào)至?800、?600、?400 V,各維持30 s)。當(dāng)停止通入氮?dú)鈺r(shí),TiAlN層的柱狀晶體即停止生長(zhǎng);當(dāng)再次通入氮?dú)夂螅琓iAlN層需重新成核生長(zhǎng),因而可阻止柱狀晶的增長(zhǎng)[20-21],同時(shí)高能離子也可進(jìn)一步釋放涂層的生長(zhǎng)應(yīng)力。涂層制備時(shí),同時(shí)放入單面拋光單晶硅片(100)試件,便于涂層微觀結(jié)構(gòu)觀察與測(cè)試使用。

      圖1 疲勞試件尺寸示意圖

      表2 偏壓梯度TiAlN涂層沉積過(guò)程和工藝參數(shù)

      Tab.2 Deposition process and parameters of bias-graded TiAlN coatings

      1.2 結(jié)構(gòu)表征及力學(xué)性能測(cè)試

      對(duì)偏壓梯度TiAlN涂層的微觀形貌及力學(xué)性能進(jìn)行測(cè)試表征。采用掃描電鏡(Hitachi SU-8010)對(duì)偏壓梯度TiAlN涂層的表面及截面形貌進(jìn)行觀察,并對(duì)截面進(jìn)行EDS測(cè)試,獲取涂層中Ti、Al和N元素沿深度方向上的分布規(guī)律。采用納米壓痕儀(Agilent Nano-Indenter G200)對(duì)涂層表面硬度進(jìn)行測(cè)試,選擇深度模式,壓痕深度為200 nm。采用Stoney公式[22]計(jì)算獲取TiAlN涂層的宏觀平均內(nèi)應(yīng)力,其方程為:

      式中:s、s分別為基體材料的彈性模量和泊松比,通過(guò)材料手冊(cè)查得;s為基體試件的厚度,涂層制備前直接測(cè)得;c為涂層厚度,通過(guò)掃描電鏡測(cè)得;為涂層沉積后試件的曲率半徑,通過(guò)Talysurf 5P-120輪廓儀測(cè)得。試件沉積之前的表面被認(rèn)作是平面,其曲率半徑的倒數(shù)為零,因而該項(xiàng)在方程中被略去。采用劃痕測(cè)試儀(Anton Paar Revetest)對(duì)涂層與基體的結(jié)合力進(jìn)行測(cè)量,測(cè)試參數(shù)為:劃痕長(zhǎng)度5 mm,加載速率98 N/min,加載速度10 mm/min,開始載荷1 N,最終載荷50 N。

      1.3 疲勞試驗(yàn)

      針對(duì)壓氣機(jī)葉片工作時(shí)不同的交變載荷形式,對(duì)涂層試件分別進(jìn)行振動(dòng)與拉伸形式的高周疲勞性能考核,并采用逐級(jí)加載的試驗(yàn)方法[23]確定試件的高周疲勞強(qiáng)度,具體方法步驟參見(jiàn)文獻(xiàn)[24]。振動(dòng)疲勞性能考核在東菱ES-50-445型電磁振動(dòng)試驗(yàn)平臺(tái)上開展,試件夾持方式為單臂懸梁。試驗(yàn)中通過(guò)電渦流位移傳感器監(jiān)控疲勞過(guò)程中試件的振幅來(lái)控制應(yīng)力。第一級(jí)應(yīng)力載荷水平設(shè)為260 MPa,后續(xù)試件根據(jù)試驗(yàn)情況進(jìn)行調(diào)整,步長(zhǎng)為20 MPa,應(yīng)力比為?1,循環(huán)次數(shù)為106,加載頻率為試件的一階固有頻率,通過(guò)振動(dòng)試驗(yàn)臺(tái)掃頻獲取。拉伸高周疲勞考核試驗(yàn)在電磁激振高頻疲勞試驗(yàn)機(jī)QBG-100上開展。第一級(jí)應(yīng)力載荷水平設(shè)為300 MPa,后續(xù)試件根據(jù)試驗(yàn)情況進(jìn)行調(diào)整,步長(zhǎng)為30 MPa,應(yīng)力比為0.1,循環(huán)次數(shù)為106,加載頻率根據(jù)試件自身屬性進(jìn)行自適應(yīng)控制,其范圍為90~105 Hz。TiAlN涂層疲勞試件為12個(gè),振動(dòng)和拉伸疲勞試件均為6個(gè)。采用掃描電鏡對(duì)涂層試件的疲勞斷口進(jìn)行觀察,比較不同狀態(tài)試件的疲勞損傷特征,探究振動(dòng)載荷及拉伸交變載荷作用下TiAlN涂層試件的疲勞損傷機(jī)理。

