• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      固定化藥靶蛋白中藥活性成分定向篩選研究進(jìn)展

      2024-01-01 00:00:00寸思迪張子龍王云杉龍凱花趙雪王靜李倩趙新鋒

      摘要 中藥活性成分篩選及作用評(píng)價(jià)一直是破解藥物發(fā)現(xiàn)周期長(zhǎng)和成功率低等瓶頸問(wèn)題的核心突破口和重要技術(shù)支撐。作者團(tuán)隊(duì)創(chuàng)新親和色譜原理,將藥靶蛋白定向固定于色譜擔(dān)體表面,制備了系列高活性功能化色譜固定相,并提出了固定化藥靶蛋白定向篩選中藥功效成分的新觀點(diǎn)。主要綜述了作者團(tuán)隊(duì)近五年在固定化藥靶蛋白色譜固定相制備技術(shù)、中藥活性成分定向篩選技術(shù)以及活性成分早期成藥性評(píng)價(jià)色譜技術(shù)等方面的工作,并對(duì)固定化藥靶蛋白在中藥活性成分定向篩選方面的研究進(jìn)行了展望。

      關(guān)鍵詞 藥靶蛋白定向固定;中藥活性成分;定向篩選;早期成藥性評(píng)價(jià)

      中圖分類(lèi)號(hào):R917 DOI:10.16152/j.cnki.xdxbzr.2024-05-008

      Research progress on targeted screening of bioactive compounds

      from traditional Chinese medicine by immobilized target proteins

      CUN Sidi, ZHANG Zilong, WANG Yunshan, LONG Kaihua, ZHAO Xue,WANG Jing, LI Qian, ZHAO Xinfeng

      (Key Laboratory of Resource Biology and Biotechnology in Western China,Ministry of Education/College of Life Sciences, Northwest University, Xi’an 710069,China)

      Abstract Drug discovery has always faced the problems such as long cycles and low success rates. The screening and evaluation of the potential compounds from traditional Chinese medicine have become the core breakthrough point and important technical support to solve the above problems. The authors’ group innovated the principles of affinity chromatography. They immobilized several target proteins onto solid supports, prepared a series of highly active functional chromatographic stationary phases, and proposed the new concept of targeted screening of bioactive compounds from traditional Chinese medicine by immobilized target proteins. The paper reviews the work from the authors’ group during the last five years, which included the methods for the oriented protein immobilization, the targeted screening approaches for bioactive compounds from traditional Chinese medicine, and the chromatographic methods for the early evaluation of potential compounds.Finally, the potential application of the immobilized target proteins in the targeted screening of bioactive compounds from traditional Chinese medicine were also summarized.

      Keywords immobilized target proteins; bioactive compounds from traditional Chinese medicine; targeted screening; early evaluation of the potential compounds

      中藥作為我國(guó)特色的醫(yī)藥衛(wèi)生資源,其活性成分篩選及作用評(píng)價(jià)一直是破解藥物發(fā)現(xiàn)周期長(zhǎng)和成功率低等瓶頸問(wèn)題的核心突破口和重要技術(shù)支撐。隨著生物技術(shù)、材料科學(xué)、蛋白質(zhì)組學(xué)等學(xué)科的突破性進(jìn)展,中藥活性成分篩選也進(jìn)入了多學(xué)科交叉融合及多技術(shù)相互支撐的快速發(fā)展時(shí)期。受體是藥物在人體內(nèi)最主要的靶點(diǎn),占比約50%,特別是對(duì)于G蛋白偶聯(lián)受體而言,能夠與藥物分子通過(guò)高親和作用識(shí)別并結(jié)合,啟動(dòng)下游信號(hào)而發(fā)揮藥效。在前期研究中,作者所在團(tuán)隊(duì)受垂釣原理啟發(fā),將受體(藥靶蛋白)識(shí)別藥物的高特異性和色譜技術(shù)的高分離能力相結(jié)合,創(chuàng)新親和色譜原理,提出了固定化藥靶蛋白色譜中藥功效成分定向篩選的新觀點(diǎn),通過(guò)保留時(shí)間差異實(shí)現(xiàn)中藥中潛在功效成分的篩選。在上述觀點(diǎn)的指導(dǎo)下,作者團(tuán)隊(duì)對(duì)臨床沙丁胺醇等平喘類(lèi)一線用藥進(jìn)行了分析,明確了固定化藥靶蛋白色譜中藥功效成分篩選的可能性,進(jìn)而應(yīng)用于中藥單藥及其復(fù)方活性成分篩選,并取得了系列進(jìn)展。然而,固定化藥靶蛋白色譜作為一種新興方法,在固定化藥靶蛋白活性保持、活性成分藥效特征區(qū)分及產(chǎn)業(yè)化推廣等方面,仍然存在提升和改進(jìn)的空間。因此,本文主要綜述近五年作者團(tuán)隊(duì)及固定化藥靶蛋白相關(guān)技術(shù)在中藥活性成分篩選方面的研究工作,為中藥新藥研發(fā)提供借鑒。

      1 藥靶蛋白定向固定化技術(shù)

