劉海超 徐文博 權正軍
DOI:10.16783/j.cnki.nwnuz.2024.03.003
收稿日期:2024-03-08;修改稿收到日期:2024-04-08
基金項目:國家自然科學基金資助項目(22061038,22067018,21562036)
作者簡介:劉海超(1997—),男,甘肅臨澤人,碩士研究生.主要研究方向為含磷有機化合物的合成和綠色有機合成.
E-mail:1435510317@qq.com
*通信聯(lián)系人,男,教授,博士,博士研究生導師.主要研究方向為雜環(huán)有機化合物合成、催化有機合成、含磷有機化合物的合成和綠色有機合成.
E-mail:quanzj@nwnu.edu.cn
摘要:使用Tf2O為活化劑,DMAP為穩(wěn)定劑,活化易得的苯基次磷酸產(chǎn)生磷雙陽離子等價物,原位生成的陽離子等價物與各種含SH化合物進行偶聯(lián)反應,合成相應的雙硫代磷酸酯.該方法操作步驟簡單,無需金屬催化劑,底物適用性廣泛,為合成磷硫化合物提供了一種新穎且有效的方法.
關鍵詞:苯基次磷酸;磷雙陽離子等價物;雙硫代磷酸酯;活化
中圖分類號:O 627.51??? 文獻標志碼:A??? 文章編號:1001-988Ⅹ(2024)03-0025-09
Direct synthesis of phenylphosphonodithioates via Tf2O activatingphenylphosphinic acid
LIU Hai-chao,XU Wen-bo,QUAN Zheng-jun
(College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,Gansu,China)
Abstract:By using Tf2O as the activator and DMAP as the stabilizer,readily available phenylphosphinic acid can be activated to generate phosphonium dication equivalents.These in situ generated cation equivalents can directly couple with thiol-containing compounds to form the corresponding dithiophosphates.This one-pot method provides a convenient and practical approach to access a variety of dithiophosphates.The reaction system is simple,does not require metal catalysts and has a wide substrate scope.
Key words:phenylphosphinic acid;phosphenium dication equivalents;dithiophosphates;activation
地球上的生命以磷元素(P)為主導,磷是生命的基本元素,磷酸及其衍生物幾乎支撐了所有生物功能;同時,有機磷化合物因其獨特的生物學和物理特性,在有機合成、催化和藥物等領域具有廣泛應用[1-6].其中,硫代磷酸酯類化合物由于其同時具有硫原子和磷原子,在有機化學中被廣泛用于合成中間體,也在醫(yī)藥和農(nóng)用化學品等領域得到了廣泛應用[7].例如,含有P-S鍵的分子被用于抗癌劑[8]、抗病毒劑[9]、心臟保護治療劑[10]和乙酰膽堿酯酶抑制劑[11]等方面.含硫有機磷化合物在廣譜放射防護劑、抗癌藥物氨磷?。?2]以及抗青光眼藥物[13]中也展現(xiàn)治療潛力(圖1).因此,硫代磷酸酯及其衍生物由于其獨特的性質(zhì)在過去幾十年中受到了廣泛關注.
通常,硫代磷酸酯是通過硫醇或硫酚對鹵化磷的親核取代反應而合成[14-16].然而,這類方法通常需要使用有毒的氯、溴以及難聞硫醇或硫酚等試劑.為了克服這些缺點,已經(jīng)發(fā)展出了許多替代方法合成硫代磷酸酯.這些方法可以分為兩大類:一種是對磷酰化試劑的改進,利用磷酸二烷基酯、亞磷酸三烷基酯、二苯基磷和白磷為磷源,與含硫試劑反應合成硫代磷酸酯[17-19];另一種是對硫試劑的改進,使用二硫化物、磺酰氯和磺酰肼等多種含硫試劑用作硫源合成硫代磷酸酯[20-22].近期,人們還發(fā)展了合成硫代磷酸酯的新方法,即利用硫粉(S8)為硫源,與二芳基碘鎓鹽或重氮鹽、鹵代烴、芳基硼酸等和P-H化合物的三組分反應,合成硫代磷酸酯[23-27].這些方法無需事先制備硫酚或硫醇試劑,減少了操作步驟,并且以高產(chǎn)率獲得各種S-芳基硫代磷酸酯.