      2 結(jié)果與討論

      2.1 微觀形貌

      圖2a為單晶硅片表面沉積偏壓梯度TiAlN涂層的表面形貌,可以看出涂層表面致密、均勻,僅存在極少數(shù)的液滴,這與磁過(guò)濾沉積技術(shù)特點(diǎn)有關(guān)。涂層表面存在少量圓形的淺坑,這是由于沉積過(guò)程中偏壓逐漸增大,金屬離子的轟擊能量與濺射效應(yīng)隨之增強(qiáng),涂層表面部分材料被濺射下來(lái),從而形成淺坑。圖2b為在偏壓梯度TiAlN涂層的橫截面微觀形貌。由圖2b可見(jiàn),涂層與基體連接良好,在涂層/基體界面處無(wú)分層和裂縫存在。涂層內(nèi)部均勻緊湊,無(wú)孔洞存在,表面存在少數(shù)液滴。此外,由截面可知涂層總厚度約為3.6 μm,包括TiAl結(jié)合層、TiAlN層及TiAl濺射薄層,其中TiAl結(jié)合層的厚度約為0.57 μm,TiAl濺射薄層厚度約為70 nm,是在高能Ti/Al離子濺射過(guò)程中形成,將TiAlN層分成了上下兩部分,可阻止TiAlN層柱狀晶體生長(zhǎng)過(guò)大。偏壓梯度TiAlN層中存在“魚鱗狀”形貌(白色虛線之間),這是由橫截面試件制樣過(guò)程中的脆斷導(dǎo)致。

      圖2 TiAlN涂層微觀形貌

      采用EDS測(cè)試偏壓梯度TiAlN涂層中Ti、Al和N元素沿深度方向上的分布規(guī)律,其結(jié)果如圖2b所示。偏壓梯度涂層的TiAlN層中的Al元素含量一直在下降,表明梯度偏壓工藝可制備出梯度結(jié)構(gòu)。Al元素的下降與偏壓的增加有關(guān),這與參考文獻(xiàn)[25]中的結(jié)果一致。Al元素與Ti元素的離化率不同,Al的離化率為50%,而Ti的離化率為80%,更多的Ti離子被吸引到負(fù)壓襯底上。隨著偏壓的增加,襯底對(duì)離子的吸引增強(qiáng),導(dǎo)致Al/Ti比例的下降[26]。另一方面,隨著襯底偏壓的增加,襯底表面濺射效應(yīng)增加,與較重的Ti離子相比,Al離子反濺射效應(yīng)更強(qiáng),更容易被后續(xù)的高能離子從襯底表面濺射出來(lái),導(dǎo)致Al元素含量降低[27]。

      2.2 力學(xué)性能

      表3為TC4鈦合金[10]和TiAlN涂層應(yīng)力計(jì)算與硬度測(cè)試結(jié)果。TC4鈦合金試件表面殘余應(yīng)力為8.23 MPa,應(yīng)力水平極低。TiAlN涂層試件的內(nèi)應(yīng)力數(shù)值為(2.66±0.23) GPa,根據(jù)試件的彎曲變形方向[28]可知為壓縮狀態(tài)(表3中給出試件表面制備涂層后彎曲變形方向與應(yīng)力狀態(tài)關(guān)系示意圖)。文獻(xiàn)[10]中相應(yīng)恒定偏壓TiAlN(?200 V)涂層的內(nèi)應(yīng)力數(shù)值為(3.95± 0.07) GPa,與其相比偏壓梯度TiAlN涂層降低了32.66%。這是由于恒定偏壓涂層在沉積期間,襯底偏壓一直維持在?200 V,沉積時(shí)產(chǎn)生的離子束轟擊效應(yīng)較強(qiáng),涂層沉積時(shí)其缺陷密度累積增加,進(jìn)而導(dǎo)致內(nèi)應(yīng)力增加。而偏壓梯度涂層在沉積期間,襯底偏壓逐漸增加,后續(xù)沉積離子的能量高于先前靶材離子,從而增加了涂層表面已吸附離子的遷移率,并同時(shí)促進(jìn)了離子擴(kuò)散。前序低能量下產(chǎn)生的缺陷易被后續(xù)高能量下形成的吸附離子在其擴(kuò)散過(guò)程中而湮滅[29-30]。因此,偏壓梯度涂層中的內(nèi)應(yīng)力顯著低于恒定偏壓涂層。