      固定化藥靶蛋白的生物活性是決定中藥功效成分篩選準(zhǔn)確度的前提,而高效溫和的蛋白質(zhì)固定化技術(shù)是保證其生物活性的核心與關(guān)鍵。與隨意固定化方法相比,定向固定具有位點(diǎn)特異性,具有固定化藥靶蛋白取向統(tǒng)一,活性位點(diǎn)損失小等優(yōu)勢(shì),能夠最大程度上保持固定化藥靶蛋白的活性。因此,對(duì)現(xiàn)有藥靶蛋白定向固定化技術(shù)進(jìn)行綜述。

      1.1 基于酶標(biāo)簽自催化的一步定向固定化方法

      生物正交反應(yīng)是一類(lèi)能夠在生物體系內(nèi)發(fā)生且不受體系內(nèi)共存物干擾的化學(xué)反應(yīng)。受該類(lèi)反應(yīng)啟發(fā),作者團(tuán)隊(duì)將鹵代烷烴脫鹵素酶(Halotag)、O6烷基鳥(niǎo)嘌呤DNA甲基轉(zhuǎn)移酶(SNAP-tag)、表皮生長(zhǎng)因子受體酪氨酸激酶活性域(EGFR-tag)和農(nóng)桿菌VirD2蛋白融合于G蛋白偶聯(lián)受體等藥靶蛋白羧基末端,將酶的底物修飾于硅膠微球等色譜擔(dān)體表面,通過(guò)酶與底物的高特異性共價(jià)反應(yīng),可以從細(xì)胞裂解液中將藥靶蛋白一步捕獲至固體材料表面,實(shí)現(xiàn)藥靶蛋白的一步定向固定(見(jiàn)圖1)[1-16。

      野生型鹵代烷烴脫鹵素在脫鹵反應(yīng)過(guò)程中,酶活性位點(diǎn)Asp106通過(guò)親核取代鹵代烷烴中的鹵素基團(tuán)而得到Asp酯,從而形成一個(gè)共價(jià)烷烴酶中間體;而酶中的His272可催化共價(jià)烷烴酶中間體水解,釋放終產(chǎn)物脂肪醇,使脫鹵素酶再生;若將酶中的His272定點(diǎn)突變?yōu)楸奖彼?,共價(jià)烷烴酶中間體則不會(huì)水解[1。作者團(tuán)隊(duì)首次將突變后的鹵代烷烴脫鹵素酶Halo-tag重組于β2腎上腺素受體(β2-AR)、血管緊張素II 1型和2型受體(AT1R和AT2R)[1、聚(ADP-核糖)聚合酶1(PARP-1)[3和5-羥色胺受體1A(5-HT1A[4等受體末端,將末端鹵代有機(jī)酸(6-溴己酸和6-氯己酸)通過(guò)?;磻?yīng)修飾至色譜擔(dān)體表面,將Halo標(biāo)簽重組目標(biāo)藥靶蛋白的裂解液與色譜擔(dān)體直接混合,從而實(shí)現(xiàn)藥靶蛋白的一步固定。進(jìn)一步優(yōu)化末端鹵代有機(jī)酸結(jié)構(gòu),發(fā)現(xiàn)有機(jī)酸中若含有PEG功能基團(tuán),能夠使得色譜固定相上非特異性吸附和色譜峰峰形拖尾現(xiàn)象有所改善,且有效提高了受體色譜的抗污和耐高鹽性能[5-6。

      SNAP-tag無(wú)論在體內(nèi)還是體外,均能通過(guò)典型的SN2親和取代反應(yīng)將底物鳥(niǎo)嘌呤或胞嘧啶衍生物的側(cè)鏈基團(tuán)轉(zhuǎn)移到半胱氨酸殘基上活性巰基位點(diǎn),形成硫醚共價(jià)鍵[2。作者團(tuán)隊(duì)將SNAP-tag重組至β2-AR和AT1R碳末端,并在大腸桿菌細(xì)胞中高表達(dá)兩種受體蛋白[2,7。將上述細(xì)菌破碎后的上清液與芐基鳥(niǎo)嘌呤衍生物修飾的微球直接混合,即能捕獲復(fù)雜體系中的目標(biāo)受體,反應(yīng)效率高。

      EGFR為G蛋白偶聯(lián)受體超級(jí)家族中的成員之一,與癌癥等疾病密切相關(guān)[8。EGFR結(jié)構(gòu)域中含酪氨酸激酶活性域,該激酶的共價(jià)抑制劑(依魯替尼)能夠與EGFR-tag中的半胱氨酸797(Cys797)的巰基通過(guò)邁克爾邁克爾加成反應(yīng),形成不可逆共價(jià)復(fù)合物[9。利用該原理,將EGFR-tag重組于內(nèi)皮素A受體(ETAR)[10、β1腎上腺素受體(β1-AR)[11和N-甲基-D-天冬氨酸受體2A(NMDA-R2A[12等受體的非活性末端,將依魯替尼修飾至大孔硅膠表面,實(shí)現(xiàn)目標(biāo)藥靶蛋白的固定化。