相對于單硫代磷酸酯的合成,雙硫代磷酸酯的合成方法較為單一,目前主要通過二氯氧磷與硫醇的親核反應來實現(xiàn)(圖2a).例如,2017年,OSullivan等[28]報道了一種二氯化磷與氰基乙基硫醇進行取代反應,從而合成S,S-二烷基磷酰二硫代酸酯的方法.他們還采用順序烷基化-去保護-烷基化策略,成功制備了不對稱的二取代二硫代磷酸酯.同年,Hosoya等[29]利用硫醇和苯基磷酰二氯反應合成了雙硫代磷酸酯.隨后,通過兩種格氏試劑與二硫代磷酸酯反應,獲得了廣泛的不對稱有機磷化合物(圖2b,c).然而,由于鹵試劑的使用會產(chǎn)生大量鹵化物廢棄物,而且鹵化過程具有較高的毒性和環(huán)境污染問題,因此采用簡便的方法制備雙硫代磷酸酯是有機磷合成領域的前沿和熱點.
2020年,Miura等[30]報道了一種利用苯基次磷酸替代氯化磷和三氟甲基磺酸酐(Tf2O)反應生成磷雙陽離子中間體的方法.隨后,該中間體與二芳基化合物發(fā)生C-H活化偶聯(lián)反應,從而制得含磷雜環(huán)化合物(圖2d).受Miura等工作的啟發(fā),文中設計了一種利用廉價易得的苯基次磷酸作為反應底物,替代氯化磷合成雙硫代磷酸酯的方法(圖2e).通過Tf2O活化苯基次磷酸產(chǎn)生磷雙陽離子,同時使用4-二甲氨基吡啶(DMAP)為穩(wěn)定劑,原位與硫醇、硫酚反應,高效合成了雙硫代磷酸酯.這一方法避免了氯化磷的使用,為此類化合物的合成提供了一條新的途徑.
1? 材料與方法
以合成化合物3的典型實驗為例,將苯基次磷酸(1a)(0.2 mmol)、間甲基苯硫酚(2a)(0.4 mmol)和DMAP(0.48 mmol)在氬氣保護下加入Shlenk反應管,隨后加入甲苯溶劑(2 mL),接著將Tf2O(0.48 mmol)滴加到混合體系中.在室溫下攪拌6 h,通過TLC分析監(jiān)測反應進度.反應結束后,向反應體系中滴加3滴H2O2(30%),室溫繼續(xù)攪拌反應15 min,用水和乙酸乙酯(3×15 mL)進行萃取.合并有機相,通過無水MgSO4干燥,過濾,旋蒸去除溶劑.最后通過硅膠柱色譜法(石油醚∶乙酸乙酯=20∶1~5∶1 )純化得到相應的產(chǎn)物3a.
2? 結果與討論
選擇苯基次磷酸(1a)和間甲苯硫酚(2a)作為模板底物,以確定最佳的反應條件,如表1所示.在在反應結束后,向反應體系中滴加3滴H2O2(30%),室溫繼續(xù)攪拌反應15 min,得到穩(wěn)定的五價磷目標化合物.文中主要從堿、溶劑、溫度和反應時間等方面進行優(yōu)化.首先,研究了不同的堿對反應的影響(表1,編號1-7).結果表明,在不加堿的條件下,只能獲得微量產(chǎn)物(表1,編號1),這證明堿對反應的重要性.進一步分析發(fā)現(xiàn),相對于其他有機堿或無機堿,DMAP表現(xiàn)最佳,產(chǎn)率明顯提高,以67%產(chǎn)率得到產(chǎn)物3a.隨后,考察了不同溶劑對反應的影響(表1,編號8-11),結果發(fā)現(xiàn)甲苯是最佳的反應溶劑,在其他溶劑中都可以發(fā)生反應,但產(chǎn)率都會有不同程度的下降.接著,對反應溫度進行了考察(表1,編號12-13),發(fā)現(xiàn)改變溫度對反應影響不大.隨后,對反應時間進行了優(yōu)化(表1,編號13-15),結果顯示最佳反應時間為6 h,3a的產(chǎn)率最高,為78%.延長時間會導致目標產(chǎn)物產(chǎn)率下降,主要是生成的中間產(chǎn)物不穩(wěn)定所致.