      表3 不同試件的力學(xué)性能

      Tab.3 Mechanical properties of specimens

      TC4鈦合金試件的表面硬度為3.95 GPa,TiAlN涂層試件的表面硬度為32.08 GPa,涂層的制備顯著提高了基體的表面硬度。偏壓梯度涂層沉積過(guò)程中,隨著偏壓的增加,沉積能量也增加,離子轟擊產(chǎn)生的空穴易被新產(chǎn)生的離子填充,涂層沉積時(shí)堆積密度增加[31];同時(shí),涂層內(nèi)應(yīng)力隨著偏壓的增加而增強(qiáng)[25],兩者共同作用導(dǎo)致涂層硬度不斷提高。根據(jù)ASTM C1624-05標(biāo)準(zhǔn),本文采用c2作為結(jié)合力評(píng)價(jià)標(biāo)準(zhǔn)。TiAlN涂層的劃痕損傷形貌如圖3所示,涂層的c2位置用紅色箭頭標(biāo)出。由圖3可知,偏壓梯度TiAlN涂層的結(jié)合力為44.03 N,遠(yuǎn)高于文獻(xiàn)[10]中恒定偏壓TiAlN(?200 V)涂層的結(jié)合力(26.99 N)。梯度偏壓沉積方法形成的梯度結(jié)構(gòu),可減少涂層內(nèi)部的應(yīng)力集中,降低涂層的內(nèi)應(yīng)力,提高垂直載荷下涂層的抗破裂能力,從而增加了涂層與基體的結(jié)合力[31]。

      圖3 TiAlN涂層的劃痕損傷形貌[10]

      2.3 疲勞性能與損傷機(jī)理

      2.3.1 振動(dòng)疲勞

      TiAlN涂層試件的振動(dòng)疲勞加載參數(shù)及疲勞強(qiáng)度結(jié)果如表4所示。由表4可知,TiAlN涂層試件的振動(dòng)疲勞強(qiáng)度為313~427 MPa,平均強(qiáng)度為370.90 MPa,與文獻(xiàn)[32]中的TC4鈦合金基體相比提高了47.7%。對(duì)考核后的振動(dòng)疲勞試件進(jìn)行切割與制樣,采用掃描電鏡對(duì)疲勞斷口進(jìn)行觀察。圖4a為TiAlN涂層試件的振動(dòng)疲勞宏觀斷口形貌,可以看出斷裂條紋從試件底部起始,可推斷出裂紋源位于試件下表面附近;對(duì)裂紋源區(qū)Region A的微觀形貌進(jìn)行進(jìn)一步觀察,如圖4b所示,可以看到裂紋源位于基體與涂層界面處,且涂層與基體發(fā)生了剝離。雖然振動(dòng)疲勞試驗(yàn)過(guò)程中最大應(yīng)力位于試件表面,但TiAlN涂層相比于TC4鈦合金具有更高的強(qiáng)度和殘余壓應(yīng)力,裂紋難以在涂層表面萌生[33];另一方面,涂層與基體的界面處容易形成應(yīng)力集中,因而裂紋在界面處萌生。裂紋萌生后,同時(shí)向基體內(nèi)部和涂層內(nèi)部擴(kuò)展,如圖4c中黃色箭頭所示。相對(duì)于文獻(xiàn)[32]中的TiN/Ti涂層試件,TiAlN涂層中裂紋的擴(kuò)展路徑更短、速率更快,這可能是由于TiAlN涂層殘余壓應(yīng)力低于TiN/Ti涂層(?3.95 GPa),抑制裂紋擴(kuò)展的能力稍弱。因而,制備TiAlN涂層后振動(dòng)疲勞強(qiáng)度低于TiN/Ti涂層試件[32]。但相對(duì)于TC4鈦合金試件,TiAlN涂層制備后仍起到抑制表面裂紋萌生的作用,且裂紋擴(kuò)展時(shí)部分能量在涂層中消耗,因此振動(dòng)疲勞強(qiáng)度提高。

