姜文洋,陳俊南,昝志曼,汪江濤,鄭賓,劉領(lǐng),劉娟,焦念元
單粒播種與施磷對(duì)間作花生種間競(jìng)爭(zhēng)和生長(zhǎng)的調(diào)控效應(yīng)
姜文洋1,陳俊南1,昝志曼1,汪江濤1,鄭賓1,劉領(lǐng)1,劉娟2,焦念元1
1河南科技大學(xué)農(nóng)學(xué)院,河南洛陽(yáng) 471000;2河南省農(nóng)業(yè)科學(xué)院經(jīng)濟(jì)作物研究所,鄭州 450002
【背景】玉米()間作花生()(玉米||花生)地上、地下種間作用明顯,間作產(chǎn)量?jī)?yōu)勢(shì)突出,在緩解我國(guó)油糧爭(zhēng)地矛盾中起到重要作用,但花生處于種間競(jìng)爭(zhēng)劣勢(shì),成為限制間作優(yōu)勢(shì)進(jìn)一步提高的瓶頸?!灸康摹刻矫魈岣哂衩讄|花生體系中花生種間競(jìng)爭(zhēng)的調(diào)控措施及其機(jī)理,為玉米||花生高產(chǎn)栽培提供理論依據(jù)和技術(shù)支撐?!痉椒ā?021—2022年在河南科技大學(xué)試驗(yàn)農(nóng)場(chǎng),以玉米‘鄭單958’和花生‘花育16’為供試材料,設(shè)種植方式、花生播種方式和施磷量3因素完全隨機(jī)區(qū)組試驗(yàn),即種植方式設(shè)花生單作和玉米||花生,花生播種方式設(shè)花生單粒播種和雙粒播種,施磷量設(shè)0(P0)和180 kg P2O5·hm-2(P180);以花生雙粒播種的玉米||花生體系為對(duì)照,研究花生單粒播種對(duì)間作花生相對(duì)玉米的種間競(jìng)爭(zhēng)力、凈光合速率、最大生長(zhǎng)速率、干物質(zhì)積累和分配及間作產(chǎn)量?jī)?yōu)勢(shì)的影響。【結(jié)果】與花生雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株相比,單粒播種顯著提高了間作花生相對(duì)玉米的侵占力和擁擠系數(shù),相對(duì)侵占力分別提高29.72%—80.85%和38.91%—87.07%,相對(duì)擁擠系數(shù)分別提高76.59%—172.02%和244.43%—308.70%。單粒播種間作花生的凈光合速率顯著高于雙粒播種,最大生長(zhǎng)速率明顯高于雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株,其生育后期的干物質(zhì)顯著提高、干物質(zhì)向莢果的分配比例增加,提高了莖、葉干物質(zhì)對(duì)莢果的貢獻(xiàn)率。單粒播種間作花生的產(chǎn)量和間作優(yōu)勢(shì)高于雙粒播種,其中產(chǎn)量高出18.84%—33.32%,差異顯著。與不施磷相比,施磷顯著提高間作花生凈光合速率,增加最大生長(zhǎng)速率、促進(jìn)干物質(zhì)積累,增加產(chǎn)量?!窘Y(jié)論】花生單粒播種能提高間作花生產(chǎn)量和間作優(yōu)勢(shì),關(guān)鍵在于單粒播種較雙粒播種能增強(qiáng)間作花生種間競(jìng)爭(zhēng)能力,顯著提高凈光合速率,促進(jìn)干物質(zhì)積累及其向莢果分配。施磷對(duì)單粒播種間作花生的生長(zhǎng)發(fā)育具有促進(jìn)作用。
玉米||花生;種間競(jìng)爭(zhēng);強(qiáng)勢(shì)株與弱勢(shì)株;最大生長(zhǎng)速率;產(chǎn)量;單粒播種;磷肥
【研究意義】玉米()||花生()是一種較為常見(jiàn)的禾豆作物間作方式,對(duì)緩解華北平原地區(qū)糧油爭(zhēng)地矛盾發(fā)揮了重要作用[1],但在其共處后期,間作花生處于光競(jìng)爭(zhēng)劣勢(shì)[2],造成產(chǎn)量不高[3],成為玉米||花生進(jìn)一步高產(chǎn)的瓶頸[4]。因此,研究提高玉米||花生體系中花生種間競(jìng)爭(zhēng)能力的調(diào)控措施及其機(jī)理,對(duì)玉米||花生高產(chǎn)栽培具有重要意義?!厩叭搜芯窟M(jìn)展】間作能夠增加農(nóng)田生物多樣性,改善土地生產(chǎn)能力,相比單作具有明顯的生物和經(jīng)濟(jì)產(chǎn)量?jī)?yōu)勢(shì)[5-7],這主要是由于各作物生長(zhǎng)發(fā)育階段的時(shí)間和空間差異,改變了間作系統(tǒng)中光、溫和水的空間分布和利用,從而顯著提高作物的產(chǎn)量,實(shí)現(xiàn)資源的高效利用[8-9]。玉米||花生高矮相間,實(shí)現(xiàn)光能分層、立體高效利用[10],地上、地下種間作用明顯,間作產(chǎn)量?jī)?yōu)勢(shì)突出[11-12];施用磷肥能提高花生凈光合速率、提高間作花生產(chǎn)量[3]。但在玉米||花生共處后期,由于地上部玉米的遮蔭作用[4],使花生處于種間競(jìng)爭(zhēng)劣勢(shì)[12],降低花生干物質(zhì)和產(chǎn)量[11]。已有報(bào)道,與花生機(jī)械化雙粒同穴播種相比,單粒播種能明顯增大花生一穴雙株之間的距離,協(xié)調(diào)個(gè)體與群體關(guān)系,緩解生育后期種內(nèi)競(jìng)爭(zhēng)[13-14],避免“大小苗”現(xiàn)象,提高光合能力[15-16],增強(qiáng)抗逆性發(fā)揮個(gè)體潛力,延緩后期衰老[17],增加產(chǎn)量[18]。