      上述3種類(lèi)型酶標(biāo)簽自催化反應(yīng)的底物均為小分子化合物,而酶標(biāo)簽本身分子量較大,由于空間位阻效應(yīng)的存在,使得固定相上的小分子化合物與酶標(biāo)簽結(jié)合可能受阻。針對(duì)該問(wèn)題,作者團(tuán)隊(duì)將VirD2標(biāo)簽(VirD2tag)引入至半胱氨酰白三烯受體1(CysLTR1)的固定化過(guò)程[13。由于VirD2蛋白能夠特異性識(shí)別TDNA序列,并與其5′端磷酸基團(tuán)形成磷酸二酯鍵(5′GCTCAAATTACAACGGTATATATCCTGCCAGTCAG-3′)而實(shí)現(xiàn)共價(jià)連接[14。該研究中,TDNA被修飾于大孔硅膠表面,而VirD2-tag重組表達(dá)至CysLTR1末端,由于DNA為大分子,其于VirD2-tag接觸的界面更大,使得反應(yīng)脫靶效應(yīng)大大降低。

      除了DNA等核酸分子,多肽也能夠作為底物分子被修飾于色譜擔(dān)體表面。文獻(xiàn)中,化膿性鏈球菌纖連蛋白結(jié)合蛋白Fba B的Lys31和Asp117之間具有自發(fā)異肽鍵的結(jié)構(gòu)域,Lys31的未質(zhì)子化胺在鄰近的Glu77催化下親核攻擊Asp117的羰基碳。通過(guò)對(duì)Fba B結(jié)構(gòu)進(jìn)行拆分,能得到SpyTag(含13個(gè)氨基酸的短肽)與SpyCatcher(含116個(gè)氨基酸的蛋白),兩者在數(shù)分鐘內(nèi)可形成穩(wěn)定的酰胺鍵而實(shí)現(xiàn)共價(jià)偶聯(lián)[15。該研究將SpyCatcher作為蛋白標(biāo)簽重組至β2-AR末端,將SpyTag修飾于硅膠表面,從而實(shí)現(xiàn)SpyCatcher標(biāo)簽藥靶蛋白的一步定向固定[16。

      綜上,上述基于酶標(biāo)簽自催化反應(yīng)的固定化方法,避免了目標(biāo)蛋白純化步驟,能在最大程度上保證藥靶蛋白活性,具有快速、高效、簡(jiǎn)便的特點(diǎn)。

      1.2 基于雙位點(diǎn)高親和的定向固定化方法

      上述酶標(biāo)簽自催化的一步定向固定本質(zhì)上屬于單位點(diǎn)共價(jià)固定,為保證功能基團(tuán)的活性,一般而言,酶標(biāo)簽與藥靶蛋白通過(guò)柔性連接臂相連,連接臂的柔性可能會(huì)使得固定后藥靶蛋白取向難以完全控制,活性位點(diǎn)因與基質(zhì)表面或鄰近藥靶蛋白相互作用導(dǎo)致?lián)p失的問(wèn)題。因此,作者團(tuán)隊(duì)引入了一系列雙位點(diǎn)固定藥靶蛋白的方法,其核心是以核酸適配體、激動(dòng)類(lèi)活性短肽或拮抗劑為受體的構(gòu)象穩(wěn)定配基(第一位點(diǎn)),以氮川三乙酸鎳(NTA-Ni2+)與受體組氨酸標(biāo)簽的親和位點(diǎn)為第二位點(diǎn),采用雙重親和的方式將藥靶蛋白進(jìn)行定向固定(見(jiàn)圖2)[18-20。該類(lèi)方法的優(yōu)勢(shì)體現(xiàn)在兩方面,一是雙重親和使得藥靶蛋白與固定相表面配基的親和力明顯提升,受體穩(wěn)定性好;二是雙位點(diǎn)固定受體的取向統(tǒng)一,構(gòu)象穩(wěn)定,活性更高,使得固定化藥靶蛋白色譜柱可用于區(qū)分具有不同藥效特征的配體。

      1.3 基于小標(biāo)簽的藥靶蛋白定向固定化方法

      酶標(biāo)簽(HaloTag:33 kDa;SNAP-tag:22 kDa;EGFR-tag:37 kDa;VirD2:25 kDa;SpyCatcher:13 kDa)分子量相對(duì)較大,對(duì)于分子量較小的藥靶蛋白來(lái)說(shuō)并不適合以其作為標(biāo)簽。針對(duì)該問(wèn)題,作者團(tuán)隊(duì)通過(guò)琥珀密碼子(UAG)將非天然氨基酸p-疊氮化物L(fēng)苯丙氨酸(pAzF)引入至AT1R碳末端,通過(guò)疊氮基團(tuán)與硅膠表面炔烴的環(huán)加成反應(yīng),實(shí)現(xiàn)了AT1R的定向固定。與HaloTag和SNAP-tag相比,pAzF標(biāo)簽更小,非特異性吸附更小,對(duì)于AT1R生物活性的保持具有一定優(yōu)勢(shì),親和參數(shù)準(zhǔn)確度測(cè)定明顯提升[7。然而,上述方法的缺陷在于,傳統(tǒng)的E. Coli基因組中存在多個(gè)琥珀密碼子,pAzF也可能會(huì)插入至菌體的內(nèi)源性蛋白中,需先純化藥靶蛋白,再進(jìn)行固定。敲除了基因組琥珀密碼子的E. Coli ΔC321菌種能夠很好的解決這一問(wèn)題,使得非天然氨基酸僅能在目標(biāo)藥靶蛋白中定點(diǎn)插入,用細(xì)菌裂解液進(jìn)行反應(yīng),即可一步固定藥靶蛋白[21

