摘要 胰島素樣生長(zhǎng)因子(IGFs)是一種體內(nèi)平衡調(diào)節(jié)因子,參與全身多種生理、合成和代謝過(guò)程,在促進(jìn)生長(zhǎng)中起著關(guān)鍵的自分泌、旁分泌和內(nèi)分泌作用,涉及多種組織器官內(nèi)細(xì)胞增殖、分化和凋亡的調(diào)節(jié)。大量體內(nèi)、體外實(shí)驗(yàn)及臨床報(bào)道發(fā)現(xiàn)IGFs分子的異常表達(dá)在各種呼吸系統(tǒng)、消化道惡性腫瘤、生殖系統(tǒng)腫瘤及其他腫瘤的增殖侵襲過(guò)程中都起到十分重要的作用。從臨床角度來(lái)看,異常表達(dá)的IGF信號(hào)軸分子可被認(rèn)定為癌癥的診斷標(biāo)志物、預(yù)后因素和現(xiàn)代抗腫瘤治療的靶點(diǎn)。因此,針對(duì)不同腫瘤組織中IGFs變化所引發(fā)的下游分子及信號(hào)通路改變,配合靶向分子抑制劑進(jìn)行針對(duì)性用藥,可能成為治療癌癥的新方式??偨Y(jié)了IGFs信號(hào)軸在正常人體與癌癥組織發(fā)展中的變化,并對(duì)IGFs信號(hào)軸的小分子抑制劑進(jìn)行歸納,希望能為以后的癌癥臨床治療與研究提供借鑒,為未來(lái)分子靶向治療輔助癌癥用藥提供一定的參考。
關(guān)鍵詞 胰島素樣生長(zhǎng)因子;腫瘤;抑制劑;靶點(diǎn)治療
中圖分類(lèi)號(hào):Q71 DOI:10.16152/j.cnki.xdxbzr.2024-05-010
The roles of Insulin-like growth factor signalingaxis and its inhibitors in tumors
TIAN Jing, FU Yao, SUN Yu, WANG Zhihao
(Key Laboratory of Resource Biology and Biotechnology in Western China,Ministry of Education/College of Life Sciences,Northwest University, Xi’an 710069,China)
Abstract Insulin-like growth factors (IGFs) are homeostasis regulatory factors that participate in diverse physiological, synthetic and metabolic processes throughout the body and play key autocrine, paracrine and endocrine roles in promoting growth, involving the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs. Numerousin vivo and in vitro experiments and clinical reports have found that the abnormal expression of IGF molecules plays a crucial role in the proliferation and invasion of various organ cancers, reproductive system cancers and other tumors. From a clinical perspective, IGF signaling axis can be recognized as potential biomarkers in diagnosis, prognosis, and therapy for cancer. Therefore, targeting the downstream molecular and signaling pathway changes caused by IGFs in different cancer tissues, combined with targeted molecular inhibitors for targeted drug use, may become a new way to treat cancer. Here, we summarize the changes of IGFs signaling in different tumor tissues, and include the small molecule inhibitors of IGFs axis. This review aims to provide guidance for future clinical treatment and research of cancer to a certain extent, and to provide some reference for the use of molecular targeted therapy as an adjunct to cancer drugs in the future.
Keywords IGFs; tumors; inhibitors; target therapy
胰島素樣生長(zhǎng)因子(insulin-like growth factors, IGFs)與垂體前葉分泌的生長(zhǎng)激素(growth hormone,GH)功能密切相關(guān)[1],構(gòu)成生長(zhǎng)激素胰島素樣生長(zhǎng)因子軸(GHI/GFS),他們的分泌受到生長(zhǎng)激素釋放激素(growth hormone releases hormones,GHRH)、饑餓素(ghrelin)等多種因子的影響,涉及體內(nèi)生長(zhǎng)、發(fā)育、凋亡等多方面的調(diào)控作用[1-2],其組成主要分為配體、受體及結(jié)合蛋白三部分。
配體IGF-1主要在肝臟產(chǎn)生并發(fā)揮內(nèi)分泌活性,在其他組織合成的IGF-1則以旁分泌/自分泌的方式發(fā)揮作用[3]。IGF-1通過(guò)增加細(xì)胞內(nèi)周期蛋白表達(dá)的方式促進(jìn)有絲分裂,通過(guò)抑制BAX蛋白起到抗凋亡的作用。此外IGF-1 還可以控制細(xì)胞因子(IL-3,IL-14)的產(chǎn)生,參與調(diào)節(jié)機(jī)體免疫應(yīng)答的過(guò)程[4]。IGF-1的分泌與年齡、性別、飲食和營(yíng)養(yǎng)的關(guān)系較密切[6-7],并且受雌激素、促腎上腺皮質(zhì)激素、促甲狀腺素釋放激素、卵泡刺激素、人體絨膜促性腺激素等多種體內(nèi)激素的協(xié)調(diào)。值得一提的是,雖然GH的釋放具有脈動(dòng)性,但其對(duì)IGF-1的影響相對(duì)穩(wěn)定,同時(shí)IGF-1也可以反饋并負(fù)向調(diào)節(jié)GH分泌[6]。配體IGF-2與IGF-1有67%的同源性[8],具有類(lèi)似的增殖和抗凋亡作用。IGF-2與胰島素受體的A亞型有高親和力,主要增強(qiáng)有絲分裂,而不是代謝作用[9]。IGF-2的表達(dá)也受激素調(diào)節(jié),受肥胖等生活方式因素影響[6],但GH對(duì)IGF-2表達(dá)無(wú)調(diào)節(jié)作用[10]。
IGFs通過(guò)特定的糖蛋白膜受體發(fā)揮作用,包括I型(IGF-1R)、II型(IGF-2R)、胰島素受體(IR)和雜交受體(IGF-1R/1R)。IGF1R的表達(dá)受類(lèi)固醇激素和各類(lèi)生長(zhǎng)因子(如FGF,PDGF,EGF)的影響,配體與IGF-1R結(jié)合激活受體酪氨酸激酶活性,導(dǎo)致下游蛋白磷酸化,進(jìn)而激活I(lǐng)RS/MAPK/AKT/mTOR等多種信號(hào)通路[11]。IR和IGF-1R是具有高度同源性的跨膜酪氨酸激酶受體,它們的功能也部分重疊,但傳統(tǒng)上認(rèn)為IR是新陳代謝的調(diào)節(jié)因子,而IGF-1R控制著全身和器官的生長(zhǎng)。IGF-1和IGF-2的大部分活性都是由I型受體介導(dǎo)的,缺乏酪氨酸激酶功能的IGF-2R通過(guò)結(jié)合和內(nèi)化其配體來(lái)清除循環(huán)中的IGF-2,然后進(jìn)行溶酶體降解[12]。該受體對(duì)IGFs的成熟和清除具有潛在意義,它通過(guò)G蛋白偶聯(lián)機(jī)制介導(dǎo)IGFs下游的信號(hào)轉(zhuǎn)導(dǎo)[6]。