ADLER等[19]研究認(rèn)為,降低種內(nèi)競(jìng)爭(zhēng)能緩解種間競(jìng)爭(zhēng)。施磷能促進(jìn)玉米||花生地下種間互作,提高間作花生產(chǎn)量[12]。【本研究切入點(diǎn)】針對(duì)花生單粒播種能緩解雙粒播種種內(nèi)矛盾,是否能提高玉米||花生體系中花生種間競(jìng)爭(zhēng)能力和產(chǎn)量,施磷對(duì)其產(chǎn)生哪些影響等問(wèn)題,目前還不清楚?!緮M解決的關(guān)鍵問(wèn)題】在兩個(gè)磷水平下,以玉米||花生體系中雙粒播種花生的強(qiáng)勢(shì)株和弱勢(shì)株為對(duì)照,研究單粒播種花生的相對(duì)玉米種間競(jìng)爭(zhēng)力、凈光合速率、最大生長(zhǎng)速率、干物質(zhì)積累與分配的特點(diǎn),解釋花生單粒播種與施磷協(xié)調(diào)間作花生種間競(jìng)爭(zhēng)、促進(jìn)生長(zhǎng)和提高產(chǎn)量的機(jī)理,以期為玉米||花生高產(chǎn)、高效提供理論依據(jù)。
于2021—2022年在河南科技大學(xué)農(nóng)場(chǎng)(33°35′— 35°05′N,111°8′—112°59′E)進(jìn)行田間試驗(yàn),該地屬于半濕潤(rùn)、半干旱大陸性季風(fēng)氣候,全年日照時(shí)數(shù)約2 060 h,年平均降水量約610 mm,年均蒸發(fā)量約2 113 mm,年均氣溫約13.6 ℃,無(wú)霜期約217 d。土壤為黃潮土,耕層土壤全氮1.32 g·kg-1、有機(jī)質(zhì)10.72 g·kg-1、堿解氮79.86 mg·kg-1、速效磷11.62 mg·kg-1、速效鉀223.8 mg·kg-1、有效鐵5.98 mg·kg-1、土壤容重1.35 g·cm-3,土壤pH 7.56。
以玉米‘鄭單958’和花生‘花育16’為供試材料。以玉米間作花生(玉米||花生)為研究對(duì)象,設(shè)種植方式、花生播種方式和施磷量3因素完全隨機(jī)區(qū)組試驗(yàn),即種植方式設(shè)花生單作和玉米||花生,花生播種方式設(shè)花生單粒播種和雙粒播種,施磷量設(shè)施磷0(P0)和180 kg P2O5·hm-2(P180)2個(gè)水平,共8個(gè)處理,每個(gè)處理重復(fù)3次,共24個(gè)小區(qū),每個(gè)小區(qū)長(zhǎng)8 m,寬6 m,面積48 m2。
單作花生雙粒播種時(shí),行、穴距分別為30、20 cm,每穴2粒,密度33.33萬(wàn)株/hm2;單粒播種時(shí),行、穴距分別為30、13.5 cm,每穴1粒,密度24.69萬(wàn)株/hm2。玉米||花生采用2﹕4模式,即2行玉米間作4行花生(圖1),壟底寬100 cm,壟面寬約70 cm;玉米寬行行距160 cm,窄行行距40 cm,株距20 cm,花生播于其寬行中,其單、雙粒方式分別與單作單、雙粒播種方式一致;玉米、花生間距35 cm。磷肥一次性基施;花生單作、間作施氮量均基施90 kg·hm-2,玉米單作、間作施氮量均為180 kg·hm-2,按基追比1﹕1兩次施用,追肥在玉米小喇叭口期進(jìn)行。氮肥施用尿素,磷肥施用磷酸二銨。2021年玉米、花生6月24日同時(shí)播種,10月13日同時(shí)收獲;2022年花生6月14日播種、10月12日收獲,玉米7月14日播種、10月28日收獲。
圖1 玉米||花生模式田間種植示意圖
1.3.1 干物質(zhì)積累與分配、轉(zhuǎn)移與貢獻(xiàn) 分別于2021年苗后29、37、45、70 和93 d,及2022年苗后27、41、51、72和94 d取樣。雙粒播種的花生一穴雙株中生長(zhǎng)相對(duì)較大的一株定義為強(qiáng)勢(shì)株,生長(zhǎng)相對(duì)較小的一株定義為弱勢(shì)株。每小區(qū)分別取4株,每個(gè)處理3次重復(fù)。自來(lái)水沖洗干凈后,按莖、葉、莢果分樣裝袋,放入烘箱,105 ℃殺青30 min,75 ℃烘至恒重稱重。相關(guān)指標(biāo)計(jì)算方法如下:
干物質(zhì)量采用Logistic生長(zhǎng)模型[20]進(jìn)行擬合,公式:
式中,為任意時(shí)間干物質(zhì)量(g/plant);為最大干物質(zhì)量(g/plant);為生育期標(biāo)尺,苗后天數(shù)(d);、為待定系數(shù)。對(duì)式(1)進(jìn)行一階求導(dǎo)得到植株生長(zhǎng)速率函數(shù):
對(duì)式(2)進(jìn)行一階求導(dǎo)、二階求導(dǎo)并令其等于0,求出植株最大生長(zhǎng)速率(max):
干物質(zhì)分配:總干物質(zhì)量=莖重+葉重+果重;飽果期各部位干物質(zhì)分配比率=(各部位干物質(zhì)重/總干物質(zhì)量)×100%。
干物質(zhì)轉(zhuǎn)移與貢獻(xiàn):轉(zhuǎn)移量(TR)=最大莖(葉)干質(zhì)量-收獲期莖(葉)干質(zhì)量;轉(zhuǎn)移率(TA)=[最大莖(葉)干質(zhì)量-收獲期莖(葉)干質(zhì)量]/最大莖(葉)干質(zhì)量×100%;貢獻(xiàn)率(CT)=(轉(zhuǎn)運(yùn)量/收獲時(shí)莢果干質(zhì)量)×100%。