      1.4 基于“一柱雙靶”的固定化方法

      與單靶點(diǎn)藥物相比,雙靶點(diǎn)藥物具有協(xié)同起效、安全性能高和耐藥性能高等特點(diǎn),已成為藥物研發(fā)的重點(diǎn)方向。然而,傳統(tǒng)的基于單柱單靶點(diǎn)固定化方法已經(jīng)不能滿足雙靶點(diǎn)藥物篩選需求,據(jù)此,作者團(tuán)隊(duì)前期分別將兩種不同的藥靶蛋白修飾于微球表面,將微球按一定比例混合后填入同一色譜柱,或?qū)⒌饶柕膬煞N藥靶蛋白混合后同時(shí)與微球反應(yīng)得到雙靶點(diǎn)固定相,用于雙靶點(diǎn)藥物篩選。紅景天的生物活性物質(zhì)篩選中使用的共固定化β2-AR和電壓依賴(lài)性陰離子通道1(VDAC-1)的受體色譜柱,其固定相的制備采用隨意固定的方式,將N,N’羰基二咪唑活化后的氨基微球與含有等摩爾濃度β2-AR和VDAC-1的磷酸鹽緩沖液反應(yīng)而得[22。然而,兩種藥靶蛋白在固定相表面的比例和距離無(wú)法精確控制,篩選所得藥物是否為雙靶點(diǎn)仍需后期驗(yàn)證。因此,作者團(tuán)隊(duì)將化合物A修飾于微球表面,由于該化合物中含有兩個(gè)功能基團(tuán)(6-氯己酸和依魯替尼),分別能與HaloTag和EGFR-tag藥靶蛋白反應(yīng),實(shí)現(xiàn)兩種不同標(biāo)簽蛋白的共固定[23。另一種更為直接的方法以環(huán)形脫鹵素酶(cpHalo)為標(biāo)簽,采用基因重組的方法將兩種藥靶蛋白融合表達(dá)至cpHalo兩端,利用cpHalo與其底物的共價(jià)反應(yīng),將AT1R和AT2R兩種藥靶蛋白捕獲至微球表面,實(shí)現(xiàn)“一柱雙靶”色譜固定相制備[24,為雙靶點(diǎn)藥物的高效篩選提供可能(見(jiàn)圖3)。

      2 固定化藥靶蛋白中藥活性成分定向篩選與評(píng)價(jià)

      2.1 固定化藥靶蛋白中藥活性成分定向篩選

      2.1.1 中藥活性成分定向篩選

      上述藥靶蛋白的定向固定化方法被廣泛應(yīng)用于親和色譜(HPAC)技術(shù)對(duì)中藥活性成分篩選中,如溫郁金[4、附子11、梔子12、紫蘇葉13、厚樸16、萊菔子25等單藥以及麻黃附子細(xì)辛湯26、三子養(yǎng)親湯等復(fù)方[27,輔以液相色譜質(zhì)譜聯(lián)用鑒定而篩選得到的對(duì)應(yīng)各藥靶蛋白的活性成分。

      2.1.2 激動(dòng)、拮抗和別構(gòu)配體篩選

      基于固定化藥靶蛋白的篩選方法已成功應(yīng)用于中藥單藥和復(fù)方中活性成分的高效篩選[28,然而,現(xiàn)有的單位點(diǎn)固定化方法難以區(qū)分復(fù)雜體系中配體的激動(dòng)、拮抗或別構(gòu)活性[29-31。作者團(tuán)隊(duì)發(fā)展了系列雙位點(diǎn)固定化方法,使得固定化藥靶蛋白的活性更高,實(shí)現(xiàn)了中藥丹參和DNA編碼中藥分子庫(kù)中藥靶蛋白激動(dòng)、拮抗和別構(gòu)活性成分的選擇性篩選(見(jiàn)圖4)。該類(lèi)篩選方法能在篩選的同時(shí)明確所得活性成分潛在的藥效特征,具有生物學(xué)意義上的優(yōu)勢(shì)。

      2.1.3 DNA編碼中藥分子庫(kù)的篩選

      DNA編碼化合物庫(kù)(DECLs)由于其水溶性好、結(jié)構(gòu)多樣和鑒定簡(jiǎn)便的特點(diǎn),是新興的藥物篩選化合物庫(kù)。作者團(tuán)隊(duì)首次將中藥成分引入至DECLs構(gòu)建過(guò)程,構(gòu)建了兩種不同類(lèi)型的中藥分子DECLs,并從中篩選獲得了靶向AT1R且具有良好降壓活性的Hit 1和別構(gòu)活性成分APF[32,以及同時(shí)靶向β2-AR和CysLT1的雙靶點(diǎn)活性成分XC267[33