2.1? 底物適用范圍
在最優(yōu)的反應條件下,對反應的適用性進行了研究(圖3).結果表明,無論底物上存在吸電子基團或給電子基團,都能夠以較高的產(chǎn)率得到目標產(chǎn)物,最高收率可達90%(3b).值得注意的是,當苯環(huán)上間位連有取代基時,目標產(chǎn)物的收率會有所降低(3a,3k,3n,3r),然而,鄰位帶有取代基的目標產(chǎn)物的產(chǎn)率卻不受影響(3c,3l,3o,3q).因此,筆者認為空間位阻對目標產(chǎn)物的產(chǎn)率影響不大,主要是電子效應起作用.含有氟、氯、溴等取代基的底物也能夠與苯基次磷酸發(fā)生偶聯(lián)反應,得到中等產(chǎn)率的目標產(chǎn)物.當苯環(huán)上存在兩個取代基時,目標化合物3d和3e的產(chǎn)率分別為60%和63%.當使用脂肪族的硫醇作為底物時,也能以22%~60%的產(chǎn)率得到目標產(chǎn)物(3u-3x).然而,利用叔丁基硫醇或?qū)ο趸搅蚍訒r,沒有分離到目標產(chǎn)物(3aa,3ab).
2.2? 可能的反應機理
參考文獻[1],提出了一種可能的反應機理(圖4).首先,苯基次磷酸發(fā)生互變異構生成相應的二羥基膦,在2倍量的Tf2O作用下脫去2個
羥基,形成相應的中間體(Ⅰ).然后,在路易斯堿
(L)的作用下,脫去2個三氟甲磺酸根離子(TfO-),生成高度親電、不飽和的P(Ⅲ)雙陽離子中間體(Ⅱ).接著,該中間體與2分子的R-SH發(fā)生親核反應,生成不穩(wěn)定的次磷酸酯Ⅲ,最后經(jīng)H2O2氧化,形成目標產(chǎn)物3.
2.3? 化合物的結構與表征
通過使用Varian Mercury plus-400和Agilent 600 MHz DD2 儀器,以CDCl3為溶劑,Me4Si為內(nèi)標測定所有化合物結構的核磁共振氫譜、碳譜、磷譜;用 Bruker Daltonics APEX II 47e and Orbitrap Elite 質(zhì)譜儀測定質(zhì)譜數(shù)據(jù);用XT-4顯微熔點儀測定熔點,所用試劑均為分析純,使用前經(jīng)重蒸、干燥處理.
S,S-di-m-tolyl phenylphosphonodithioate(3a).White oil.Yield: 78%.1H NMR(400 MHz,CDCl3)δ: 7.82(dd,J=7.3,14.2 Hz,2H),7.46(dd,J=3.7,7.3 Hz,1H),7.37(dd,J=4.4,7.5 Hz,2H),7.26(t,J=3.1 Hz,4H),7.14(d,J=7.6 Hz,1H),2.24(s,6H).13C NMR(101 MHz,CDCl3)δ: 139.35(d,J=2.3 Hz),136.51(d,J=4.2 Hz),134.15,133.07,132.91(d,J=4.4 Hz),131.97,131.86,130.50(d,J=2.8 Hz),129.27(d,J=2.3 Hz),128.66,128.52,126.09(d,J=6.2 Hz),21.49.31P NMR(202 MHz,CDCl3)δ: 49.62.
S,S-di-p-tolyl phenylphosphonodithioate(3b).White oil.Yield: 90%.1H NMR(600 MHz,CDCl3)δ: 7.79(dd,J=6.9,13.9 Hz,2H),7.51~7.45(m,1H),7.38(dd,J=4.4,7.7 Hz,2H),7.35~7.30(m,4H),7.06(d,J=7.9 Hz,4H),2.29(d,J=2.0 Hz,6H).13C NMR(126 MHz,CDCl3)δ: 139.65(d,J=3.1 Hz),135.66(d,J=4.1 Hz),133.46(d,J=10.7 Hz),132.58(d,
J=3.4 Hz),131.72(d,J=10.7 Hz),130.08(d,J=2.3 Hz),128.41,128.29,122.58(d,J=6.0 Hz).31P NMR(162 MHz,CDCl3)δ: 50.87.HRMS(ESI)m/z:Calcd for C20H19OPS2[M+Na]+:393.0501,F(xiàn)ound:393.0507.
a Reaction conditions: 1(0.2 mmol), 2(0.4 mmol), DMAP(0.48 mmol) and Tf2O(0.48 mmol), Toluene(2 mL),at 25 ℃ for 6 h.
Then,added H2O2(30%) 3 drops,r.t., 15 min.
b Isolated yield.