1.3.2 光合相關(guān)參數(shù) 于花生結(jié)莢期和飽果期,選擇晴天的9:00—11:30,使用LI-6400XT型光合儀(LI-COR,美國(guó)),分別選擇代表性單作單雙粒花生和間作單雙?;ㄉ仓曛髑o倒2或倒3葉,測(cè)定其光合速率。每個(gè)處理重復(fù)3次。
1.3.3 種間競(jìng)爭(zhēng)相關(guān)參數(shù) 侵占力(A)表示間套作中一種作物相對(duì)于另一種作物的競(jìng)爭(zhēng)能力——種間相對(duì)競(jìng)爭(zhēng)能力[21]。
擁擠系數(shù)為基于單株平均產(chǎn)量或單位面積產(chǎn)量對(duì)物種集體行為進(jìn)行反映,用以評(píng)定系統(tǒng)內(nèi)種間資源競(jìng)爭(zhēng)力的大小[21],其計(jì)算公式:
式中,p表示花生相對(duì)玉米的擁擠系數(shù)。
1.3.4 產(chǎn)量與偏土地當(dāng)量比 收獲期,花生單、雙粒播種均連續(xù)選取具有代表性的20株,并測(cè)定其長(zhǎng)度,計(jì)算其取樣面積。風(fēng)干后稱量莢果質(zhì)量,根據(jù)其所占面積計(jì)算產(chǎn)量。同時(shí)調(diào)查單株果數(shù)。間作花生偏土地當(dāng)量比(LERP)=間作花生產(chǎn)量/單作花生產(chǎn)量。
采用Microsoft Excel 2010、SPSS 22.0和Origin 2018等軟件對(duì)數(shù)據(jù)進(jìn)行再處理分析與作圖。處理間顯著性分析采用單因素方差分析(LSD法,=0.05)。采用決定系數(shù)(2)來(lái)檢驗(yàn)Logistic模型精度。
由圖2可知,在玉米||花生體系中,花生相對(duì)玉米的侵占力均為負(fù)值,隨著生育天數(shù)的增加呈降低趨勢(shì);與花生雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株相比,單粒播種顯著提高了間作花生的種間侵占力,提高幅度分別為29.72%—80.85%和38.91%—87.07%。與不施磷相比,施磷明顯降低了單粒播種間作花生種間侵占力。
SDIP:間作花生雙粒播種的強(qiáng)勢(shì)株Strong plant of intercropping peanut under double-seed sowing;WDIP:間作花生雙粒播種的弱勢(shì)株Weak plant of intercropping peanut under double-seed sowing;SIP:間作花生單粒播種Intercropping peanut under single-seed sowing。下同The same as below
由圖3可知,在玉米||花生體系中,花生相對(duì)玉米的擁擠系數(shù)隨著生育天數(shù)的增加呈降低趨勢(shì);與花生雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株相比,單粒播種顯著提高了間作花生的種間擁擠系數(shù),提高幅度分別為76.59%—172.02%和244.43%—308.70%。與不施磷相比,施磷明顯降低了單粒播種間作花生種間擁擠系數(shù)。
圖3 花生單粒播種和施磷對(duì)間作花生種間擁擠系數(shù)的影響
由表1可以看出,在玉米||花生體系中,單粒播種能提高花生功能葉的凈光合速率(n)、氣孔導(dǎo)度(s)、蒸騰速率(r),在飽果期提升幅度更為明顯。與花生雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株相比,單粒播種顯著提高了間作花生飽果期功能葉n,提升幅度分別為7.05%—8.36%和17.73%—18.38%;顯著提高了間作花生飽果期功能葉r,提升幅度分別為14.20%—30.30%和48.30%—50.62%;與不施磷相比,施磷顯著提高單粒播種間作花生功能葉n,提升幅度為7.43%—24.39%。
由圖4可知,在玉米||花生體系中,單粒播種可以提高花生的最大生長(zhǎng)速率和干物質(zhì)積累。與花生雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株相比,單粒播種提高了間作花生最大生長(zhǎng)速率,提高幅度分別為8.52%—25.76%和11.80%—78.69%,顯著提高生育后期干物質(zhì)積累,提升幅度分別為13.40%—42.45%和31.20%—87.36%。與不施磷相比,施磷對(duì)單粒播種間作花生的最大生長(zhǎng)速率和干物質(zhì)積累均有促進(jìn)作用,提高幅度分別為39.66%—68.80%和6.53%— 56.27%。
Vmax:花生最大生長(zhǎng)速率Maximum growth rate of peanut
表1 單粒播種和施磷對(duì)間作花生功能葉光合性能的影響
SDSP:?jiǎn)巫骰ㄉp粒播種的強(qiáng)勢(shì)株Strong plant of sole peanut under double-seed sowing;WDSP:?jiǎn)巫骰ㄉp粒播種的弱勢(shì)株Week plant of sole peanut under double-seed sowing;SSP:?jiǎn)巫骰ㄉ鷨瘟2シNSole peanut under single-seed sowing。同一列數(shù)據(jù)后不同小寫字母表示處理間差異顯著Different lowercase letters after the data in the same column mean significant difference among treatments (<0.05)。下同The same as below