胰島素樣生長(zhǎng)因子結(jié)合蛋白(IGFBPs)是與IGFs相結(jié)合,負(fù)責(zé)攜載轉(zhuǎn)運(yùn)的蛋白質(zhì)分子,人體中6個(gè)IGFBPs與IGF-1和IGF-2具有高親和力的結(jié)合,調(diào)節(jié)IGFs的生物利用度,轉(zhuǎn)運(yùn)和調(diào)節(jié)IGFs與細(xì)胞表面受體的相互作用[13]。其中胰島素樣生長(zhǎng)因子結(jié)合蛋白3 (IGFBP-3)在血液循環(huán)中含量最多,血液中~90%的IGF-1主要與IGFBP-3相關(guān)[14],而其他結(jié)合蛋白如IGFBP-2、IGFBP--4和IGFBP-5在大腦中表達(dá)更豐富。IGFBPs與IGFs的結(jié)合可以保護(hù)它們不被蛋白水解降解,在將IGFs傳遞到目標(biāo)組織后,通過(guò)酶解將其解離,使其具有活性。IGFBPs在癌癥中作用獨(dú)立,一般認(rèn)為其在癌癥發(fā)生中的作用可能更為復(fù)雜[15]。
1 IGF軸信號(hào)通路與癌癥
IGF軸因子在腫瘤中的表達(dá)情況與正常人體內(nèi)存在巨大差異。現(xiàn)代科學(xué)認(rèn)為,正是由于這些分子的表達(dá)情況改變,才使得腫瘤的增殖侵襲現(xiàn)象更為嚴(yán)重,針對(duì)癌癥的治療效果也不穩(wěn)定,因此,厘清IGF軸相關(guān)因子在癌癥中的改變情況,成為治療癌癥的重點(diǎn)之一。
1.1 IGF與肺癌(lung cancer,LC)
從支氣管上皮異常增生時(shí)期開(kāi)始,直至晚期肺癌時(shí)期,IGF-1和IGF-2在肺部都有較為異常的高表達(dá)現(xiàn)象。在非小細(xì)胞肺癌(NSCLC)和小細(xì)胞肺癌(SCLC)兩種類(lèi)型的肺癌組織中,常見(jiàn)IGF-1含量異常升高和IGFBP-3的降低,這些表現(xiàn)與癌癥風(fēng)險(xiǎn)顯著相關(guān)[16]。其中,IGF-1濃度與NSCLC的組織學(xué)亞型、較大的腫瘤體積、晚期、局部淋巴結(jié)轉(zhuǎn)移、全身炎癥和較差的預(yù)后呈正相關(guān)[17],血清中IGFBP-3濃度與LC風(fēng)險(xiǎn)呈顯著負(fù)相關(guān)[18],這可能與IGFBP-3與IGF-1結(jié)合能力的改變有關(guān),其增殖和抗凋亡的能力受到抑制[19]。此外,研究發(fā)現(xiàn)NSCLC患者腫瘤切除后IGF-1水平降低,表明IGF-1可作為潛在的預(yù)后標(biāo)志物。同樣,IGF-2在肺癌組織中的作用也十分顯著,與IGF-2陰性L(fǎng)C患者相比,IGF-2陽(yáng)性L(fǎng)C患者的5年生存期較短[20]。在體外培養(yǎng)的肺癌細(xì)胞中發(fā)現(xiàn)了IGF-1的局部富集,推測(cè)來(lái)自于生長(zhǎng)因子的自分泌作用,且外源添加IGF-1和IGF-2對(duì)細(xì)胞增殖具有增強(qiáng)作用。
IGF-1的表達(dá)量和磷酸化IGF-1R以及IR的情況呈正相關(guān),IGF-1R與IR的高表達(dá)量是腺癌(ADC)預(yù)后不良的1個(gè)指標(biāo)[21]。大約20%的SCLC患者中檢測(cè)到IGF-1R拷貝數(shù)增加,晚期NSCLC患者IGF1RmRNA表達(dá)增加時(shí),無(wú)進(jìn)展生存期(progression free survival, PFS)和總生存期(overall survival,OS)較陰性組更短[22]。在A(yíng)DC中,IGF-1R的表達(dá)是LC復(fù)發(fā)的一個(gè)獨(dú)立因素,其表達(dá)量的增加,有時(shí)也意味著轉(zhuǎn)移及局部浸潤(rùn)能力的增強(qiáng),因而IGF-1R可預(yù)測(cè)治療反應(yīng)。
在實(shí)體瘤中IGFBPs的特定表達(dá)模式與生存期相關(guān),可作為肺癌的預(yù)后生物標(biāo)志物和NSCLC的潛在靶標(biāo)[23,25]。IGFBP-1、IGFBP-2和IGFBP--4在腺癌中的高表達(dá)以及IGFBP-3啟動(dòng)子在超過(guò)60%的NSCLC(l期)中發(fā)生高甲基化,與預(yù)后惡化有關(guān)(表現(xiàn)為較低的DSS、DFS和OS)。尤其是在亞洲人群中,IGFBP-3可以作為預(yù)測(cè)肺癌和食道癌風(fēng)險(xiǎn)的有用的生物標(biāo)志物[26-27]。在LC患者中,IGFBP-3血漿水平與較低的臨床腫瘤分級(jí)和分期、改善總生存期相關(guān),在LC細(xì)胞系中過(guò)表達(dá)IGFBP-3可抑制腫瘤生長(zhǎng)和侵襲[28]。然而,在鱗狀細(xì)胞癌(SCC)患者中,IGFBP-2、IGFBP-5的高表達(dá)與良好的OS相關(guān)??赡躀GFBP-5抑制大多數(shù)IGF-1促細(xì)胞增殖及抑制細(xì)胞凋亡作用有關(guān),進(jìn)而在SCC患者中產(chǎn)生好的OS。同樣,IGFBP--4也具有作為癌癥生物標(biāo)志物的潛力,研究發(fā)現(xiàn),它在肺癌的各個(gè)階段均顯著高于健康個(gè)體[29],而NSCLC患者的IGFBP-6和IGFBP-7的表達(dá)低于健康個(gè)體[30]。
1.2 IGF與乳腺癌(breast cancer,BC)
IGF-1水平與乳腺癌風(fēng)險(xiǎn)相關(guān),已有研究表明,IGF-1和IGFBP3濃度升高與BC風(fēng)險(xiǎn)相關(guān)性?xún)H存在于絕經(jīng)前的年輕患者中,而在絕經(jīng)后并無(wú)相關(guān)性。表明IGF-1的濃度增加大大提高了絕經(jīng)前BC風(fēng)險(xiǎn)[31]。IGF-1的增加會(huì)促進(jìn)乳腺癌的發(fā)生與發(fā)展,絕經(jīng)后婦女體內(nèi)IGF-1水平升高與末端導(dǎo)管小葉單位(terminal duct lobular unit,TDLU)升高有關(guān),TDLU是引起B(yǎng)C風(fēng)險(xiǎn)升高的主要結(jié)構(gòu)。IGF-1血清濃度被認(rèn)為是BC患者的預(yù)后因素之一,與患者OS呈相關(guān)性[32],高水平的IGF-1與更高的死亡率相關(guān)[33]。在高分化和中分化腫瘤中,IGF-1的表達(dá)明顯高于低分化和未分化腫瘤(分別為33%和17%)。與正常乳腺組織相比,三陰乳腺癌(triple negative breast cancer,TNBC)患者IGF-1和IGF-1R的表達(dá)(分別為62.79%和83.72%)高于非TNBC患者(分別為35.86%和20.75%),高IGF-1或IGF-1R水平預(yù)示著更差的臨床結(jié)果[34]。蛋白質(zhì)組學(xué)數(shù)據(jù)分析顯示,IGF-1信號(hào)通路在早期和高危乳腺癌患者中顯著富集,其相關(guān)miRNA可以作為生物標(biāo)志物存在[35]。在BC組織中IGF-2的含量往往較IGF-1更高(mRNA和蛋白),較高的IGF2水平與較差的預(yù)后相關(guān)[36]。體外模型顯示,IGF-2能夠與IGF-1R和IR-A結(jié)合,促進(jìn)ER-A和ER-B的磷酸化并向細(xì)胞核、線(xiàn)粒體等轉(zhuǎn)移,激活細(xì)胞存活途徑,該過(guò)程不需要雌激素的參與[37]。
IGF-1R在BC中普遍上調(diào),其血清水平高與BC較差的預(yù)后相關(guān),與轉(zhuǎn)移性BC的淋巴結(jié)轉(zhuǎn)移、高死亡率、高復(fù)發(fā)、遠(yuǎn)處轉(zhuǎn)移和較低的治療分辨率之間存在正相關(guān)。這些觀(guān)察結(jié)果同時(shí)適用于TNBC和非TNBC病例[38]。IGF-1R陽(yáng)性表達(dá)也與雌激素受體(estrogen receptor,ER)狀態(tài)相關(guān)。在ER陽(yáng)性的BC組織中,IGF-1R的表達(dá)約為40%~60%,而ER陰性中僅為10%~20%[39-40]。相關(guān)統(tǒng)計(jì)顯示,IGF-1R在BC中的陽(yáng)性率為86%,而在鄰近的正常乳腺組織中的陽(yáng)性率僅為3%,在化療期間,47.2%的BC患者中IGF-1R表達(dá)下降[41]。IGF-1和IGF-1R及IGF-1/IGF-1R系統(tǒng)的高表達(dá)并不會(huì)影響HER2乳腺癌患者的OS和DFS,但在TNBC中往往導(dǎo)致較差的DFS。IGF-1/IGF-1R系統(tǒng)促進(jìn)FAK信號(hào)轉(zhuǎn)導(dǎo)途徑的激活,進(jìn)而調(diào)節(jié)YAP的核積累及其靶基因的表達(dá)[42]。