S,S-di-o-tolyl phenylphosphonodithioate(3c).White oil.Yield: 85%.1H NMR(600 MHz,CDCl3)δ: 7.85~7.79(m,2H),7.48(dd,J=1.8,7.5 Hz,3H),7.39(dd,J=4.5,7.6 Hz,2H),7.21(dd,J=1.6,7.4 Hz,2H),7.17(d,J=7.5 Hz,2H),7.07(dd,J=2.0,7.5 Hz,2H),2.34(s,6H).13C NMR(126 MHz,CDCl3)δ: 143.17(d,J=4.2 Hz),137.21(d,J=4.0 Hz),134.74,133.88,132.61(d,J=3.3 Hz),131.47(d,J=10.9 Hz),130.86(d,J=2.4 Hz),129.77(d,J=3.0 Hz),128.44,128.33,126.57(d,J=2.4 Hz),125.87(d,J=6.3 Hz),21.53.31P NMR(202 MHz,CDCl3)δ: 49.02.
S,S-bis(3,5-dimethylphenyl)phenylphosphonodithioate(3d).White oil.Yield: 60%.1H NMR(600 MHz,CDCl3)δ: 7.81(dd,J=8.2,13.9 Hz,2H),7.48(dd,J=1.7,7.3 Hz,1H),7.39(dd,J=4.4,7.6 Hz,2H),7.35(dd,J=2.0,8.0 Hz,2H),6.99(d,J=2.2 Hz,2H),6.88(dd,J=2.1,8.0 Hz,2H),2.29(s,6H),2.26(d,J=2.1 Hz,6H).13C NMR(126 MHz,CDCl3)δ: 142.90(d,J=4.1 Hz),139.89(d,J=3.2 Hz),137.11(d,J=3.8 Hz),134.96,134.11,133.03~130.72(m),128.28(d,J=14.1 Hz),127.40(d,J=2.5 Hz),122.27(d,J=6.4 Hz),21.28(d,J=32.1 Hz).31P NMR(202 MHz,CDCl3)δ: 49.02.
S,S-bis(2,4-dimethylphenyl)phenylphosphonodithioate(3e).White oil.Yield: 63%.1H NMR(600 MHz,CDCl3)δ: 7.81(dd,J=8.2,13.9 Hz,2H),7.48(dd,J=1.7,7.3 Hz,1H),7.39(dd,J=4.4,7.6 Hz,2H),7.35(dd,J=2.0,8.0 Hz,2H),6.99(d,J=2.2 Hz,2H),6.88(dd,J=2.1,8.0 Hz,2H),2.29(s,6H),2.26(d,J=2.1 Hz,6H).13C NMR(126 MHz,CDCl3)δ: 142.91(d,J=4.1 Hz),139.90(d,J=3.0 Hz),137.12(d,J=3.9 Hz),134.96,134.11,132.45(d,J=3.4 Hz),132.13~130.91(m),128.30(d,J=14.0 Hz),127.41(d,J=2.6 Hz),122.27(d,J=6.3 Hz),21.30(d,J=32.3 Hz).31P NMR(202 MHz,CDCl3)δ: 49.04.
S,S-bis(4-methoxyphenyl)phenylphosphonodithioate(3f).White oil.Yield: 58%.1H NMR(500 MHz,CDCl3)δ: 7.81~7.73(m,2H),7.49(dd,J=1.8,7.4 Hz,1H),7.37(dd,J=3.2,8.2 Hz,6H),6.81~6.75(m,4H),3.76(s,6H).13C NMR(126 MHz,CDCl3)δ: 160.76(d,J=2.7 Hz),137.34(d,J=3.8 Hz),136.08~130.28(m),128.35(d,J=14.2 Hz),116.36(d,J=6.2 Hz),114.89(d,J=2.3 Hz),55.33.31P NMR(202 MHz,CDCl3)δ: 50.03.
S,S-bis(4-ethylphenyl)phenylphosphonodithioate(3g).White oil.Yield: 60%.1H NMR(400 MHz,CDCl3)δ: 7.85~7.74(m,2H),7.49(dd,J=4.6,7.1 Hz,1H),7.43~7.35(m,4H),7.26(dd,J=3.1,5.9 Hz,1H),7.22~7.05(m,4H),2.83~2.45(m,4H),1.33~1.00(m,6H).13C NMR(126 MHz,CDCl3)δ: 148.66(d,J=4.1 Hz),145.84(d,J=3.0 Hz),137.22(d,J=3.8 Hz),135.84~135.67(m),132.80~130.86(m),130.38~127.75(m),126.54(d,J=2.3 Hz),122.81(d,J=6.3 Hz),28.05(d,J=128.7 Hz),17.63~11.75(m).31P NMR(202 MHz,CDCl3)δ: 49.86.