由表2可知,在玉米||花生體系中,單粒播種會(huì)增加花生干物質(zhì)在莢果中的分配比例,降低莖葉中的分配比例。與花生雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株相比,顯著提高干物質(zhì)向莢果的分配比例,提高幅度分別為7.66%— 12.14%和14.09%—22.16%,向莖和葉中的分配比例分別降低2.81%—9.88%和7.74%—17.56%。施磷后,單粒播種間作花生向莢果的分配比例明顯高于不施磷。
由表3可知,在玉米||花生體系中,單粒播種能提高花生莖、葉中干物質(zhì)轉(zhuǎn)移量、轉(zhuǎn)移率以及貢獻(xiàn)率。與花生雙粒播種的強(qiáng)勢(shì)株和弱勢(shì)株相比,單粒播種顯著提高了莖、葉干物質(zhì)對(duì)莢果的貢獻(xiàn)率,提升幅度為14.58%—24.63%和47.45%—128.33%。施磷提高了單粒播種間作花生莖對(duì)莢果的貢獻(xiàn)率,降低了葉對(duì)莢果的貢獻(xiàn)率。
表2 花生單粒播種和施磷對(duì)間作花生干物質(zhì)積累與分配的影響
表3 花生單粒播種和施磷對(duì)間作花生干物質(zhì)轉(zhuǎn)移與貢獻(xiàn)的影響
由表4可知,在玉米||花生體系中,單粒播種可以提高花生單株果數(shù)、百果重、產(chǎn)量和偏土地當(dāng)量比。與花生雙粒播種相比,單粒播種顯著提高了間作花生的單株果數(shù)、百果重和產(chǎn)量,提升幅度分別為61.36%—146.19%、6.55%—19.35%和18.84%—33.32%,明顯提高間作花生偏土地當(dāng)量比。與不施磷相比,施磷顯著提高了單粒播種花生的單株果數(shù)和產(chǎn)量,提升幅度為19.55%—60.00%和20.17%—63.39%。年際間方差分析表明,磷水平和種植模式互作對(duì)花生產(chǎn)量的影響均達(dá)極顯著水平,而年份、磷水平和種植模式間的互作差異不顯著,說(shuō)明磷水平和種植模式對(duì)花生產(chǎn)量有促進(jìn)作用。
表4 花生單粒播種和施磷對(duì)間作花生產(chǎn)量構(gòu)成及偏土地當(dāng)量比的影響
DSP:雙粒播種的單作花生Double-seed sowing of sole peanut;DIP:雙粒播種的間作花生Double-seed sowing of intercropping peanut;DSP與DIP括號(hào)中的數(shù)值分別代表強(qiáng)勢(shì)株與弱勢(shì)株對(duì)應(yīng)值The values in DSP and DIP brackets represent the corresponding values of strong and weak plants, respectively;DSP與DIP的單株果數(shù)以及百果重為強(qiáng)勢(shì)株與弱勢(shì)株的平均值,DSP與DIP的株數(shù)以及產(chǎn)量為強(qiáng)勢(shì)株與弱勢(shì)株之和The number of pods per plant and 100-pod weight of DSP and DIP were the average value of strong and weak plants, the number of plants and yield were the sum value of strong and weak plants;同一列中數(shù)據(jù)后不同小寫字母表示同一年份處理間差異顯著Different lowercase letters after the data in the same column mean significant difference among treatments at 0.05 level in the same year (<0.05);**差異極顯著Extremely significant difference (<0.01);*差異顯著Significant difference (<0.05);NS:無(wú)顯著性差異Non-significant difference (>0.05)
間作優(yōu)勢(shì)主要來(lái)源于作物種間相互競(jìng)爭(zhēng)、互補(bǔ)效應(yīng),其競(jìng)爭(zhēng)、互補(bǔ)效應(yīng)因作物物種不同而存在差異[22]。協(xié)調(diào)物種間的競(jìng)爭(zhēng)、增強(qiáng)互補(bǔ)效應(yīng),可以提高資源的利用率、增加系統(tǒng)產(chǎn)量,利于促進(jìn)農(nóng)業(yè)的可持續(xù)發(fā)展[23]。