IGFBPs在BC癌變中具有重要作用[43],IGFBP-1、IGFBP-2被證實(shí)通過(guò)PTEN影響PI3K信號(hào)通路[44]。其中IGFBP-2水平較高往往與較高的BC特異性死亡率相關(guān)[36]。IGFBP-2可作為防止侵襲性進(jìn)展的屏障,從患者來(lái)源的基質(zhì)細(xì)胞分化的脂肪細(xì)胞分泌IGFBP-2,從而顯著抑制乳腺癌侵襲[45]。IGF-1/IGFBP-3比值升高與TDLU升高顯著相關(guān),特別是在乳腺X線(xiàn)照射密度升高的人群中[46]。IGFBP-3的高水平表達(dá)與隨后的復(fù)發(fā)風(fēng)險(xiǎn)以及BC特異性死亡率有關(guān)[35]。IGFBP-3在侵襲性乳腺癌中的呈現(xiàn)高表達(dá)狀態(tài),其可作為增強(qiáng)三陰性乳腺癌(TNBC)中的表皮生長(zhǎng)因子受體信號(hào)傳導(dǎo)[47]。乳腺癌中,IGFBP-5過(guò)表達(dá)會(huì)抑制腫瘤生長(zhǎng),其通過(guò)與IGF結(jié)合對(duì)IGF/IGFR途徑產(chǎn)生抑制作用。在BC中,IGFBP-5存在于50%的癌細(xì)胞細(xì)胞質(zhì)中,也檢測(cè)到其存在于細(xì)胞核中。在正常乳房、癌癥病變附近的正常組織和良性乳腺病變中,IGFBP-5的表達(dá)水平較低[48]。較高的IGFBP-5的表達(dá)水平升高往往會(huì)導(dǎo)致較差的預(yù)后性[49],因此IGFBP-5可作為乳腺癌的潛在預(yù)后/預(yù)測(cè)生物標(biāo)志物[48]。腫瘤中IGFBP-7的低水平與乳腺癌預(yù)后不良有關(guān)。循環(huán)IGFBP-7總體水平并不能作為乳腺癌復(fù)發(fā)的獨(dú)立預(yù)測(cè)指標(biāo),因此IGFBP-7在乳腺癌中的研究仍需完善[50]。
另外,基因的多態(tài)性可能與血清IGFs水平有關(guān),IGF-1R (rs2016347)中存在3129Ggt;T的變異體T等位基因在多變量分析中顯示出較好的應(yīng)答效果[30]。在正常乳腺組織中,97%的樣本中IGF-2明顯甲基化,而在乳腺腫瘤組織中,甲基化率僅為3%。
1.3 IGF與肝癌(hepatocellularcar cinoma,HCC)
IGFs在HCC中與病癥進(jìn)程關(guān)聯(lián)密切,經(jīng)調(diào)查發(fā)現(xiàn)慢性丙型肝炎血清IGF-1水平隨著纖維化程度的加重而降低,在纖維化的第四階段達(dá)到最低水平,肝功能分級(jí)臨床C期明顯較低[51]。HCC患者的血清IGF-1水平明顯低于慢性肝炎或肝硬化患者和健康志愿者,IGF-1血清水平在原發(fā)性肝癌的患者中呈下降趨勢(shì),且IGF-1水平會(huì)隨著病情加劇而降低[52]。在HCC病毒背景的患者中,IGF-1血漿水平較未感染的患者有更大幅度的降低[53]。同樣,慢性HCV或HBV感染患者的血清IGF-1水平也低于未感染患者。血清中IGF-1水平可預(yù)測(cè)HCC預(yù)后:①肝功能分級(jí)A級(jí)、無(wú)肝硬化、無(wú)血管侵犯及部分腫瘤反應(yīng)的患者,其IGF-1基線(xiàn)水平均顯著升高;②化療組中IGF-1高基線(xiàn)患者(索拉非尼治療)的生存期較長(zhǎng);③IGF-1水平低的患者OS值更差。因此IGF-1在研究中可以作為獨(dú)立的預(yù)測(cè)指標(biāo)[54]。與IGF-1不同,IGF-2在大多數(shù)的肝硬化及HCC中過(guò)表達(dá),其表達(dá)量可能與表觀(guān)修飾有關(guān)[55-56]。在HBV感染的患者中,IGF-2在HCC組織中的異常表達(dá)與其基因甲基化缺失顯著相關(guān)[57]。IGF-2及其甲基化程度在肝癌組織中發(fā)生率為100%,而在遠(yuǎn)端的非癌組織中為0,所以IGF-2水平及IGF-2的甲基化程度可視為肝癌診斷的有效生物標(biāo)志物[58-59]。
此外,IGFBP-1在HCC中的表達(dá)也被下調(diào),低表達(dá)水平的IGFBP-1被認(rèn)為與腫瘤分化、微血管浸潤(rùn)、轉(zhuǎn)移等過(guò)程相關(guān),是預(yù)后的獨(dú)立指標(biāo)[60]。隨著病情加重,HCC患者體內(nèi)IGFBP-3的濃度較肝硬化期也會(huì)有更明顯的降低[61],這與預(yù)后不良有關(guān)[62]。與IGF-1或IGF-2相比,IGFBP-3是慢性HCV感染患者肝細(xì)胞癌發(fā)展的更有效預(yù)測(cè)指標(biāo)[63]。肝細(xì)胞癌患者的血漿IGFBP-6水平明顯低于乙型/丙型肝炎患者,這表明IGFBP-6可作為腫瘤標(biāo)志物。與正常肝細(xì)胞和相比,IGFBP-7在人HCC樣本和細(xì)胞系中的表達(dá)分別顯著下調(diào),并且與HCC的分期和等級(jí)呈負(fù)相關(guān)[64]。IGFBP-7作為候選的腫瘤抑制因子,通過(guò)與IGF-1競(jìng)爭(zhēng)性與IGF-1R結(jié)合起到抑制IGF信號(hào)的作用,誘導(dǎo)癌癥特異性衰老和凋亡來(lái)消除腫瘤[65]。
IGF-1R在肝癌中存在過(guò)度表達(dá),會(huì)促進(jìn)癌細(xì)胞增殖,且與較差的OS相關(guān)[66]。多因素分析顯示,IGF-1R可作為肝癌的獨(dú)立預(yù)后因素[33]。因而在臨床上,IGF-1R可作為肝細(xì)胞癌的潛在靶點(diǎn)。IGF-2R的多態(tài)性改變?cè)贖CC中表現(xiàn)明顯,超過(guò)90%的HCV相關(guān)肝硬化患者體內(nèi)均存在其多態(tài)性改變[24-25]。HCC樣本水平中,其IGF-2RmRNA的表達(dá)水平較對(duì)應(yīng)癌旁組織中明顯下降[68]。
1.4 IGF與結(jié)直腸癌(colorectal carcinoma,CRC)
在結(jié)直腸癌組織中IGF-1高表達(dá),且因其可能與CRC的轉(zhuǎn)移相關(guān),已成為結(jié)直腸癌的重要預(yù)后因素[69]。若IGF-2在CRC中存在10~50倍的過(guò)量表達(dá)現(xiàn)象,在轉(zhuǎn)移性CRC患者中,IGF-2因其表達(dá)升高則成為CRC病理分期系統(tǒng)的進(jìn)展標(biāo)志物[70]。
IGF-1R在絕大多數(shù)的CRC組織中可被檢測(cè)到,相比正常組織,其在息肉、CRC中的表達(dá)量更為強(qiáng)烈。IGF-1R的局部高表達(dá)與淋巴管密度、靜脈侵襲、肝轉(zhuǎn)移復(fù)發(fā)的高風(fēng)險(xiǎn)性顯著相關(guān)[71],IGF-1R表達(dá)較低的患者表現(xiàn)出較高的輻射敏感性[72]。
與CRC風(fēng)險(xiǎn)相關(guān)的是,IGFBP-3甲基化狀態(tài)可作為早期CRC診斷的潛在標(biāo)志物[73],且與對(duì)照組相比,原發(fā)性直腸癌患者血清中IGFBP-3水平降低。若IGFBP-7在結(jié)腸癌中低表達(dá),甲基化程度較高,與預(yù)后及OS等相關(guān)[64]。
1.5 IGF與生殖系統(tǒng)癌癥
IGF-1和IGF-2的表達(dá)在卵巢癌[74]、宮頸癌[75]等生殖系統(tǒng)癌癥中大多呈升高趨勢(shì)。在高分化卵巢癌上皮細(xì)胞中,IGF-1血漿水平的升高明顯;宮頸癌患者血清IGF-1和IGF-2都顯著升高[76];IGF-1水平的升高與HCIN風(fēng)險(xiǎn)的降低有關(guān),但目前研究難以解釋血清IGF-1水平的升高對(duì)宮頸癌風(fēng)險(xiǎn)有保護(hù)作用[77]。在子宮內(nèi)膜癌和前列腺癌組織中,由于IGF-1的表達(dá)量與許多內(nèi)源性及外源性因素有關(guān),導(dǎo)致IGF-1的表達(dá)量并不能代表疾病的程度,所以目前的研究數(shù)據(jù)之間尚具有不一致性[78]。