      表4 TiAlN涂層試件振動(dòng)疲勞加載參數(shù)及試驗(yàn)結(jié)果

      圖4 偏壓梯度TiAlN涂層試件振動(dòng)疲勞斷口形貌

      2.3.2 拉伸疲勞

      TiAlN涂層試件的振動(dòng)疲勞加載參數(shù)及疲勞強(qiáng)度結(jié)果如表5所示。由表5可知,TiAlN涂層試件的拉伸疲勞強(qiáng)度為350~424 MPa,平均強(qiáng)度為377.90 MPa,與文獻(xiàn)[34]中的TC4鈦合金基體疲勞強(qiáng)度相當(dāng)。對(duì)比振動(dòng)疲勞結(jié)果可知,TiAlN涂層可提高基體的振動(dòng)疲勞強(qiáng)度,對(duì)拉伸疲勞強(qiáng)度卻幾乎沒(méi)有影響。對(duì)考核后拉伸疲勞試件進(jìn)行切割與制樣,采用掃描電鏡對(duì)疲勞斷口進(jìn)行觀察。圖5是TiAlN涂層試件拉伸疲勞斷口形貌,其中圖5a為宏觀形貌,可以看出呈現(xiàn)出明顯的疲勞紋路,紋路反向匯聚于試件的左上角,即裂紋源所處位置。圖5b為裂紋源區(qū)微觀形貌,可以看出,疲勞源依然位于涂層與基體的界面處,但與文獻(xiàn)[34]中的TiN/Ti涂層試件界面處全部剝落不同,TiAlN涂層僅存在部分剝落。拉伸疲勞加載過(guò)程中,涂層與基體均受到軸向拉伸應(yīng)力,TiAlN涂層的延展率低于基體,界面處易產(chǎn)生應(yīng)力集中而萌生裂紋,形成裂紋源。TiAlN涂層存在較大的殘余壓應(yīng)力,能夠抵消部分拉應(yīng)力。相對(duì)于文獻(xiàn)[34]中的TiN/Ti涂層試件,TiAlN涂層的韌性更好,涂層的厚度也更低,與基體變形不匹配度較低,破裂損傷程度較小。因此,TiAlN涂層試件的疲勞強(qiáng)度略高于TiN/Ti涂層試件。但由于涂層發(fā)生了部分破裂,一定程度上促進(jìn)了疲勞裂紋的擴(kuò)展,與殘余壓應(yīng)力抑制裂紋萌生作用相互抵消,因而對(duì)基體的疲勞強(qiáng)度影響不大。圖5c是TiAlN涂層試件裂紋擴(kuò)展區(qū)的微觀形貌,涂層幾乎未發(fā)生破裂,且與基體結(jié)合較好,表明裂紋向基體內(nèi)部進(jìn)行了擴(kuò)展。此外,基體區(qū)域可觀察到疲勞條帶存在,表明涂層僅影響界面處的裂紋萌生及擴(kuò)展,對(duì)基體內(nèi)部沒(méi)有影響。

      表5 TiAlN涂層試件拉伸疲勞加載參數(shù)及試驗(yàn)結(jié)果

      Tab.5 Tensile fatigue loading parameters and test results of TiAlN specimens

      圖5 偏壓梯度TiAlN涂層試件拉伸疲勞斷口形貌

      3 結(jié)論

      1)梯度偏壓工藝成功制備出梯度結(jié)構(gòu)TiAlN涂層。沉積過(guò)程中前序低能量下產(chǎn)生的缺陷更容易被后續(xù)高能量下形成的吸附離子在其擴(kuò)散過(guò)程中而湮滅,降低了偏壓梯度TiAlN涂層的內(nèi)應(yīng)力。