已有研究報(bào)道,玉米||花生地上、地下存在明顯的種間作用,其地上種間作用改善田間小氣候,提高玉米功能葉的光飽和點(diǎn)和CO2羧化固定能力、花生功能葉對(duì)弱光吸收轉(zhuǎn)化能力[2-3],分層、立體高效利用光能[10];其地上種間作用表現(xiàn)為具有明顯的氮、磷營(yíng)養(yǎng)間作優(yōu)勢(shì)和種間鐵氮互惠利用效應(yīng),間作優(yōu)勢(shì)顯著[11-12],但在其共處期,花生由于受玉米遮蔭影響而處于種間光競(jìng)爭(zhēng)劣勢(shì)[4,12],限制花生進(jìn)一步高產(chǎn)。本研究表明,花生單粒播種明顯提高間作花生相對(duì)玉米的侵占力和擁擠系數(shù)(圖2、圖3),證明通過(guò)花生單粒播種能緩解玉米||花生體系中種間競(jìng)爭(zhēng),提高花生種間競(jìng)爭(zhēng)力。這與單粒播種能緩解因雙粒播種之間存在的種內(nèi)競(jìng)爭(zhēng)密切相關(guān)。因?yàn)椋噍^花生雙粒播種,單粒播種能有效地減緩種內(nèi)競(jìng)爭(zhēng),協(xié)調(diào)個(gè)體與種群之間的關(guān)系[24],降低群體種內(nèi)的資源競(jìng)爭(zhēng)[14]。這與REN等[25]研究發(fā)現(xiàn),在玉米||大豆體系中緩解種內(nèi)競(jìng)爭(zhēng),能協(xié)調(diào)種間關(guān)系的研究結(jié)果相一致,因?yàn)榉N內(nèi)關(guān)系的改善有利于提高種間互補(bǔ)效應(yīng)[19,26],提高作物獲取資源的能力[27]。研究還發(fā)現(xiàn),由于磷肥促進(jìn)間作玉米生長(zhǎng),增大其葉面積[28],加劇玉米對(duì)花生的光競(jìng)爭(zhēng)[2],造成在施磷條件下,單粒播種間作花生相對(duì)玉米的侵占力和擁擠系數(shù)均小于不施磷,但高于施磷條件下的雙粒播種花生(圖2、圖3)。
在玉米||花生體系中,生育后期花生光能利用不足,是制約其增產(chǎn)的主要原因[2]。通過(guò)化學(xué)調(diào)控和增施磷肥可以改善間作花生光照環(huán)境,促進(jìn)其生長(zhǎng)和產(chǎn)量的提高[28]。本研究表明,花生單粒播種較雙粒播種顯著提高了間作花生功能葉的凈光合速率,促進(jìn)花生生長(zhǎng),增加其干物質(zhì)的積累。這與單粒播種增強(qiáng)間作花生種間競(jìng)爭(zhēng)能力,從而改善玉米、花生內(nèi)部光競(jìng)爭(zhēng)密切相關(guān)。因?yàn)榕c雙粒播種相比,單粒播種的株距大于一穴雙株之間的株距,優(yōu)化群體結(jié)構(gòu)[17],改善花生冠層光環(huán)境,提高其凈光合速率[15]。對(duì)多數(shù)高矮作物間作體系研究認(rèn)為,通過(guò)改善復(fù)合群體冠層內(nèi)部光環(huán)境,提高低位作物光照,能提高其光合速率,促進(jìn)生長(zhǎng)[29-31]。磷肥直接參與花生光合作用的光合磷酸化和碳同化過(guò)程,提高光能利用率[10],促進(jìn)花生干物質(zhì)積累[26],本研究中,與不施磷相比,施磷肥能提高間作花生光合速率,促進(jìn)花生生長(zhǎng)。本研究還發(fā)現(xiàn),單粒播種能促進(jìn)花生干物質(zhì)向莢果的分配,提高莖、葉干物質(zhì)對(duì)莢果的貢獻(xiàn)率,進(jìn)而提高間作花生產(chǎn)量和偏土地當(dāng)量比。這與ZHANG等[32]在單作中單粒播種可以促進(jìn)花生干物質(zhì)向莢果分配的研究結(jié)果一致。由于磷肥能促進(jìn)地下種間互作而提高間作花生莢果產(chǎn)量[12],故在本研究中,表現(xiàn)出施磷較不施磷能促進(jìn)間作花生干物質(zhì)向莢果分配,提高間作花生產(chǎn)量、增大間作優(yōu)勢(shì)。另較2021年,2022年延期玉米播種能提高間作花生產(chǎn)量和間作優(yōu)勢(shì),這與趙建華等[22]研究結(jié)果相反,造成這一現(xiàn)象的原因關(guān)鍵在于兩地所處生態(tài)環(huán)境不同。本試驗(yàn)區(qū)適當(dāng)延遲玉米播期更利于玉米||花生高產(chǎn)。
在玉米||花生體系中,可以通過(guò)花生單粒播種緩解雙粒播種種內(nèi)矛盾,協(xié)調(diào)玉米||花生體系中的種間作用,增強(qiáng)花生種間競(jìng)爭(zhēng)能力,提高莢果產(chǎn)量和間作優(yōu)勢(shì)。其關(guān)鍵機(jī)理在于花生單粒播種較雙粒播種顯著提高間作花生相對(duì)玉米的侵占力和擁擠系數(shù),提高花生凈光合速率,促進(jìn)生長(zhǎng),增加其干物質(zhì)的積累及其向莢果分配。施用磷肥對(duì)其具有正向調(diào)控效應(yīng)。
[1] ZHAO X H, DONG Q Q, HAN Y, ZHANG K Z, SHI X L, YANG X , YUAN Y, ZHOU D Y, WANG K, WANG X G, JIANG C J, LIU X B, ZHANG H, ZHANG Z M, YU H Q. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiology, 2022, 22: 14.
[2] 焦念元, 寧堂原, 趙春, 王蕓, 史忠強(qiáng), 侯連濤, 付國(guó)占, 江曉東, 李增嘉. 玉米花生間作復(fù)合體系光合特性的研究. 作物學(xué)報(bào), 2006, 32(6): 917-923.