      2.1.4 基于固定化藥靶蛋白的親和拉曼篩選

      表面增強(qiáng)拉曼光譜(SERS)是一種基于拉曼散射現(xiàn)象的光譜檢測(cè)手段,在生物分析方面具有分析時(shí)間短、與固液界面兼容性好和對(duì)生物樣品損傷小的特點(diǎn)。作者團(tuán)隊(duì)以HaloTag血清素轉(zhuǎn)運(yùn)蛋白(5-HTT)為例,通過(guò)HaloTag和鹵代烷烴間的生物正交反應(yīng),將5-HTT固定至SiO2@Ag核殼納米顆粒表面,首次提出了親和SERS技術(shù),實(shí)現(xiàn)了梔子提取液中西紅花苷I的高靈敏檢測(cè)和同步篩選,為親和SERS技術(shù)在中藥復(fù)雜樣品中的應(yīng)用提供了方法[34。

      2.2 中藥中非對(duì)映異構(gòu)體的篩選

      中藥中富含的生物堿、黃酮和萜類(lèi)等化合物是其發(fā)揮功效的最主要的活性成分。上述成分的母核結(jié)構(gòu)中,可能存在多個(gè)手性中心,使得中藥中富含化學(xué)結(jié)構(gòu)和物理化學(xué)性質(zhì)基本或完全相同的對(duì)映異構(gòu)體和非對(duì)映異構(gòu)體[35。然而,對(duì)映異構(gòu)體或非對(duì)映異構(gòu)體的生物活性可能差異較大,往往其中一種異構(gòu)體活性較強(qiáng)而另一種異構(gòu)體具有毒性[36。作者團(tuán)隊(duì)以中藥麻黃中麻黃堿和偽麻黃堿的分離為例,將β2-AR活性短肽(ASSIVSF,Ala-Ser-Ser-Ile-Val-Ser-Phe)固載于大孔硅膠表面,制備特異性活性短肽親和色譜固定相,首次實(shí)現(xiàn)了中藥復(fù)雜體系中非親和干擾成分的去除和非對(duì)映異構(gòu)體麻黃堿與偽麻黃堿的靶向識(shí)別與同步分離)[37

      2.3 固定化藥靶蛋白中藥活性成分早期成藥性評(píng)價(jià)

      2.3.1 親和力測(cè)定

      親和力代表活性成分與藥靶蛋白結(jié)合能力的大小,是其早期成藥性評(píng)價(jià)的一個(gè)重要標(biāo)準(zhǔn)。前沿分析法、競(jìng)爭(zhēng)置換法、直接進(jìn)樣法和非線性色譜等方法能夠通過(guò)公式或軟件擬合獲得藥靶蛋白與活性成分的親和力,但上述方法僅能揭示一種蛋白與一種配體的作用,通量較低。據(jù)此,作者團(tuán)隊(duì)基于質(zhì)量守恒定律和多元線性回歸,分別推導(dǎo)了兩種配體與一種蛋白〔公式(1)〕以及一種配體與兩種蛋白〔公式(2)〕的親和力參數(shù)測(cè)定公式,提高了親和力參數(shù)測(cè)定通量,為“一藥雙靶”和“一靶雙藥”的親和參數(shù)快速準(zhǔn)確測(cè)定提供了方法[27-38。

      式中:A和B分別代表兩種配體;P1和P2分別為兩種蛋白;k′為容量因子,Vm為色譜系統(tǒng)死體積;n為進(jìn)樣量;nt為結(jié)合位點(diǎn)數(shù);K為結(jié)合常數(shù)。

      2.3.2 超熱力學(xué)參數(shù)測(cè)定

      不同溫度下活性成分與藥靶蛋白的親和力不同,能夠反應(yīng)二者作用熵焓變化的熱力特征,而超熱力學(xué)能夠利用線性自由能關(guān)系,將物理化學(xué)過(guò)程的詳細(xì)模型與熱力學(xué)參數(shù)相結(jié)合,推斷藥物與受體結(jié)合過(guò)程中的結(jié)構(gòu)信息。作者團(tuán)隊(duì)以α1A腎上腺素能受體(α1A-AR)為例,通過(guò)熱力學(xué)和超熱力學(xué)參數(shù)測(cè)定〔公式(3)〕,研究了5種配體與α1A-AR相互作用過(guò)程的變化,明確了其中的兩種配體甲磺酸酚妥拉明和坦索羅辛與受體的結(jié)合存在焓-熵補(bǔ)償關(guān)系,結(jié)合方式為非共價(jià)且該過(guò)程結(jié)合能變化明顯[39。

      式中:下標(biāo)r為選定的參考溫度T(K),ΔH(kJ/mol)、ΔS(J/mol·K)和ΔG(kJ/mol)分別表示配體與蛋白質(zhì)結(jié)合過(guò)程種的焓變、熵變以及吉布斯自由能變,ΔCp(J/K)為熱容。