而對(duì)應(yīng)的受體IGF-1R,則統(tǒng)一體現(xiàn)出明顯的升高態(tài)勢(shì)。在子宮內(nèi)膜癌組織中,雖然IGF-1、IGF-2在血清內(nèi)的表達(dá)與患病程度無(wú)直接相關(guān)性,但I(xiàn)GF-1R與IGF-2R卻在患者體內(nèi)明顯高表達(dá),成為血清檢測(cè)的標(biāo)志物[79]。
IGFBPs在某些癌癥和相應(yīng)對(duì)照中存在明顯差異表達(dá),這也與患者的預(yù)后相關(guān),IGF-2和IGFBP-3表達(dá)量較高的男性患前列腺癌的風(fēng)險(xiǎn)高[80],而IGFBP-1較高則患癌風(fēng)險(xiǎn)較低[81]。
1.6 其他與IGF因子相關(guān)的癌癥
IGFs在甲狀腺癌、中樞神經(jīng)系統(tǒng)腫瘤、骨和軟組織癌癥、尿道腫瘤和血液系統(tǒng)惡性腫瘤中也有研究[82]。其中,甲狀腺結(jié)節(jié)(濾泡狀腺瘤和乳頭狀甲狀腺癌)患者組織中IGF-1和IGF-1R的表達(dá)明顯升高[83],與健康個(gè)體相比,IGF-2mRNA在良性和惡性甲狀腺結(jié)節(jié)中的表達(dá)水平較低[84]。膠質(zhì)母細(xì)胞瘤中IGF-1的表達(dá)是正常腦組織的1.1~4.0倍,IGF-1的免疫反應(yīng)活性與腫瘤的組織病理學(xué)分級(jí)呈正相關(guān)[85]。在惡性黑色素瘤和多發(fā)性骨髓瘤中,IGF-1的濃度與其風(fēng)險(xiǎn)呈正相關(guān)[86]。另外,骨癌和軟組織癌也受IGF信號(hào)通路的影響,IGF-1和IGF-1R在骨肉瘤組織中表達(dá)增加,IGFBP-5表達(dá)下調(diào)[87]。作為骨肉瘤組織的標(biāo)志物,靶向IGF-1成為治療的有效途徑之一。在對(duì)治療產(chǎn)生耐藥性的橫紋肌肉瘤中,IGFBP-2的表達(dá)及活性升高[88]。在尤文氏肉瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移過(guò)程中,其腫瘤家族基因EWS、FLI1等參與IGFBP-3的轉(zhuǎn)錄,使IGF-IR重新激活[89]。
此外,Genua等人證實(shí)IGF-1R在侵襲性膀胱癌組織中過(guò)表達(dá),促進(jìn)尿路上皮癌細(xì)胞的運(yùn)動(dòng)和侵襲[90]。Tsai等人證實(shí)IGF-1表達(dá)與膀胱癌風(fēng)險(xiǎn)呈反比[91]。Verhagen等報(bào)道過(guò)表達(dá)IGFBP-7能夠誘導(dǎo)細(xì)胞G2期阻滯和凋亡來(lái)調(diào)控細(xì)胞周期[92]。在急性白血病細(xì)胞存活和遷移實(shí)驗(yàn)中,IGFBP-2作為關(guān)鍵細(xì)胞自主因子,在其中中高表達(dá)[93],同時(shí)IGFBP-2的表達(dá)與兒童白血病的不良預(yù)后相關(guān)[94]。
IGF軸成分的基因組改變與癌癥發(fā)生兩者之間可能的相關(guān)性見(jiàn)表1[16,94]。
2 IGF軸系列抑制劑
針對(duì)腫瘤發(fā)展過(guò)程中IGFs相關(guān)分子的特點(diǎn),研究人員設(shè)計(jì)并研發(fā)了各種類(lèi)型的抑制劑。在眾多的抑制劑中,將挑選靶向明確、與IGFs結(jié)合、且在體外與臨床試驗(yàn)中有良好反饋的分子抑制劑進(jìn)行總結(jié)。對(duì)于不同種類(lèi)的癌癥組織,結(jié)合其增殖機(jī)理配合使用不同種類(lèi)的分子抑制劑,能達(dá)到較好的腫瘤抑制效果。從研發(fā)進(jìn)程上來(lái)看,分子類(lèi)抑制劑實(shí)驗(yàn)效果顯著,是較好的癌癥治療的輔助類(lèi)藥物。
2.1 IGF-1R單受體抑制劑類(lèi)
針對(duì)于IGF-1R在腫瘤組織中的異常高表達(dá)現(xiàn)象,研究者開(kāi)發(fā)了多款I(lǐng)GF-1R單一受體抑制劑,它們分別是NVPAEW541、NVPADW742、NVPTAE226、LDK378、PQ401和SY-707等,其各自特點(diǎn)如下。
1)NVPAEW541是一種嘧啶類(lèi)激酶抑制劑,能夠在抑制IGF-1R自磷酸化作用,使用后未發(fā)現(xiàn)高血糖癥狀,針對(duì)多發(fā)性骨髓瘤有良好療效[95]。
2)NVPADW742可以在阻斷IGF-1R及其下游靶蛋白Akt的磷酸化,還可減弱腫瘤細(xì)胞對(duì)其他生長(zhǎng)因子的反應(yīng),克服骨微環(huán)境賦予的耐藥表型,抑制促血管生成細(xì)胞因子的產(chǎn)生。NVPADW742單藥或聯(lián)合細(xì)胞毒性化療在異種移植瘤模型或透位移植瘤模型中具有顯著的抗腫瘤活性[96]。
3)NVPTAE226是一種ATP競(jìng)爭(zhēng)性酪氨酸磷酸化位點(diǎn)抑制劑,可使IGF-1R和FAK的酪氨酸磷酸化位點(diǎn)(Tyr397)的自磷酸化過(guò)程受抑制,其中FAK可調(diào)節(jié)腫瘤的遷移和侵襲。因此,在多種遺傳異常所致的高度浸潤(rùn)性和生長(zhǎng)快速的人膠質(zhì)瘤細(xì)胞中,常選擇NVPTAE226進(jìn)行腫瘤抑制實(shí)驗(yàn)[97]。
4)LDK378是在第一代ALK抑制劑4 (TAE684)的研制基礎(chǔ)上改進(jìn)而來(lái),在對(duì)ALK進(jìn)行抑制的同時(shí),對(duì)胰島素和血糖利用無(wú)影響。在抑制腫瘤過(guò)程中,pSTAT3同時(shí)被抑制,推測(cè)該抑制劑也可同時(shí)抑制STAT通路部分信號(hào)[98]。LDK378在前期臨床試驗(yàn)中效果良好,ALK陽(yáng)性的癌癥患者有明顯的好轉(zhuǎn)跡象。
5)在乳腺癌細(xì)胞中,PQ401能夠通過(guò)抑制IGF-1調(diào)節(jié)的抗凋亡途徑,同時(shí)增強(qiáng)Caspase調(diào)節(jié)的凋亡活性,抑制細(xì)胞增殖,引發(fā)細(xì)胞凋亡[99]。
6)SY-707是一種針對(duì)ALK/FAK/IGF-1R的多激酶抑制劑,在T47D細(xì)胞(人乳腺管癌細(xì)胞)中,IGF-1刺激后以劑量依賴(lài)方式阻斷IGF-1R的磷酸化,進(jìn)而影響下游AKT/ERK的磷酸化,起到抑制腫瘤細(xì)胞生長(zhǎng)作用[100]。
2.2 IGF-1R/IR雙受體抑制劑類(lèi)
雙受體抑制劑對(duì)IGF-1R以及IR兩種受體都具有靶向性,進(jìn)而對(duì)下游通路進(jìn)行抑制作用,主要包括GSK1904529A、GSK1838705A、AG1024、OSI-906、BMS-754807以及BMS-536924等。
1)GSK1904529A是一類(lèi)咪唑吡啶類(lèi)化合物的先導(dǎo)化合物,對(duì)IGF-1R和IR具有高效識(shí)別的特性[101]。它通過(guò)與ATP競(jìng)爭(zhēng)性結(jié)合到IGF-1R,使其無(wú)法發(fā)生二聚,阻斷其自磷酸化過(guò)程,從而介導(dǎo)下游細(xì)胞內(nèi)PI3K/AKT和MAPK信號(hào)通路的阻斷。
2)而GSK1838705A則是通過(guò)抑制IR或IR/IGF-1R異二聚體的形成來(lái)介導(dǎo)下游通路,還可抑制ALK間變性細(xì)胞腫瘤的發(fā)展(如ALCL、NSCLC和神經(jīng)母細(xì)胞瘤等),這點(diǎn)是GSK1904529A所不具備的[102]。這兩者對(duì)多發(fā)性骨髓瘤和尤文氏肉瘤細(xì)胞系作用強(qiáng)烈,對(duì)血糖水平的影響都很小。
3)AG1024的抑癌作用是通過(guò)抑制絲裂原激活的蛋白激酶/細(xì)胞外信號(hào)調(diào)節(jié)的E2F信號(hào),通過(guò)蛋白降解的機(jī)制,激活pRb形成復(fù)合物,恢復(fù)其抑癌功能來(lái)實(shí)現(xiàn)的[103]。在經(jīng)過(guò)AG1024處理后,IGF-1R激酶對(duì)其天然底物IRS-1的活性并未被抑制,且IGF-1R或IR的自磷酸化未受影響。另外,AG1024還可抑制包括Erk2在內(nèi)的幾種酪氨酸磷酸化蛋白的水平,該抑制劑在體外對(duì)黑素瘤細(xì)胞生長(zhǎng)有很強(qiáng)的抑制作用。