JIAO N Y, NING T Y, ZHAO C, WANG Y, SHI Z Q, HOU L T, FU G Z, JIANG X D, LI Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica, 2006, 32(6): 917-923. (in Chinese)
[3] 焦念元, 楊萌珂, 寧堂原, 尹飛, 徐國(guó)偉, 付國(guó)占, 李友軍. 玉米花生間作和磷肥對(duì)間作花生光合特性及產(chǎn)量的影響. 植物生態(tài)學(xué)報(bào), 2013, 37(11): 1010-1017.
JIAO N Y, YANG M K, NING T Y, YIN F, XU G W, FU G Z, LI Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)
[4] WANG Q, SUN Z X, BAI W, ZHANG D S, ZHANG Y, WANG R N, VAN DER WERF W, EVERS J B, STOMPH T J, GUO J P, ZHANG L Z. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432-446.
[5] ZHANG D S, DU G J, SUN Z X, BAI W, WANG Q, FENG L S, ZHENG J M, ZHANG Z, LIU Y, YANG S, YANG N, FENG C, CAI Q, EVERS J B, VAN DER WERF W, ZHANG L Z. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. European Journal of Agronomy, 2018, 94: 1-11.
[6] 唐秀梅, 黃志鵬, 吳海寧, 劉菁, 蔣菁, 唐榮華. 玉米/花生間作條件下土壤環(huán)境因子的相關(guān)性和主成分分析. 生態(tài)環(huán)境學(xué)報(bào), 2020, 29(2): 223-230.
TANG X M, HUANG Z P, WU H N, LIU J, JIANG J, TANG R H. Correlation and principal component analysis of the soil environmental factors in maize/peanut intercropping conditions. Ecology and Environmental Sciences, 2020, 29(2): 223-230. (in Chinese)
[7] REN J H, ZHANG L Z, DUAN Y, ZHANG J, EVERS J B, ZHANG Y, SU Z C, VAN DER WERF W. Intercropping potato (L.) with hairy vetch () increases water use efficiency in dry conditions. Field Crops Research, 2019, 240: 168-176.
[8] HAGE-AHMED K, KRAMMER J, STEINKELLNER S. The intercropping partner affects arbuscular mycorrhizal fungi andf. sp.interactions in tomato. Mycorrhiza, 2013, 23(7): 543-550.
[9] ZHANG Y, DUAN Y, NIE J Y, YANG J, REN J H, VAN DER WERF W, EVERS J B, ZHANG J, SU Z C, ZHANG L Z. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019, 225: 105778.
[10] 王飛, 劉領(lǐng), 武巖巖, 李雪, 孫增光, 尹飛, 焦念元, 付國(guó)占. 玉米花生間作改善花生鐵營(yíng)養(yǎng)提高其光合特性的機(jī)理. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2020, 26(5): 901-913.
WANG F, LIU L, WU Y Y, LI X, SUN Z G, YIN F, JIAO N Y, FU G Z. Mechanism of maize intercropping peanut improving iron nutrition to increase photosynthetic performance of peanut. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 901-913. (in Chinese)
[11] JIAO N Y, WANG F, MA C, ZHANG F S, JENSEN E S. Interspecific interactions of iron and nitrogen use in peanut (L.)-maize (L.) intercropping on a calcareous soil. European Journal of Agronomy, 2021, 128: 126303.