      2.3.3 速率常數(shù)和駐留時(shí)間測(cè)定

      結(jié)合/解離速率常數(shù)以及駐留時(shí)間是能夠反應(yīng)活性成分與藥靶蛋白結(jié)合快慢以及結(jié)合時(shí)間長(zhǎng)短的參數(shù),而駐留時(shí)間在數(shù)值上等于解離速率常數(shù)倒數(shù)的63%,結(jié)合速率常數(shù)在數(shù)值上等于解離速率常數(shù)與親和力的乘積。上述參數(shù)的測(cè)定,能夠反應(yīng)活性成分成藥的可能性和毒性,對(duì)于其早期評(píng)價(jià)具有重要意義。團(tuán)隊(duì)以ETAR為例,采用非線性色譜、峰輪廓法和峰值衰減法對(duì)不同藥物與固定化藥靶蛋白的解離速率常數(shù)和駐留時(shí)間進(jìn)行了測(cè)定,明確了3種方法的適用范圍,為速率常數(shù)和駐留時(shí)間的準(zhǔn)確測(cè)定提供了參考[40。

      2.3.4 類(lèi)藥性評(píng)價(jià)

      類(lèi)藥五原則要求小分子藥物需滿足分子量小于500、氫鍵給體數(shù)目小于5、氫鍵受體數(shù)目小于10和脂水分配系數(shù)小于5。傳統(tǒng)的親和色譜篩選方法在中藥活性成分篩選方面多以親和力為指標(biāo),而忽視了類(lèi)藥物原則中的評(píng)價(jià)參數(shù)。據(jù)此,本團(tuán)隊(duì)通過(guò)引入結(jié)合效率指數(shù)〔BEI,公式(4)〕、表面效率指數(shù)〔SEI,公式(5)〕、動(dòng)能效率〔KE,公式(6)〕和配體親脂性效率〔LLE,公式(7)〕,建立了一種抗哮喘活性成分類(lèi)藥性色譜評(píng)價(jià)技術(shù),為中藥活性成分早期評(píng)價(jià)提供了方法學(xué)參考[41。

      式中:MW為分子量;PSA為極性表面積;t為保留時(shí)間;NHA為重原子數(shù)量。

      3 總結(jié)與展望

      本文綜述固定化藥靶蛋白色譜固定相制備及其應(yīng)用,并且重點(diǎn)闡述了該技術(shù)在中藥及其復(fù)雜體系功效成分定向篩選及藥物先導(dǎo)化合物分子早期評(píng)價(jià)中的應(yīng)用實(shí)例。盡管作者團(tuán)隊(duì)在上述研究中取得了系列研究成果,然而,從縱深角度講,該技術(shù)仍需進(jìn)一步完善。① 現(xiàn)有藥靶蛋白固定化方法主要依賴(lài)于靶蛋白非活性末端的融合標(biāo)簽,難以實(shí)現(xiàn)復(fù)雜體系天然蛋白的固定化,在后期研究中,作者團(tuán)隊(duì)重點(diǎn)發(fā)展基于親和導(dǎo)向的天然蛋白質(zhì)固定化方法研究,有望實(shí)現(xiàn)復(fù)雜體系天然蛋白質(zhì)的固定化。② 在藥物先導(dǎo)化合物發(fā)現(xiàn)方面,由于現(xiàn)有方法難以同步體現(xiàn)所得藥物分子的下游信號(hào),因此,重點(diǎn)開(kāi)展功能選擇性配體篩選研究以實(shí)現(xiàn)上述目標(biāo)。③ 藥靶蛋白種類(lèi)繁多,涉及疾病多種多樣,作者團(tuán)隊(duì)目前僅聚焦心腦血管病、抑郁癥、呼吸系統(tǒng)疾病和糖脂代謝異常等相關(guān)藥靶蛋白,但所建立的方法具有通用性,能夠擴(kuò)展至抗腫瘤等其他藥物靶點(diǎn)。

      參考文獻(xiàn)

      [1] ZENG K Z, LI Q, WANG J, et al. One-step methodology for the direct covalent capture of GPCRs from complex matrices onto solid surfaces based on the bioorthogonal reaction between haloalkane dehalogenase and chloroalkanes[J]. Chemical Science, 2018, 9(2): 446-456.

      [2] WANG J,WANG Y X,LIU J J, et al. Site-specific immobilization of β2-AR using O6-benzylguanine derivative-functionalized supporter for high-throughput receptor-targeting lead discovery[J].Analytical Chemistry, 2019, 91(11): 7385-7393.

      [3] OU Y Y, QIAO S, LI T, et al. Affinity chromatographic method for determining drug-protein interaction with enhanced speed than typical frontal analysis[J].Langmuir, 2023, 39(29): 10259-10269.

      [4] CHEN Y Y, JIN Y H, SHAYIRANBIEKE A, et al. Preparation and characterization of immobilized 5-HT1A receptor stationary phase for high throughput screening of the receptor-binding ligands from complex systems like Curcuma Wenyujin Y. H. Chen et C. Ling extract[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 211: 114632.