S,S-bis(4-isopropylphenyl)phenylphosphonodithioate(3h).White oil.Yield: 77%.1H NMR(600 MHz,CDCl3)δ: 7.78(dd,J=7.0,14.0 Hz,2H),7.50~7.43(m,1H),7.41~7.33(m,6H),7.16~7.09(m,4H),2.84(q,J=7.0 Hz,2H),1.19(dd,J=1.0,6.9 Hz,12H).13C NMR(126 MHz,CDCl3)δ: 150.40(d,J=3.1 Hz),135.75(d,J=4.1 Hz),133.96,133.11,132.56(d,J=3.4 Hz),131.61,128.32(d,J=14.3 Hz),127.50(d,J=2.3 Hz),122.93(d,J=6.2 Hz),33.86,23.81.31P NMR(202 MHz,CDCl3)δ: 50.05.
S,S-bis(4-chlorophenyl)phenylphosphonodithioate(3i).White oil.Yield: 45%.1H NMR(400 MHz,CDCl3)δ: 8.07(dd,J=8.5,17.4 Hz,2H),7.81(t,J=8.3 Hz,1H),7.72(q,J=7.9 Hz,2H),7.69~7.60(m,4H),7.56~7.50(m,4H).13C NMR(101 MHz,CDCl3)δ: 137.33(d,J=4.1 Hz),136.68(d,J=3.4 Hz),133.72~133.50(m),132.07(d,J=11.1 Hz),130.04(d,J=2.3 Hz),129.17(d,J=14.4 Hz),124.90(d,J=6.2 Hz).31P NMR(202 MHz,CDCl3)δ: 48.51.
S,S-bis(4-bromophenyl)phenylphosphonodithioate(3j).White oil.Yield: 41%.1H NMR(500 MHz,CDCl3)δ: 7.80(dd,J=7.0,14.2 Hz,1H),7.54(dd,J=5.3,7.4 Hz,0H),7.44(dd,J=4.5,7.6 Hz,1H),7.40~7.34(m,2H),7.27~7.22(m,2H).13C NMR(126 MHz,CDCl3)δ: 136.84(d,J=4.2 Hz),136.20(d,J=3.4 Hz),133.13(t,J=3.1 Hz),131.63,131.55,129.56(d,J=2.3 Hz),128.67(d,J=14.6 Hz),124.43(d,J=6.2 Hz).31P NMR(202 MHz,CDCl3)δ: 48.92.
S,S-bis(3-chlorophenyl)phenylphosphonodithioate(3k).White oil.Yield: 54%.1H NMR(500 MHz,CDCl3)δ: 7.84~7.77(m,2H),7.55(dd,J=1.9,7.3 Hz,1H),7.49~7.40(m,4H),7.37(q,J=7.8 Hz,2H),7.31(q,J=8.3 Hz,2H),7.21(t,J=7.9 Hz,2H).13C NMR(126 MHz,CDCl3)δ: 135.13(d,J=4.2 Hz),134.77(d,J=2.5 Hz),133.72(d,J=4.2 Hz),133.25(d,J=3.5 Hz),133.10,132.24,131.58,131.49,130.23(d,J=2.3 Hz),129.83(d,J=2.7 Hz),128.71(d,J=14.6 Hz),127.78(d,J=6.0 Hz).31P NMR(202 MHz,CDCl3)δ: 48.96.
S,S-bis(2-chlorophenyl)phenylphosphonodithioate(3l).White oil.Yield: 34%.1H NMR(500 MHz,CDCl3)δ: 7.93~7.85(m,2H),7.72(dd,J=1.9,7.8 Hz,2H),7.52(dd,J=1.8,7.3 Hz,1H),7.42(dd,J=4.7,7.5 Hz,2H),7.37(dd,J=1.5,7.9 Hz,2H),7.25(dd,J=1.7,7.8 Hz,2H),7.19(dd,J=1.5,7.6 Hz,2H).13C NMR(126 MHz,CDCl3)δ: 138.77(d,J=5.1 Hz),137.78(d,J=4.1 Hz),133.69,133.11(d,J=3.5 Hz),132.82,131.70,131.60,130.72(d,J=2.7 Hz),130.27(d,J=2.2 Hz),128.55,128.44,127.33(d,J=2.2 Hz),126.15(d,J=5.9 Hz).31P NMR(202 MHz,CDCl3)δ: 49.55.