      2)偏壓梯度TiAlN涂層試件的平均振動(dòng)強(qiáng)度為370.90 MPa,相比基體提高了47.7%;拉伸疲勞強(qiáng)度為377.90 MPa,與無(wú)涂層基體相當(dāng)。TiAlN涂層內(nèi)部存在殘余壓應(yīng)力,具有一定的抗裂紋萌生能力。

      3)涂層制備后,試件的振動(dòng)及拉伸疲勞裂紋源均位于涂層與基體界面處。振動(dòng)加載時(shí),裂紋擴(kuò)展至涂層內(nèi)部時(shí),涂層中梯度結(jié)構(gòu)可抑制裂紋的擴(kuò)展。拉伸加載時(shí),TiAlN涂層部分破碎,但與基體未完全剝離,抑制裂紋萌生與促進(jìn)裂紋擴(kuò)展兩種機(jī)制同時(shí)存在。

      [1] PEPI M, SQUILLACIOTI R, PFLEDDERER L, et al. Solid Particle Erosion Testing of Helicopter Rotor Blade Materials[J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96-108.

      [2] SUZUKI M, INABA K, YAMAMOTO M. Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor[J]. Journal of Thermal Science, 2008, 17(2): 125-133.

      [3] IMMARIGEON J P, CHOW D, PARAMESWARAN V R, et al. Erosion Testing of Coatings for Aero Engine Com-pressor Components[J]. Advanced Performance Materials, 1997, 4(4): 371-388.

      [4] RICKERBY D S, BURNETT P J. The Wear and Erosion Resistance of Hard PVD Coatings[J]. Surface and Coatings Technology, 1987, 33: 191-211.

      [5] CAI Feng, HUANG Xiao, YANG Qi, et al. Tribological Behaviors of Titanium Nitride- and Chromium-Nitride- Based Physical Vapor Deposition Coating Systems[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 1.

      [6] YANG Q, SEO D Y, ZHAO L R, et al. Erosion Resistance Performance of Magnetron Sputtering Deposited TiAlN Coatings[J]. Surface and Coatings Technology, 2004, 188-189: 168-173.

      [7] DENG Jian-xin, WU Feng-fang, LIAN Yun-song, et al. Erosion Wear of CRN, TiN, CrAlN, and TiAlN PVD Nitride Coatings[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 10-16.

      [8] 程西云, 何俊, 肖舒, 等. 梯度結(jié)構(gòu)對(duì)氧化鋁陶瓷涂層抗沖擊載荷性能的影響[J]. 機(jī)械工程學(xué)報(bào), 2012, 48(21): 124-131. CHENG Xi-yun, HE Jun, XIAO Shu, et al. Influences of Gradient Structure on the Impact Resistance of Al2O3Ceramic Coatings[J]. Journal of Mechanical Engineering, 2012, 48(21): 124-131.

      [9] ZHANG S, BUI X L, FU Yong-qing, et al. Bias-Graded Deposition of Diamond-Like Carbon for Tribological Applications[J]. Diamond and Related Materials, 2004, 13(4-8): 867-871.

      [10] CAO Xin, HE Wei-feng, HE Guang-yu, et al. Sand Erosion Resistance Improvement and Damage Mechanism of TiAlN Coating via the Bias-Graded Voltage in FCVA Deposition[J]. Surface and Coatings Technology, 2019, 378: 125009.

      [11] PUCHI-CABRERA E S, MAT??NEZ F, HERRERA I, et al. On the Fatigue Behavior of an AISI 316L Stainless Steel Coated with a PVD TiN Deposit[J]. Surface and Coatings Technology, 2004, 182(2-3): 276-286.

      [12] BONORA R G, VOORWALD H J C, CIOFFI M O H, et al. Fatigue in AISI 4340 Steel Thermal Spray Coating by HVOF for Aeronautic Application[J]. Procedia Engineering, 2010, 2(1): 1617-1623.

      [13] GRYAZNOV B A, MAIBORODA V S, NALIMOV Y S, et al. Effect of the Types of Surface Treatment and Mul-tilayer Coating of Turbine Blade Bodies on Their Fatigue Strength[J]. Strength of Materials, 1999, 31(5): 510-515.