4)OSI-906可有效抑制IGF-1R和IR的配體依賴(lài)的自磷酸化作用,包括pAKT,pERK1/2,p-p70S6K等,同時(shí)表現(xiàn)出高度的選擇性,具有良好的臨床前藥物樣特性[104]。
5)BMS-754807是雙受體家族激酶的可逆抑制劑,已處于I期開(kāi)發(fā)階段,治療多種實(shí)體瘤耐受性良好,且對(duì)Met、TrkA/B、AuroraA/B等也有一定的活性,但該抑制劑服用后會(huì)出現(xiàn)高血糖反應(yīng)[105]。達(dá)沙替尼(靶向BCR-ABL和SRC家族激酶的多靶點(diǎn)蛋白酪氨酸激酶抑制劑)與BMS-754807聯(lián)合使用可抑制肺癌細(xì)胞生長(zhǎng),同時(shí)誘導(dǎo)自噬以及G1期細(xì)胞周期停滯[106]。
6)BMS-536924是ATP競(jìng)爭(zhēng)性抑制劑,在不同濃度下對(duì)FAK、Mek和Lck家族有抑制作用,對(duì)Akt1、MAPK1/2作用很小[107]。
2.3 其他類(lèi)型抑制劑
對(duì)于抑制IGFs,也有一些抑制劑不是通過(guò)對(duì)IGF家族受體的抑制進(jìn)而抑制下游,而是在IGF通路其他分子、下游等多方面進(jìn)行干擾,達(dá)到最終抑制目的,此類(lèi)型主要包括Picropodophyllin(PPP)、PD-173074、PD-168393、Decorin、AP26113、GinsenosideRg5以及Insulin等。
1)PPP是環(huán)木脂體家族成員之一,是一種胰島素樣生長(zhǎng)因子I型受體酪氨酸激酶(IGF-1RTK)抑制劑,具有良好的抗黑色素瘤作用,可降低VEGF的分泌,常與組蛋白去乙?;福℉DAC)抑制劑LBH589聯(lián)合用藥,共同治療骨髓瘤與黑色素瘤[108]。
2)PD-173074是一種治療性血管生成抑制型的嘧啶類(lèi)化合物,它可以通過(guò)與ATP競(jìng)爭(zhēng)性結(jié)合,選擇性地抑制FGF和VEGF受體酪氨酸激酶的活性,從抑制血管生成的角度,抑制癌癥的發(fā)展[109]。
3)PD-168393是一種與EGFR中的Cys-773位點(diǎn)互作的ATP競(jìng)爭(zhēng)性抑制劑,PD1658393與Cys-733的結(jié)合會(huì)使得EGF的下游無(wú)法發(fā)生二聚化,從而使得癌組織的增殖速率減慢[110]。該抑制劑在乳腺癌、前列腺癌、卵巢癌和各種鱗狀細(xì)胞癌中有較好效果。
4)Decorin是一種腫瘤基質(zhì)的關(guān)鍵組成部分,通過(guò)下調(diào)幾種酪氨酸激酶受體的活性(包括IGF-1R、IR-A),在癌癥中作為腫瘤抑制因子。它在不同部位與IGF-1R和IGF-1相結(jié)合,抑制IGF-1介導(dǎo)的IGF-1R磷酸化,然而Decorin可增強(qiáng)IGF-1誘發(fā)的IRS-1降解并抑制Akt和MAPK活化,從而削弱膀胱癌細(xì)胞的遷移和侵襲能力[111]。
目前,鬼臼苦素(PPP)的臨床I期試驗(yàn)已在44%的復(fù)發(fā)惡性星形細(xì)胞瘤患者中成功誘導(dǎo)表達(dá)并產(chǎn)生反應(yīng),該抑制劑已被確定為適用于此病癥的孤兒藥,相關(guān)的研究目前已進(jìn)入臨床II期試驗(yàn)的階段;NVPTAE226現(xiàn)已在幾項(xiàng)臨床前研究中,發(fā)現(xiàn)可以減弱腫瘤血管生成;SY-707于2016年被批準(zhǔn)于治療ALK陽(yáng)性的NSCLC患者;BMS-754807已進(jìn)入Ⅰ期開(kāi)發(fā)階段,用于治療多種人類(lèi)癌癥。近些年,仍有不少抑制劑被開(kāi)發(fā),但大部分還停留在理論研究階段。
3 總結(jié)與討論
以往人們對(duì)GH/IGF軸及其信號(hào)通路進(jìn)行了廣泛的研究,從各種臨床數(shù)據(jù)及研究結(jié)果來(lái)看,IGF軸參與了多種腫瘤的發(fā)生、增殖及侵襲等過(guò)程之中,因此針對(duì)IGF軸分子,抑制劑的開(kāi)發(fā)就成為新的治療渠道。小分子IGF-1R抑制劑因給藥途徑、作用方式、時(shí)間、藥代動(dòng)力學(xué)特性和選擇性的差異而不同,從而影響其有效性和安全性。
無(wú)論是通過(guò)抑制受體激酶活性還是通過(guò)抑制IGF-1R/IR雜合受體直接影響下游功能,潛在的低胰島素血癥和高血糖機(jī)制毒性藥物都需要在臨床環(huán)境中密切監(jiān)測(cè)。IGF-1R軸抑制劑的療效有望通過(guò)合理的藥物組合策略進(jìn)行優(yōu)化,通過(guò)生物標(biāo)志物以及對(duì)拮抗的敏感性來(lái)選擇合適的藥物組合,抑制癌癥生長(zhǎng)并協(xié)調(diào)凋亡的產(chǎn)生。
總體而言,目前和未來(lái)圍繞IGF-1R及下游信號(hào)通路進(jìn)行治療的臨床數(shù)據(jù)提供了一些很好的研究方向,使相關(guān)研究人員對(duì)IGF信號(hào)軸有更加深入的思路和了解。希望這些分子靶點(diǎn)與信號(hào)通路能在未來(lái)癌癥治療中起到相應(yīng)的作用,通過(guò)抑制靶點(diǎn)配合藥物治療,使癌癥不再成為人類(lèi)的負(fù)擔(dān)。
參考文獻(xiàn)
[1] BAKER L D, BARSNESS S M, BORSON S, et al. Effects of growth hormone-releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: Results of a controlledtrial[J]. Archives of Neurology, 2012, 69(11): 1420-1429.
[2] TREJO J L, PIRIZ J, LLORENS-MARTIN M V, et al. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects[J]. Molecular Psychiatry, 2007, 12(12): 1118-1128.
[3] HOLLY J M P, PERKS C M. Insulin-like growth factor physiology: What we have learned from humanstudies[J]. Endocrinology and Metabolism Clinics of North America, 2012, 41(2): 249-263.
[4] KAPLAN S A, COHEN P. REVIEW: The somatomedin hypothesis 2007: 50 years later[J]. The Journal of Clinical Endocrinology & Metabolism, 2007, 92(12): 4529--4535.
[5] DEIJEN J B, ARWERT L I, DRENT M L. The GH/IGF-I axis and cognitive changes across a 4-year period in healthy adults[J]. ISRN Endocrinology, 2011, 2011(1): 249421.
[6] BOWERS L W, ROSSI E L, O’FLANAGAN C H, et al. The role of the insulin/IGF system in cancer: Lessons learned from clinical trials and the energy balance-cancer link[J]. Frontiers in Endocrinology, 2015, 6: 77.
[7] SAMANI A A, YAKAR S, LEROITH D, et al. The role of the IGF system in cancer growth and metastasis: Overview and recent insights[J]. Endocrine Reviews, 2007, 28(1): 20--47.
[8] OSHER E, MACAULAY V M. Therapeutic targeting of the IGF axis[J]. Cells, 2019, 8(8): 895.