[12] JIAO N Y, WANG J T, MA C, ZHANG C C, GUO D Y, ZHANG F S, JENSEN E S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. The Crop Journal, 2021, 9(6): 1460-1469.
[13] 張佳蕾, 郭峰, 苗昊翠, 李利民, 楊莎, 耿耘, 孟靜靜, 李新國(guó), 萬(wàn)書(shū)波. 單粒精播對(duì)高產(chǎn)花生株間競(jìng)爭(zhēng)緩解效應(yīng)研究. 花生學(xué)報(bào), 2018, 47(2): 52-58.
ZHANG J L, GUO F, MIAO H C, LI L M, YANG S, GENG Y, MENG J J, LI X G, WAN S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. Journal of Peanut Science, 2018, 47(2): 52-58. (in Chinese)
[14] LIANG X Y, GUO F, FENG Y, ZHANG J L, YANG S, MENG J J, LI X G, WAN S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of. Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.
[15] 梁曉艷, 郭峰, 張佳蕾, 孟靜靜, 李林, 萬(wàn)書(shū)波, 李新國(guó). 單粒精播對(duì)花生冠層微環(huán)境、光合特性及產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(12): 3700-3706.
LIANG X Y, GUO F, ZHANG J L, MENG J J, LI L, WAN S B, LI X G. Effects of single-seed sowing on canopy microenvironment,photosynthetic characteristics and pod yield of peanut (). Chinese Journal of Applied Ecology, 2015, 26(12): 3700-3706. (in Chinese)
[16] CHEN T, ZHANG J, WANG X, ZENG R, CHEN Y, ZHANG H, WAN S, ZHANG L. Monoseeding increases peanut (L.) yield by regulating shade-avoidance responses and population density. Plants, 2021, 10(11): 2405.
[17] YANG S, ZHANG J, GENG Y, TANG Z, WANG J, GUO F, MENG J, WANG Q, WAN S, LI X. Transcriptome analysis reveals the mechanism of improving erect-plant-type peanut yield by single- seeding precision sowing. PeerJ, 2021, 9: e10616.
[18] 萬(wàn)書(shū)波, 張佳蕾, 張智猛. 花生種植技術(shù)的重大變革——單粒精播. 中國(guó)油料作物學(xué)報(bào), 2020, 42(6): 927-933.
WAN S B, ZHANG J L, ZHANG Z M. Great change of peanut planting technology: single seed sowing. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 927-933. (in Chinese)
[19] ADLER P B, SMULL D, BEARD K H, CHOI R T, FURNISS T, KULMATISKI A, MEINERS J M, TREDENNICK A T, VEBLEN K E. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters, 2018, 21(9): 1319-1329.
[20] 崔黨群. Logistic曲線方程的解析與擬合優(yōu)度測(cè)驗(yàn). 數(shù)理統(tǒng)計(jì)與管理, 2005, 24(1): 112-115.
CUI D Q. Analysis and making good fitting degree test for Logistic curve regression equation. Mathematical Statistics and Management, 2005, 24(1): 112-115. (in Chinese)
[21] GHOSH P K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Research, 2004, 88(2/3): 227-237.
[22] 趙建華, 孫建好, 李偉綺. 玉米播期對(duì)大豆/玉米間作產(chǎn)量及種間競(jìng)爭(zhēng)力的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2018, 26(11): 1634-1642.
ZHAO J H, SUN J H, LI W Q. Effect of maize sowing date on yield and interspecific competition in soybean/maize intercropping system. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1634-1642. (in Chinese)
[23] WU K X, FULLEN M A, AN T X, FAN Z W, ZHOU F, XUE G F, WU B Z. Above- and below-ground interspecific interaction in intercropped maize and potato: a field study using the ‘target’ technique. Field Crops Research, 2012, 139: 63-70.
[24] KOKKORIS G D, TROUMBIS A Y, LAWTON J H. Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 1999, 2: 70-74.
[25] REN Y, ZHANG L, YAN M, ZHANG Y, CHEN Y, PALTA J A, ZHANG S. Effect of sowing proportion on above- and below-ground competition in maize-soybean intercrops. Scientific Reports, 2021, 11(1): 15760.
[26] CALLAWAY R M, WALKER L R. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 1997, 78(7): 1958-1965.
[27] 趙建華, 孫建好, 陳亮之. 三種豆科作物與玉米間作對(duì)玉米生產(chǎn)力和種間競(jìng)爭(zhēng)的影響. 草業(yè)學(xué)報(bào), 2020, 29(1): 86-94.
ZHAO J H, SUN J H, CHEN L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Prataculturae Sinica, 2020, 29(1): 86-94. (in Chinese)
[28] 焦念元, 汪江濤, 尹飛, 李亞輝, 付國(guó)占, 李友軍. 化學(xué)調(diào)控與施磷肥對(duì)玉米花生間作光合物質(zhì)積累和產(chǎn)量的影響. 江蘇農(nóng)業(yè)科學(xué), 2016, 44(4): 99-104.