      [14] BERR??OS-ORT??Z J A, LA BARBERA-SOSA J G, TEER D G, et al. Fatigue Properties of a 316L Stainless Steel Coated with Different ZrN Deposits[J]. Surface and Coatings Technology, 2004, 179(2-3): 145-157.

      [15] PERAUD S, VILLECHAISE P, MENDEZ J. Effects of Dynamically Ion Mixed Thin Coatings on Fatigue Damage Processes in Titanium Alloys[J]. Antimicrobial Agents & Chemotherapy, 2013, 21(6): 870.

      [16] 賈大煒, 施惠基, 鐘斌, 等. 表面高溫防護(hù)涂層對(duì)鎳基定向凝固合金低周疲勞行為的影響[J]. 失效分析與預(yù)防, 2006, 1(2): 36-40, 44. JIA Da-wei, SHI Hui-ji, ZHONG Bin, et al. Effect of Surface Coating on Low Cycle Fatigue Behavior of Nickel- Based Directionally Solidified Superalloy[J]. Failure Analysis and Prevention, 2006, 1(2): 36-40, 44.

      [17] COSTA M Y P, VENDITTI M L R, CIOFFI M O H, et al. Fatigue Behavior of PVD Coated Ti-6Al-4V Alloy[J]. International Journal of Fatigue, 2011, 33(6): 759-765.

      [18] 黃海鴻, 楊偉華, 王振蘇. 300M鋼表面WC10Co4Cr涂層制備及其對(duì)疲勞的影響[J]. 航空精密制造技術(shù), 2014, 50(2): 33-35. HUANG Hai-hong, YANG Wei-hua, WANG Zhen-su. Effect of Steel 300M Surface WC10Co4Cr Coating Pre-pa-tation on Fatigue[J]. Aviation Precision Manufacturing Technology, 2014, 50(2): 33-35.

      [19] 熊曉晨, 燕怒, 姜雨. 表面爆炸噴涂WC涂層對(duì)GCr15軸承鋼抗疲勞性能的影響[J]. 機(jī)械工程材料, 2018, 42(2): 74-77. XIONG Xiao-chen, YAN Nu, JIANG Yu. Influence of Surface Explosion Spraying WC Coating on Fatigue Resistance of GCr15 Bearing Steel[J]. Materials for Mechanical Engineering, 2018, 42(2): 74-77.

      [20] ZHOU Da-peng, PENG Hui, ZHU Liu, et al. Micros-tructure, Hardness and Corrosion Behaviour of Ti/TiN Mul-tilayer Coatings Produced by Plasma Activated EB- PVD[J]. Surface and Coatings Technology, 2014, 258: 102-107.

      [21] ZHANG Ming-ming, XIN Li, DING Xue-yong, et al. Effects Ti/TiAlN Composite Multilayer Coatings on Corrosion Resistance of Titanium Alloy in Solid NaCl- H2O-O2at 600 ℃[J]. Journal of Alloys and Compounds, 2018, 734: 307-317.

      [22] JANSSEN G C A M, ABDALLA M M, VAN KEULEN F, et al. Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments from Polycrystalline Steel Strips to Single Crystal Silicon Wafers[J]. Thin Solid Films, 2009, 517(6): 1858-1867.

      [23] MAXWELL D C, NICHOLAS T. A Rapid Method for Generation of a Haigh Diagram for High Cycle Fatigue [J]. ASTM Special Technical Publication, 1999, 29: 626- 641.

      [24] LUO Si-hai, NIE Xiang-fan, ZHOU Liu-cheng, et al. High Cycle Fatigue Performance in Laser Shock Peened TC4 Titanium Alloys Subjected to Foreign Object Damage [J]. Journal of Materials Engineering and Performance, 2018, 27(3): 1466-1474.

      [25] ZHANG G P, GAO G J, WANG X Q, et al. Influence of Pulsed Substrate Bias on the Structure and Properties of Ti-Al-N Films Deposited by Cathodic Vacuum Arc[J]. Applied Surface Science, 2012, 258(19): 7274-7279.

      [26] 盧龍, 蔣濤, 嚴(yán)鏗. 基體負(fù)偏壓對(duì)TiAlN/TiN膜層組織成分及硬度的影響[J]. 熱加工工藝, 2009, 38(24): 78-80, 83.LU Long, JIANG Tao, YAN Keng. Effects of Pushed Bias on Microstructure and Hardness of TiAlN/TiN Coating[J]. Hot Working Technology, 2009, 38(24): 78-80, 83.