      [5] FU X Y, LI L K, WEN X, et al. Halo-tagged protein immobilization: Effect of halide linkers on peak profile and drug-protein interaction[J]. Journal of Chromatography A, 2021, 1640: 461946.

      [6] QIAO S, ZHENG X X, OU Y Y, et al. Highly efficient GPCR immobilization with enhanced fouling resistance, salt tolerance, and chromatographic performance[J]. Colloids and Surfaces B: Biointerfaces, 2024, 236: 113818.

      [7] ZUO H Y,LI T,ZHANG D D, et al. Enhancing chromatographic performance of immobilized angiotensin II type 1 receptor by strain-promoted alkyne azide cycloaddition through genetically encoded unnatural amino acid[J].Analytical Chemistry, 2022, 94(45): 15711-15719.

      [8] SABBAH D A, HAJJO R, SWEIDAN K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors[J].Current Topics in Medicinal Chemistry, 2020, 20(10): 815-834.

      [9] GAO W, WANG M, WANG L, et al. Selective antitumor activity of ibrutinib in EGFR-mutant non-small cell lung cancer cells[J]. Journal of the National Cancer Institute, 2014, 106(9): dju204

      [10]ZHAO X F, JIN Y H, YUAN X Y, et al. Covalent inhibitor-based one-step method for endothelin receptor A immobilization: From ligand recognition to lead identification[J].Analytical Chemistry, 2020, 92(20): 13750-13758.

      [11]JIN Y H, CHEN Y Y, JIAO M Z, et al. Identifying potential ligands specifically binding to beta1-adrenoceptor from Radix Aconiti Lateralis Praeparata extract by affinity chromatographic method[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 220: 115022.

      [12]CHEN Y Y, XUE Y, YIN J T, et al. N-methyl-D-aspartic acid receptor 2A functionalized stationary phase: A reliable method for pursuing potential ligands against Alzheimer’s disease from natural products[J]. CNS Neuroscience & Therapeutics, 2023, 29(5): 1290-1299.

      [13]WEN X, CHEN M Y, LI Z M, et al. Site-specific immobilization of Cysteinyl leukotriene receptor 1 through enzymatic DNA-protein conjugation strategy for lead screening[J]. Journal of Chromatography A, 2024, 1727: 464948.

      [14]BERNARDINELLI G, H?GBERG B. Entirely enzymatic nanofabrication of DNA-protein conjugates[J]. Nucleic Acids Research, 2017, 45(18): e160.

      [15]ZAKERI B, HOWARTH M. Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting[J]. Journal of the American Chemical Society, 2010, 132(13): 4526-4527.

      [16]XUE Y, ZHANG Z L, WANG G, et al. Protein superglue inspired in-situ one-step site-specific immobilization of beta2-adrenoceptor and its application in bioactive compound screening from Cortex Magnoliae Officinalis[J]. Journal of Chromatography A, 2023, 1690: 463780.

      [17]LI Q, YIN G W, WANG J, et al. An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery[J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116728-116735.

      [18]LIU J J, LI T, WANG G, et al. Aptamer-assisted two-point immobilized agonist-bound angiotensin II type 1 receptor for a second-site modulator discovery[J]. iScience, 2022, 25(11): 105361.

      [19]GAO J,YUAN X Y,ZHENG X X, et al. Two-point immobilization of a conformation-specific beta2-adrenoceptor for recognizing the receptor agonists or antagonists inspired by binding-induced DNA assembly[J].Biomaterials Science, 2021, 9(23): 7934-7943.

      [20]TIAN R,YIN J T,YAO Q Q, et al. Development of an allostery responsive chromatographic method for screening potential allosteric modulator of beta2-adrenoceptor from a natural product-derived DNA-encoded chemical library[J]. Analytical Chemistry, 2022, 94(25): 9048-9057.

      [21]ZHAO X,XIANG M J,ZHANG Z L, et al. A label-free strategy for immobilization of GPCRs using site-specific encoded non-natural amino acids to develop a selectively chromatographic approach for pursuing potential ligands binding to 5-hydroxytryptamine 1A receptor[J]. Journal of Chromatography A, 2024, 1718: 464715-464725.

      [22]LIU T, HOU Y N, LIU J J, et al. Screening bioactive compounds with multi-targets from Rhodiola crenulata by a single column containing co-immobilized beta2-adrenergic receptor and voltage dependent anion channel isoform 1[J]. Journal of Chromatography B, 2018, 1100/1101: 76-82.

      [23]陳圓圓. 阿爾茨海默病雙靶點(diǎn)受體色譜模型的建立及其在益氣聰明湯活性成分篩選中的應(yīng)用[D].西安:西北大學(xué), 2024:16-47.

      [24]QU L J,LI T,SUN S D, et al. A chromatographic method for determining the interaction between a drug and two target proteins by fabricating a dual-heterogeneous surface[J]. Journal of Chromatography A, 2024, 1715: 464606.

      [25]WANG J, ZHAO X, YUAN X Y, et al. Rapid screening of bioactive compound in Sanzi Yangqin Decoction and investigating of binding mechanism by immobilized β2-adrenogic receptor chromatography coupled with molecular docking[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 197: 113957.