JIAO N Y, WANG J T, YIN F, LI Y H, FU G Z, LI Y J. Effects of chemical regulation and phosphorus fertilization on photosynthetic material accumulation and yield of intercropped maize and peanut. Jiangsu Agricultural Sciences, 2016, 44(4): 99-104. (in Chinese)
[29] ROBAKOWSKI P, BIELINIS E, SENDALL K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasiveand nativein relation to light environment, competition and allelopathy. Journal of Plant Research, 2018, 131(3): 505-523.
[30] GAO L, XU H, BI H, XI W, BAO B, WANG X, BI C, CHANG Y. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. Plos One, 2013, 8(7): e70739.
[31] 程彬, 劉衛(wèi)國(guó), 王莉, 許梅, 覃思思, 盧俊吉, 高陽(yáng), 李淑賢, RAZA A, 張熠, AHMAD I, 敬樹(shù)忠, 劉然金, 楊文鈺. 種植密度對(duì)玉米-大豆帶狀間作下大豆光合、產(chǎn)量及莖稈抗倒的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021. 19.005.
CHENG B, LIU W G, WANG L, XU M, QIN S S, LU J J, GAO Y, LI S X, RAZA A, ZHANG Y, AHMAD I, JING S Z, LIU R J, YANG W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752. 2021.19.005. (in Chinese)
[32] ZHANG J L, GENG Y, GUO F, LI X G, WAN S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. Journal of Integrative Agriculture, 2020, 19(8): 1919-1927.
Regulation of Single-seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut
JIANG WenYang1, CHEN JunNan1, ZAN ZhiMan1, WANG JiangTao1, ZHENG Bin1, LIU Ling1, LIU Juan2, JIAO NianYuan1
1College of Agriculture, Henan University of Science and Technology, Luoyang 471000, Henan;2Industrial Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002
【Background】Maize () intercropping with peanut () (maize||peanut) has outstanding interspecific effects between aboveground and underground, and the intercropping advantage in yield is prominent, which plays an important role in alleviating the conflict between oil and grain in our country. However, peanut is at the disadvantage of interspecific competition, which becomes the bottleneck restricting the further improvement of intercropping advantage.【Objective】The objective of this study is to explore the regulation measures and mechanism of enhancing peanut interspecific competition inmaize||peanut system, and to provide theoretical basis and technical support for maize||peanut high-yield cultivation.【Method】Maize ‘Zhengdan 958’ and peanut ‘Huayu 16’ were used as test materials in the experimental farm of Henan University of Science and Technology from 2021 to 2022. A completely randomized block experiment with three factors: planting pattern, peanut sowing method and phosphorus application rate was set up. In other words, planting patterns were peanut monoculture and maize||peanut, peanut seeding methods were single-seed sowing and double-seed sowing, and phosphorus application rates were 0 (P0) and 180 kg P2O5·hm-2(P180). Peanut double-seed sowing of maize||peanut was used as control, effects of peanut single-seed sowing on interspecific competitiveness of intercropping peanut over maize, net photosynthetic rate, maximum growth rate, dry matter accumulation and distribution, and yield advantage of intercropping were studied.【Result】Compared to the strong and weak plants with double-seed sowing peanut, single-seed sowing significantly increased the aggressivity and crowding coefficient of intercropping peanut over maize, the aggressivity increased by 29.72%-80.85% and 38.91%-87.07%, respectively, and the crowding coefficient increased by 76.59%-172.02% and 244.43%-308.70%, respectively. The net photosynthetic rate of intercropping peanut with single-seed sowing was significantly higher than that with double-seed sowing, and the maximum growth rate was significantly higher than that of strong and weak plants with double-seed sowing, respectively. The dry matter in the later growth period was significantly increased, dry matter distribution ratio to pod was increased, the contribution rate of stem and leaf dry matter to pod was improved, compared to the strong and weak plants with double-seed sowing peanut. The yield and advantage of intercropping with single seeding were higher than those with double seeding, and the yield was 18.84%-33.32% higher, the difference was significant. Compared with no phosphorus fertilizer, phosphorus application significantly increased the net photosynthetic rate and maximum growth rate of intercropping peanut, and promoted the dry matter accumulation and increased yield of intercropping peanut.【Conclusion】Peanut single-seed sowing can improve intercropping peanut yield and intercropping advantage, the key lies in the fact that single-seed sowing can enhance interspecific competitiveness of intercropping peanut compare with double-seed sowing, significantly increase the net photosynthetic rate, and promote the accumulation of dry matter and distribution to the pod. Phosphorus application promotes the growth and development of intercropping peanut under single-seed sowing.
maize||peanut; interspecific competition; strong plant and weak plant; maximum growth rate; yield; single-seed sowing; phosphorus fertilizer
10.3864/j.issn.0578-1752.2023.23.008
2023-03-07;
2023-03-31
國(guó)家自然科學(xué)基金(32272231,32201922)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-13)、河南省科技攻關(guān)項(xiàng)目(222103810056,212102110282)
姜文洋,E-mail:3463954057@qq.com。通信作者焦念元,E-mail:jiaony1@163.com
(責(zé)任編輯 岳梅)