      [27] EIZNER B A, MARKOV G V, MINEVICH A A. Depo-si-tion Stages and Applications of CAE Multicomponent Coa-tings[J]. Surface and Coatings Technology, 1996, 79(1-3): 178-191.

      [28] ZHANG Li-qiang, YANG Hui-sheng, PANG Xiao-lu, et al. Microstructure, Residual Stress, and Fracture of Sputtered TiN Films[J]. Surface and Coatings Technology, 2013, 224: 120-125.

      [29] PFEILER M, KUTSCHEJ K, PENOY M, et al. The Influence of Bias Voltage on Structure and Mechanical/ Tribological Properties of Arc Evaporated Ti-Al-V-N Coatings[J]. Surface and Coatings Technology, 2007, 202(4-7): 1050-1054.

      [30] TILLMANN W, SPRUTE T, HOFFMANN F, et al. Influence of Bias Voltage on Residual Stresses and Tribological Properties of TiAlVN-Coatings at Elevated Temperatures [J]. Surface and Coatings Technology, 2013, 231: 122-125.

      [31] CAI J B, WANG X L, BAI W Q, et al. Bias-Graded Deposition and Tribological Properties of Ti-Contained A-C Gradient Composite Film on Ti6Al4V Alloy[J]. Applied Surface Science, 2013, 279: 450-457.

      [32] CAO Xin, HE Wei-feng, LIAO Bin, et al. Effect of TiN/Ti Coating Combined with Laser Shock Peening Pre-Treat-ment on the Fatigue Strength of Ti-6Al-4V Titanium Alloy [J]. Surface and Coatings Technology, 2020, 403: 126393.

      [33] MORITA T, ANDATSU K, HIROTA S, et al. Effect of Hybrid Surface Treatment Composed of Plasma Nitriding and DLC Coating on Friction Coefficient and Fatigue Strength of Stainless Steel[J]. Materials Transactions, 2013, 54(5): 732-737.

      [34] 曹鑫, 何衛(wèi)鋒, 汪世廣, 等. 激光沖擊強(qiáng)化前處理對(duì)TiN/Ti涂層/基體疲勞性能的影響[J]. 中國(guó)表面工程, 2021, 34(3): 120-129. CAO Xin, HE Wei-feng, WANG Shi-guang, et al. Effect of Laser Shock Peening Pretreatment on Thefatigue Properties of TiN/Ticoating/Substrate[J]. China Surface Engineering, 2021, 34(3): 120-129.

      Effect and Mechanism of Bias-graded TiAlN Coatings on Vibration and Tensile Fatigue Properties of TC4 Titanium Alloy

      1,2*,1,3,1,1

      (1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Sichuan Mianyang 621000, China; 2. Institute of Biomedicine and Medical Devices, Southeast University, Jiangsu Taizhou 225300, China; 3. Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China)