      [26]JIN Y H, WANG W W, ZHANG Z L, et al. Stepwise frontal analysis coupled with affinity chromatography: A fast and reliable method for potential ligand isolation and evaluation from Mahuang-Fuzi-Xixin Decoction[J]. Chemistry & Biodiversity, 2023, 20(3): e202201057.

      [27]WANG J, GAO Q Y, YIN J T, et al. Covalent immobilization of beta2 adrenergic receptor through trans-methylation reaction by SNAP-tag and its application in anti-asthmatic compound screening from Raphani Semen[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 219: 114952.

      [28]SHAYIRANBIEKE A, LIANG Q, WANG T T, et al. Development of immobilized beta1-adrenoceptor chromatography for rapid discovery of ligands specifically binding to the receptor from herbal extract[J]. Journal of Chromatography A, 2022, 1677: 463298.

      [29]ZHAO X,F(xiàn)U X Y,WANG T T, et al. Screening of bioactive flavour compounds targeting muscarinic-3 acetylcholine receptor from Siraitia grosvenorii and evaluation of their synergistic anti-asthmatic activity[J]. Food Chemistry, 2022, 395: 133593.

      [30]ZHAO X,F(xiàn)U X Y,YUAN X Y, et al. Development and characterization of a selective chromatographic approach to the rapid discovery of ligands binding to muscarinic-3 acetylcholine receptor[J]. Journal of Chromatography A, 2021, 1653: 462443.

      [31]JIA X N,LIU J J,SHI B M, et al. Screening bioactive compounds of siraitia grosvenorii by immobilized β2-adrenergic receptor chromatography and druggability evaluation[J]. Frontiers in Pharmacology, 2019, 10: 915.

      [32]LIANG Q,ZUO H Y,YANG T, et al. Discovery of dual-target ligands binding to beta2-adrenoceptor and cysteinyl-leukotriene receptor for the potential treatment of asthma from natural products derived DNA-encoded library[J]. European Journal of Medicinal Chemistry, 2022, 233: 114212.

      [33]LIANG Q,ZHAO X,F(xiàn)U X Y, et al. Identification of selective ligands targeting two GPCRs by receptor-affinity chromatography coupled with high-throughput sequencing techniques[J]. Bioorganic Chemistry, 2021, 112: 104986.

      [34]ZHANG D D,MA J,ZHENG X X, et al. Fabrication of a bioconjugated dual-functional SERS probe for facile compound screening and detection[J]. Biosensors and Bioelectronics, 2023, 234: 115369.

      [35]CHEN Y N, QIAN Y K, SHI Y J, et al. Accumulation of chiral pharmaceuticals (ofloxacin or levofloxacin) onto polyethylene microplastics from aqueous solutions[J]. Science of the Total Environment, 2022, 823: 153765.

      [36]LI Y, JIN X N, CHENG Y, et al. Recent advances on chiral mobile phase additives: A critical review[J].Journal of Analysis and Testing, 2022, 6(2): 129-162.

      [37]YIN J T, GOU Y H, WANG Y H, et al. Can the heptapeptide ASSIVSF of the β2-adrenoceptor recognize ephedrine and pseudoephedrine epimers in a complex system?[J].Journal of Chromatography A, 2024, 1722: 464857.

      [38]QIAO S,OU Y Y,LIU L, et al. Mathematical and experimental validation of an approach for simultaneously determining the binding parameters of two drugs to a receptor[J]. Journal of Chromatography A, 2022, 1685: 463593.

      [39]YUAN X Y,SHAYIRANBIEKE A,XU R, et al. Site-selective covalently immobilized alpha 1A adrenergic receptor for thermodynamic and extra-thermodynamic study of four ligands binding to the receptor by chromatographic methods[J]. Journal of Chromatography A, 2022, 1665: 462827.

      [40]LI P,SHI B W,LI L K, et al. Semi-quantitatively predicting the residence time of three natural products on endothelin receptor A by peak profiling using the receptor functionalized macroporous silica gel as stationary phase[J]. Journal of Analysis and Testing, 2023, 7(1): 40-52.

      [41]ZHENG X X, FAN H S, SONG Z, et al. Immobilized beta2-adrenergic receptor: A powerful chromatographic platform for drug discovery and evaluation of drug-like property for natural products[J]. Journal of Chromatography A, 2021, 1659: 462635.

      (編 輯 亢小玉)

      康定县| 微博| 凌海市| 金昌市| 辽宁省| 盈江县| 称多县| 越西县| 乐都县| 沧州市| 华蓥市| 梓潼县| 双柏县| 红原县| 宁南县| 桐庐县| 井研县| 镇坪县| 琼结县| 贵阳市| 荆门市| 阿克陶县| 榆中县| 怀集县| 高陵县| 蕲春县| 双峰县| 县级市| 贵阳市| 行唐县| 海淀区| 张北县| 司法| 寻乌县| 东城区| 锡林郭勒盟| 四子王旗| 友谊县| 南溪县| 晋城| 尼勒克县|