[9] UNGER C, KRAMER N, UNTERLEUTHNER D, et al. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms[J]. Oncogene, 2017, 36(38): 5341-5355.
[10]YU H, ROHAN T. Role of the insulin-like growth factor family in cancer development and progression[J]. JNCI: Journal of the National Cancer Institute, 2000, 92(18): 1472-1489.
[11]TOGNON C E, SORENSEN P H B. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy[J]. Expert OpiniononTherapeutic Targets, 2012, 16(1): 33--48.
[12]KASPRZAK A, ADAMEK A. The insulin-like growth factor (IGF) signaling axis and hepatitis C virus-associated carcinogenesis (review)[J]. International Journal of Oncology, 2012, 41(6): 1919-1931.
[13]FIRTH S M, BAXTER R C. Cellular actions of the insulin-like growth factor binding proteins[J]. Endocrine Reviews, 2002, 23(6): 824-854.
[14]QUAN H Y, TANG H, FANG L, et al. IGF1(CA)19 and IGFBP-3-202A/C gene polymorphism and cancer risk: A meta-analysis[J]. Cell Biochemistry and Biophysics, 2014, 69(1): 169-178.
[15]VIGNERI P G, TIRRò E, PENNISI M S, et al. The insulin/IGF system in colorectal cancer development and resistance to therapy[J]. Frontiers in Oncology, 2015, 5: 230.
[16]FU S L, TANG H X, LIAO Y D, et al. Association of preoperative serum IGF-I concentration with clinicopathological parameters in patients with non-small cell lung cancer[J]. Journal of Huazhong University of Science and Technology(Medical Sciences), 2013, 33(2): 224-227.
[17]KNACKE H, PIETZNER M, DO K T, et al. Metabolic fingerprints of circulating IGF-1 and the IGF-1/IGFBP-3 ratio: A multifluid metabolomics study[J]. The Journal of Clinical Endocrinology and Metabolism, 2016, 101(12): 4730--4742.
[18]CAO H X, WANG G H, MENG L, et al. Association between circulating levels of IGF-1 and IGFBP-3 and lung cancer risk: A meta-analysis[J]. PLoS One, 2012, 7(11): e49884.
[19]POHLMAN A W, MOUDGALYA H, JORDANO L, et al. The role of IGF-pathway biomarkers in determining risks, screening, and prognosis in lung cancer[J]. Oncotarget, 2022, 13: 393--407.
[20]TAKANAMI I, IMAMUMA T, HASHIZUME T, et al. Insulin-like growth factor-II as a prognostic factor in pulmonary adenocarcinoma[J]. Journal of Surgical Oncology, 1996, 61(3): 205-208.
[21]KIM J S, KIM E S, LIU D E, et al. Prognostic implications of tumoral expression of insulin like growth factors 1 and 2 in patients with non-small-cell lung cancer[J]. Clinical Lung Cancer, 2014, 15(3): 213-221.
[22]KIM J S, KIM E S, LIU D E, et al. Activation of insulin-like growth factor 1 receptor in patients with non-small-cell lung cancer[J]. Oncotarget, 2015, 6(18): 16746-16756.
[23]KARMALI R, LARSON M L, SHAMMO J M, et al. Impact of insulin-like growth factor 1 and insulin-like growth factor binding proteins on outcomes in acute myeloid leukemia[J]. Leukemia & Lymphoma, 2015, 56(11): 3135-3142.
[24]XU G J, CHU J S, SHI Y, et al. The regulation of proliferation and apoptosis in hepatocellular carcinoma via insulin-like growth factor 1 receptor[J]. Growth Hormone & IGF Research, 2022, 66: 101499.
[25]YAN X D, YAO M, WANG L, et al. Overexpression of insulin-like growth factor-I receptor as a pertinent biomarker for hepatocytes malignant transformation[J]. World Journal of Gastroenterology, 2013, 19(36): 6084-6092.
[26]HUANG X P, ZHOU W H, ZHANG Y F. Genetic variations in the IGF-IGFR-IGFBP axis confer susceptibility to lung and esophageal cancer[J]. Genetics and Molecular Research, 2014, 13(1): 2107-2119.
[27]KUNH H, FRILLE A, PETERSE M A, et al. IGFBP3 inhibits tumor growth and invasion of lung cancer cells and is associated with improved survival in lung cancer patients[J].Translational Oncology, 2023, 27: 101566.
[28]LIU P, SUN Y H, LIU S, et al. SY-707, an ALK/FAK/IGF1R inhibitor, suppresses growth and metastasis of breast cancer cells[J].Acta Biochimica et Biophysica Sinica, 2022, 54(2): 252-260.
[29]NUR S, OZTURK A, KAVAS M, et al. IGFBP--4: A promising biomarker for lung cancer[J]. Journal of Medical Biochemistry, 2021, 40(3): 237-244.
[30]YAO R S, WANG Y A, LUBET R A, et al. Differentially expressed genes associated with mouse lung tumor progression[J]. Oncogene, 2002, 21(37): 5814-5821.
[31]GUO B L, LV Z, CUI C G, et al. IGF-1R transported to the cell nuclei to regulate the proliferation of breast cancer cells[J]. Cell Biochemistry and Biophysics, 2021, 79(4): 801-813.
[32]BAHHNASSY A, MOHANAD M, SHAARAWY S, et al. Transforming growth factor-β, insulin-like growth factor I/insulin-like growth factor I receptor and vascular endothelial growth factor-A: Prognostic and predictive markers in triple-negative and non-triple-negative breast cancer[J]. Molecular Medicine Reports, 2015, 12(1): 851--864.
[33]HARTOG H, BOEZEN H M, DE JONG M M, et al. Prognostic value of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 blood levels in breast cancer[J]. The Breast, 2013, 22(6): 1155-1160.
[34]HAMILTON N, MáRQUEZ-GARBáN D, MAH V, et al. Biologic roles of estrogen receptor-β and insulin-like growth factor-2 in triple-negative breast cancer[J]. BioMed Research International, 2015, 2015(1): 925703.
[35]KHADKA V S, NASU M, DENG Y P, et al. Circulating microRNA biomarker for detecting breast cancer in high-risk benign breast tumors[J]. International Journal of Molecular Sciences, 2023, 24(8): 7553.
[36]KALLEDS?E L, DRAGSTED L O, HANSEN L, et al. The insulin-like growth factor family and breast cancer prognosis: A prospective cohort study among postmenopausal women in Denmark[J]. Growth Hormone & IGF Research: Official Journal of the Growth Hormone Research Society and the International IGF Research Society, 2019, 44: 33--42.
[37]RICHARDSONA E, HAMILTON N, DAVIS W, et al. Insulin-like growth factor-2(IGF-2)activates estrogen receptor-α and-β via the IGF-1 and the insulin receptors in breast cancer cells[J]. Growth Factors, 2011, 29(2/3): 82-93.
[38]SUN W Y, YUN H Y, SONG Y J, et al. Insulin-like growth factor 1 receptor expression in breast cancer tissue and mammographic density [J]. Molecular and Clinical Oncology, 2015, 3(3): 572-580.
[39]SHIN S J, GONG G, LEE H J, et al. Positive expression of insulin-like growth factor-1 receptor is associated with a positive hormone receptor status and a favorable prognosis in breast cancer[J]. Journal of Breast Cancer, 2014, 17(2): 113-120.
[40]OBR A, KUMAR S, BIRGE R, et al. Abstract 3617: A paradigm shift for insulin-like growth factor 1 receptor function in triple negative breast cancers[J]. Cancer Research, 2017, 77(13): 3617.
[41]DE GROOT S, CHAREHBILI A, VAN LAARHOVEN H W M, et al. Insulin-like growth factor 1 receptor expression and IGF1R 3129Ggt; T polymorphism are associated with response to neoadjuvant chemotherapy in breast cancer patients: Results from the NEOZOTAC trial (BOOG 2010-01)[J]. Breast Cancer Research: BCR, 2016, 18(1): 3.
[42]YAN J, YANG X, LI L, et al. Low expression levels of insulin-like growth factor binding protein-3 are correlated with poor prognosis for patients with hepatocellular carcinoma[J].Oncology Letters, 2017, 13(5): 3395-3402.
[43]BACH L A. IGF-binding proteins[J]. Journal of Molecular Endocrinology, 2018, 61(1): T11-T28.
[44]HOEFLICH A, RUSSO V C. Physiology and pathophysiology of IGFBP-1 and IGFBP-2-consensus and dissent on metabolic control and malignant potential[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2015, 29(5): 685-700.
[45]CONWAY J R W, DIN? D D, FOLLAIN G, et al. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion[J]. Science Advances, 2023, 9(28):e1840.