      The erosion resistant coating on the surface of the blade material can improve the sand protection performance. However, the aero-engine compressor blades are subject to the airflow excitation force aroused during the working process, causing the resonance of the blade in the low-order mode. The blades rotate at high speed, bearing huge centrifugal force. After the anti-erosion coating is prepared on the surface of the blade material, it is prone to cause fatigue damage together with the substrate under the above two types of alternating load, influencing the fatigue performance of the substrate. To investigate the effect of the coating on the fatigue properties of the substrate and the fatigue damage mechanism, bias-graded TiAlN coatings was deposited on Ti6Al4V alloy substrates using filtered cathodic vacuum arc (FCVA) technology with the bias-graded deposition method, during which the negative bias was changed gradually from ?50 V to ?200 V. The microstructure of the bias-graded TiAlN coating was observed and examined with a scanning electron microscopy. The basic mechanical properties including the element distribution along the depth direction, internal stress, surface hardness and film-substrate bonding force were characterized by an energy dispersive spectroscopy, a profilometer, a nanoindentation and scratch meter, respectively. The vibration and tensile fatigue properties of the bias-graded TiAlN coating/ substrate specimens were evaluated and the fatigue damage mechanism was analyzed by observing the fatigue fracture morphologies of the specimens. The results showed that the coating surface was dense and uniform with few droplets. The Al content along the depth direction of the TiAlN coating was decreased gradually, indicating the gradient structure coating was successfully prepared. The internal stress of the bias-graded TiAlN coating was (2.66±0.23) GPa, which was in a compressive state and significantly lower than that of the constant-bias coating. The inner defects created under the lower bias were more easily removed by the ad-atoms formed under the higher bias during the diffusion process, leading to the lower internal stress in the bias-graded TiAlN coating. The binding force of the bias-graded TiAlN coating was 44.03 N, which was much higher than that of the constant bias TiAlN (?200 V) coating. The gradient structure could reduce the stress concentration and the internal stress of the coating, improve the crack resistance of the coating under vertical load, thereby increasing the bonding force between the coating and the substrate. The average vibration strength and tensile fatigue strength of the TiAlN coating specimens were 370.90 MPa and 377.90 MPa, respectively. The former was increased by 47.7% compared with the TC4 substrate, and the latter was almost unchanged. The residual compressive stress existed in the TiAlN coating can resistant to crack initiation. After the bias-graded TiAlN coating is prepared on the surface of the TC4 specimen, the fatigue crack sources under the two types of loading are both located at the interface between the coating and the substrate. For the vibration loading, the gradient structure in the coating inhibits the growth of cracks, and thus the fatigue strength increases. While for the tensile loading, the TiAlN coating is partially broken, and the two mechanisms of inhibiting crack initiation and promoting crack growth exist simultaneously, thus the fatigue strength is almost unchanged.

      TiAlN coating; bias-graded structure; TC4 titanium alloy; fatigue property; damage mechanism

      2022-09-07;

      2023-02-13

      TG405

      A

      1001-3660(2023)10-0376-08

      10.16490/j.cnki.issn.1001-3660.2023.10.033

      2022-09-07;

      2023-02-13

      國(guó)家自然科學(xué)基金(52205214)

      The National Natural Foundation of China (52205214)

      曹鑫, 王靜靜, 李聰健, 等.偏壓梯度TiAlN涂層對(duì)TC4鈦合金振動(dòng)與拉伸疲勞性能的影響與機(jī)理[J]. 表面技術(shù), 2023, 52(10): 376-383.

      CAO Xin, WANG Jing-jing, LI Cong-jian, et al. Effect and Mechanism of Bias-graded TiAlN Coatings on Vibration and Tensile Fatigue Properties of TC4 Titanium Alloy[J]. Surface Technology, 2023, 52(10): 376-383.

      通信作者(Corresponding author)

      責(zé)任編輯:萬(wàn)長(zhǎng)清

      猜你喜歡
      沖蝕偏壓鈦合金
      140MPa井口壓裂四通管道沖蝕分析
      “神的金屬”鈦合金SHINE YOUR LIFE
      鈦合金板鍛造的工藝實(shí)踐
      四川冶金(2017年6期)2017-09-21 00:52:30
      輸氣管道砂沖蝕的模擬實(shí)驗(yàn)
      預(yù)留土法對(duì)高鐵隧道口淺埋偏壓段的影響
      醫(yī)用鈦合金的研究與應(yīng)用
      環(huán)氧樹脂及其復(fù)合材料的固體顆粒沖蝕磨損
      淺埋偏壓富水隧道掘進(jìn)支護(hù)工藝分析
      河南科技(2015年4期)2015-02-27 14:21:05
      灰色理論在偏壓連拱隧道中的應(yīng)用
      基于TPS40210的APD偏壓溫補(bǔ)電路設(shè)計(jì)
      黑山县| 北流市| 临海市| 邯郸县| 上林县| 修水县| 天全县| 子长县| 昌乐县| 江山市| 北宁市| 高陵县| 渑池县| 江门市| 大荔县| 石渠县| 安吉县| 延川县| 扶沟县| 双城市| 米林县| 扶沟县| 峨山| 灵寿县| 裕民县| 大邑县| 廊坊市| 丹江口市| 双峰县| 许昌县| 太湖县| 区。| 镇原县| 鹤峰县| 泌阳县| 定边县| 巨鹿县| 和硕县| 新津县| 讷河市| 宁波市|