[46]HORNE H N, SHERMAN M E, PFEIFFER R M, et al. Circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of the breast: A cross-sectional study of women with benign breast disease[J]. Breast Cancer Research: BCR, 2016, 18(1): 24.
[47]ARAFAT H M, OMAR J, SHAFII N, et al. The association between the serum level of IGF-1 and IGFBP-3 and the risk of breast cancer among women in the gaza strip[J].Asian Pac J Cancer Prev,2023,24(2):717-723.
[48]DITTMER J. Biological effects and regulation of IGFBP5 in breast cancer[J]. Frontiers in Endocrinology, 2022, 13: 983793.
[49]WANG W Y, LIM K G, FENG M, et al. KDM6B counteracts EZH2-mediated suppression of IGFBP5 to confer resistance to PI3K/AKT inhibitor treatment in breast cancer[J]. Molecular Cancer Therapeutics, 2018, 17(9): 1973-1983.
[50]ROSENDAHL A H, BJ?RNER S, R?DSTR?M M Y, et al. Pre-and postoperative circulating IGF-I, IGFBP-3, and IGFBP-7 levels in relation to endocrine treatment and breast cancer recurrence: A nested case-control study[J]. Frontiers in Oncology, 2021, 11: 626058.
[51]HIMOTO T, TANI J, MIYOSHI H, et al. The ratio of insulin-like growth factor-I/insulin-like growth factor-binding protein-3 in sera of patients with hepatitis C virus-related chronic liver disease as a predictive marker of insulin resistance[J]. Nutrition Research, 2013, 33(1): 27-33.
[52]ESPELUND U, GR?NB?K H, VILLADSEN G E, et al. The circulating IGF system in hepatocellular carcinoma: The impact of liver status and treatment[J]. Growth Hormone & IGF Research, 2015, 25(4): 174-181.
[53]LIU S, LIU Y H, JIANG X W. Prognostic significance of serum insulin-like growth factor-1 in patients with hepatocellular carcinoma following transarterial chemoembolization[J]. Experimental and Therapeutic Medicine, 2016, 11(2): 607-612.
[54]LACIN S, YALCIN S, KARAKAS Y, et al. Prognostic significance of serum insulin-like growth factor-1 in hepatocellular cancer patients: A validation study[J]. Journal of Hepatocellular Carcinoma, 2020, 7: 143-153.
[55]VILLANUEVA A, PORTELA A, SAYOLS S, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma[J]. Hepatology, 2015, 61(6): 1945-1956.
[56]WHITTAKER S, MARAIS R, ZHU A X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma[J]. Oncogene, 2010, 29(36): 4989-5005.
[57]COUVERT P, CARRIé A, DU MONTCEL S T, et al. Insulin-like growth factor 2 gene methylation in peripheral blood mononuclear cells of patients with hepatitis C related cirrhosis or hepatocellular carcinoma[J]. Clinics and Research in Hepatology and Gastroenterology, 2012, 36(4): 345-351.
[58]QIAN J, YAO D F, DONG Z Z, et al. Characteristics of hepatic IGF-II expression and monitored levels of circulating IGF-II mRNA in metastasis of hepatocellular carcinoma[J]. American Journal of Clinical Pathology, 2010, 134(5): 799-806.
[59]TAI B J, YAO M, ZHENG W J, et al. Alteration of oncogenic IGF-II gene methylation status associates with hepatocyte malignant transformation[J]. Hepatobiliary&Pancreatic Diseases International: HBPD INT, 2019, 18(2): 158-163.
[60]DAI B, RUAN B, WU J, et al. Insulin-like growth factor binding protein-1 inhibits cancer cell invasion and is associated with poor prognosis in hepatocellular carcinoma[J]. International Journal of Clinical and Experimental Pathology, 2014, 7(9): 5645-5654.
[61]YAN J J, YANG X Z, LI L, et al. Low expression levels of insulin-like growth factor binding protein-3 are correlated with poor prognosis for patients with hepatocellular carcinoma[J]. Oncology Letters, 2017, 13(5): 3395-3402.
[62]REGEL I, EICHENMüLLER M, JOPPIEN S, et al. IGFBP3 impedes aggressive growth of pediatric liver cancer and is epigenetically silenced in vascular invasive and metastatic tumors[J]. Molecular Cancer, 2012, 11: 9.
[63]OLGA PEMíA, ROSAS R ,JULIA JIMéNEZ, et al. Determination of IGFBP-3 methylation levels at ctDNA could be a prognostic biomarker in advanced stages of NSCLC[J]. IBJ Plus, May 2018, DOI:10.24217/2531-0151.18v1s2.00041.
[64]BROWN K M, XUE A Q, SMITH R C, et al. Cancer-associated stroma reveals prognostic biomarkers and novel insights into the tumour microenvironment of colorectal cancer and colorectal liver metastases[J]. Cancer Medicine, 2022, 11(2): 492-506.
[65]CHEN D, YOO B K, SANTHEKADUR P K, et al. Insulin-like growth factor-binding protein-7 functions as a potential tumor suppressor in hepatocellular carcinoma[J]. Clinical Cancer Research, 2011, 17(21): 6693-6701.
[66]BIE C Q, CHEN Y F, TANG H J, et al. Insulin-like growth factor 1 receptor drives hepatocellular carcinoma growth and invasion by activating Stat3-midkine-Stat3 loop[J]. Digestive Diseases and Sciences, 2022, 67(2): 569-584.
[67]DACOSTA S A, SCHUMAKER L M, ELLIS M J. Mannose 6-phosphate/insulin-like growth factor 2 receptor, a bona fide tumor suppressor gene or just a promising candidate?[J]. Journal of Mammary Gland Biology and Neoplasia, 2000, 5(1): 85-94.
[68]LAUTEM A, SIMON F, HOPPE-LOTICHIUS M, et al. Expression and prognostic significance of insulin-like growth factor-2 receptor in human hepatocellular carcinoma and the influence of transarterial chemoembolization[J]. Oncology Reports, 2019, 41(4): 2299-2310.
[69]KNUPPEL A, FENSOM G K, WATTS E L, et al. Circulating insulin-like growth factor-I concentrations and risk of 30 cancers: Prospective analyses in UK biobank[J]. Cancer Research, 2020, 80(18): 4014-4021.
[70]PETERS G, GONGOLL S, LANGNER C, et al. IGF-1R, IGF-1 and IGF-2 expression as potential prognostic and predictive markers in colorectal-cancer[J].Virchows Archiv: An International Journal of Pathology, 2003, 443(2): 139-145.
[71]王志明,蒲九君,孫彥龍,等.IGF-1和IGF-1R在無(wú)功能性垂體腺瘤中的表達(dá)及意義[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2015,37(13):1367-1372.
WANG Z M,PU J J,SUN Y L, et al.Expression of insulin-like growth factor 1 and its receptor inhuman non-functioning pituitary adenomas: Correlation with invasiveness and recurrence[J].Journal of Army Medical University,2015,37(13):1367-1372.
[72]WU X Y, WU Z F, CAO Q H, et al. Insulin-like growth factor receptor-1 overexpression is associated with poor response of rectal cancers to radiotherapy[J]. World Journal of Gastroenterology, 2014, 20(43): 16268-16274.
[73]KUMAR A A-O, SINGH P A-O, PANDEY A A-O, et al. IGFBP3 gene promoter methylation analysis and its association with clinicopathological characteristics of colorectal carcinoma[J]. Molecular Biology Reports, 2020, 47(9): 6919-6927.
[74]KING E R, ZU Z F, TSANG Y T M, et al. The insulin-like growth factor 1 pathway is a potential therapeutic target for low-grade serous ovarian carcinoma[J]. Gynecologic Oncology, 2011, 123(1): 13-18.
[75]LEE S W, LEE S Y, LEE S R, et al. Plasma levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in women with cervical neoplasia[J]. Journal of Gynecologic Oncology, 2010, 21(3): 174-180.
[76]張瑞敏,蘆曉,晏妮.宮頸癌患者血清胰島素樣生長(zhǎng)因子1、基質(zhì)金屬蛋白酶9的水平及臨床意義[J].癌癥進(jìn)展,2019,17(18):2204-2206,2226.
ZHANG R M, LU X, YAN N.Serum levels of insulin-like growth factor 1 and matrix metalloproteinase 9 in patients with cervical cancer and their clinical significance[J].Oncology Progress,2019,17(18):2204-2206,2226.
[77]LI Y S, LIU Q, HE H B, et al. The possible role of insulin-like growth factor-1 in osteosarcoma[J]. Current Problems in Cancer, 2019, 43(3): 228-235.
[78]LIU S, LIU Y, JIANG X. Prognostic significance of serum insulin like growth factor 1 in patients with hepatcellular carcinoma following transarterial chemoembolization[J]. Experimental and Therapeutic Medicine, 2016, 11(2): 607-612.
[79]張麗娜, 閆華, 關(guān)宏, 等. IGF-2、IGF-1R、IGF-2R在子宮內(nèi)膜腺癌的表達(dá)及臨床意義[J]. 中國(guó)婦幼保健, 2010, 25(29): 4284--4287.
ZHANG L N,YAN H, GUAN H, et al. Expressions of IGF-2,IGF-1R and IGF-2R in endometrial adenocarcinoma and clinical significance[J].Maternal and Child Health Care of China, 2010,25(29):4284--4287.
[80]WATTS E L, PEREZ-CORNAGO A, FENSOM G K, et al. Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: A collaborative analysis of 20 prospective studies and Mendelian randomization analysis[J].International Journal of Epidemiology, 2023, 52(1): 71-86.
[81]SHARMA M, SATYAM A, ABHISHEK A, et al. Molecular and circulatory expression of insulin growth factors in Indian females with advanced cervical cancer[J].Asian Pac J Cancer P, 2012, 13(12): 6475--6479.
[82]LODHIA K A, TIENCHAIANANDA P, HALUSKA P. Understanding the key to targeting the IGF axis in cancer: A biomarker assessment[J]. Frontiers in Oncology, 2015, 5: 142.
[83]LIU Y J, QIANG W, SHI J, et al. Expression and significance of IGF-1 and IGF-1R in thyroid nodules[J]. Endocrine, 2013, 44(1): 158-164.
[84]FUHRER D, ESZLINGER M, KARGER S, et al. Evaluation of insulin-like growth factor II, cyclooxygenase-2, ets-1 and thyroid-specific thyroglobulin mRNA expression in benign and malignant thyroid tumours[J]. European Journal of Endocrinology, 2005, 152(5): 785-790.
[85]CAI Q, DOZMOROV M, OH Y. IGFBP-3/IGFBP-3 receptor system as an anti-tumor and anti-metastatic signaling in cancer[J]. Cells, 2020, 9(5): 1261.
[86]SCHEDLICH L J, YENSON V M, BAXTER R C. TGF-β-induced expression of IGFBP-3 regulates IGF1R signaling in human osteosarcoma cells[J]. Molecular and Cellular Endocrinology, 2013, 377(1/2): 56-64.
[87]LUTHER G A, LAMPLOT J, CHEN X, et al. IGFBP5 domains exert distinct inhibitory effects on the tumorigenicity and metastasis of human osteosarcoma[J]. Cancer Letters, 2013, 336(1): 222-230.
[88]DE SOUZA R R, OLIVEIRA I D, DEL GIUDICE PANIAGO M, et al. Investigation of IGF2, Hedgehog and fusion gene expression profiles in pediatric sarcomas[J]. Growth Hormone & IGF Research, 2014, 24(4): 130-136.
[89]HUANG H J, ANGELO L S, RODON J, et al. R1507, an anti-insulin-like growth factor-1 receptor (IGF-1R) antibody, and EWS/FLI-1 siRNA in Ewing’s sarcoma: Convergence at the IGF/IGFR/Akt axis[J]. PLoS One, 2011, 6(10): e26060.
[90]GENUA M, XU S Q, BURASCHI S, et al. Proline-rich tyrosine kinase 2 (Pyk2) regulates IGF-I-induced cell motility and invasion of urothelial carcinoma cells[J]. PLoS One, 2012, 7(6): e40148.
[91]TSAI C W, CHANG W S, XU Y F, et al. Associations of genetically predicted circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 with bladder cancer risk[J]. Molecular Carcinogenesis, 2021, 60(11): 726-733.
[92]VERHAGEN H J, DE LEEUW D C, ROEMER M G, et al. IGFBP7 induces apoptosis of acute myeloid leukemia cells and synergizes with chemotherapy in suppression of leukemia cell survival[J]. Cell Death & Disease, 2019, 5(6): e1300.
[93]CHEN X L, ZHENG J K, ZOU Y Z, et al. IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells[J]. Journal of Hematology & Oncology, 2013, 6(1): 72.
[94]KüHNL A, KAISER M, NEUMANN M, et al. High expression of IGFBP2 is associated with chemoresistance in adult acute myeloid leukemia[J]. Leukemia Research, 2011, 35(12): 1585-1590.
[95]IOANNOU N, SEDDON A M, DALGLEISH A, et al. Treatment with a combination of the ErbB (HER) family blocker afatinib and the IGF-IR inhibitor, NVP-AEW541 induces synergistic growth inhibition of human pancreatic cancer cells[J]. BMC Cancer, 2013, 13: 41.
[96]ZHOU H, RAO J, LIN J, et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-ADW742 sensitizes medulloblastoma to the effects of chemotherapy[J]. Oncology Reports, 2011, 25(6): 1565-1571.
[97]SCHULTZE A, DECKER S, OTTEN J, et al. TAE226-mediated inhibition of focal adhesion kinase interferes with tumor angiogenesis and vasculogenesis[J]. Investigational New Drugs, 2009, 28(6): 825-833.
[98]NISHIO M, MURAKAMI H, HORIIKE A, et al. Phase I study of ceritinib (LDK378) in Japanese patients with advanced, anaplastic lymphoma kinase-rearranged non-small-cell lung cancer or other tumors[J]. Journal of Thoracic Oncology, 2015, 10(7): 1058-1066.
[99]YOUSSF C, CUBILLOS-ROJAS M, COMALADA M, et al. Myeloid p38α signaling promotes intestinal IGF-1 production and inflammation-associated tumorigenesis[J]. EMBO Molecular Medicine, 2018, 10(7): e8403.
[100]LIU P, SUN Y H, LIU S, et al. SY-707, an ALK/FAK/IGF1R inhibitor, suppresses growth and metastasis of breast cancer cells[J]. Acta BiochimicaetBiophysica Sinica, 2022, 54(2): 252-260.
[101]FEI H D, YUAN Q, MAO L, et al. Assessment of GSK1904529A as a promising anti-osteosarcoma agent[J]. Oncotarget, 2017, 8(30): 49646--49654.
[102]ZHOU F Y, CHEN X G, FAN S, et al. GSK1838705A, an insulin-like growth factor-1 receptor/insulin receptor inhibitor, induces apoptosis and reduces viability of docetaxel-resistant prostate cancer cells both in vitro and in vivo[J]. Onco Targets and Therapy, 2015, 8: 753-760.
[103]WEI Y H, TANG H X, LIAO Y D, et al. Effects of insulin-like growth factor 1 receptor and its inhibitor AG1024 on the progress of lung cancer[J]. Journal of Huazhong University of Science and Technology(Medical Sciences), 2015, 35(6): 834--841.
[104]PUZANOV I, LINDSAY C R, GOFF L, et al. A phase I study of continuous oral dosing of OSI-906, a dual inhibitor of insulin-like growth factor-1 and insulin receptors, in patients with advanced solid tumors[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2015, 21(4): 701-711.
[105]FRANKS S E, JONES R A, BRIAH R, et al. BMS-754807 is cytotoxic to non-small cell lung cancer cells and enhances the effects of platinum chemotherapeutics in the human lung cancer cell line A549[J]. BMC Research Notes, 2016, 9(1): 134.
[106]ZHANG C, ZHAO X N, WANG Z F, et al. Dasatinib in combination with BMS-754807 induce synergistic cytotoxicity in lung cancer cells through inhibiting lung cancer cell growth, and inducing autophagy as well as cell cycle arrest at the G1 phase[J]. Investigational New Drugs, 2023, 41(3): 438-452.
[107]JIN Y, GONG S, SHANG G C, et al. Profiling of a novel circadian clock-related prognostic signature and its role in immune function and response to molecular targeted therapy in pancreatic cancer[J]. Aging, 2023, 15(1): 119-133.
[108]KONG Y L, SHEN Y, NI J, et al. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway[J]. Acta Pharmacologica Sinica, 2016, 37(2): 217-227.
[109]MAHE M, DUFOUR F, NEYRET-KAHN H, et al. An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers[J]. EMBO Molecular Medicine, 2018, 10(4): e8163.
[110]SUN X, LIANG J, YAO X, et al. The activation of EGFR promotes myocardial tumor necrosis factor-α production and cardiac failure in endotoxemia[J]. Oncotarget, 2015, 6(34): 35478-35495.
[111]MANCARELLA C, MORRIONE A, SCOTLANDI K. Novel regulators of the IGF system in cancer[J]. Biomolecules, 2021, 11(2): 273.
(編 輯 邵 煜)