S,S-bis(4-fluorophenyl)phenylphosphonodithioate(3m).White oil.Yield: 56%.1H NMR(500 MHz,CDCl3)δ: 7.78(dd,J=7.5,14.1 Hz,2H),7.52(dd,J=2.0,7.4 Hz,1H),7.42(dd,J=6.4,7.3 Hz,6H),6.96(t,J=8.6 Hz,4H).13C NMR(126 MHz,CDCl3)δ: 164.71(d,J=3.1 Hz),162.72(d,J=3.1 Hz),137.79(d,J=4.0 Hz),133.23,132.97(d,J=3.4 Hz),132.38,131.64,128.53,121.13(d,J=3.4 Hz).19F NMR(376 MHz,CDCl3)δ: -111.16(dd,J=4.8,8.8 Hz).31P NMR(202 MHz,CDCl3)δ: 49.40.
S,S-bis(3-fluorophenyl)phenylphosphonodithioate(3n).White oil.Yield: 33%.1H NMR(400 MHz,CDCl3)δ: 7.81(dd,J=7.5,14.4 Hz,2H),7.57~7.49(m,1H),7.44(dd,J=4.5,7.5 Hz,2H),7.24(dd,J=4.3,7.1 Hz,4H),7.22~7.15(m,2H),7.03(dd,J=2.6,7.3 Hz,2H).13C NMR(101 MHz,CDCl3)δ: 163.83,161.34,133.84~131.29(m),130.69(dd,J=2.3,8.2 Hz),128.92(d,J=14.5 Hz),128.00(d,J=8.1 Hz),122.62(dd,J=4.3,22.7 Hz),117.04(dd,J=2.7,21.1 Hz).19F NMR(376 MHz,CDCl3)δ: -100.52~-118.72(m).31P NMR(202 MHz,CDCl3)δ: 48.86.
S,S-bis(2-fluorophenyl)phenylphosphonodithioate(3o).White oil.Yield: 36%.1H NMR(400 MHz,CDCl3)δ: 7.86(dd,J=7.6,14.4 Hz,2H),7.58(t,J=7.3 Hz,2H),7.54~7.46(m,1H),
7.42(t,J=6.4 Hz,2H),7.33(q,J=7.3 Hz,2H),7.12~6.98(m,4H).
13C NMR(101 MHz,CDCl3)δ: 164.30(d,J=4.7 Hz),161.81(d,J=4.6 Hz),138.33(d,J=3.9 Hz),133.83,133.32(d,J=3.4 Hz),132.75,132.19(dd,J=2.8,8.0 Hz),131.82,131.71,128.77,128.62,125.03(dd,J=2.3,3.9 Hz),116.47(dd,J=2.4,22.7 Hz),114.13~112.99(m).19F NMR(376 MHz,CDCl3)δ: -105.72(d,J=7.6 Hz).31P NMR(202 MHz,CDCl3)δ: 49.54.
S,S-di(naphthalen-1-yl)phenylphosphonodithioate(3p).White oil.Yield: 66%.1H NMR(500 MHz,CDCl3)δ: 8.28~8.22(m,2H),7.82(d,J=8.3 Hz,2H),7.80~7.72(m,5H),7.47~7.42(m,3H),7.35(t,J=7.7 Hz,2H),7.28~7.22(m,2H).13C NMR(126 MHz,CDCl3)δ: 136.13(d,J=5.3 Hz),135.10(d,J=3.0 Hz),133.88,133.03,132.54(d,J=3.5 Hz),131.57,131.49,130.52(d,J=3.2 Hz),128.25,128.14,126.96,126.33,126.11,125.58(d,J=3.0 Hz),123.83(d,J=6.7 Hz).31P NMR(202 MHz,CDCl3)δ: 49.51.
S,S-bis(2-bromophenyl)phenylphosphonodithioate(3q).White oil.Yield: 43%.1H NMR(400 MHz,CDCl3)δ: 7.91(dd,J=7.6,14.6 Hz,2H),7.76(d,J=7.8 Hz,2H),7.55(dd,J=7.7,15.5 Hz,3H),7.44(dd,J=4.7,7.6 Hz,2H),7.25(t,J=7.4 Hz,2H),7.17(t,J=7.7 Hz,2H).13C NMR(101 MHz,CDCl3)δ: 137.81(d,J=4.1 Hz),133.85(d,J=1.9 Hz),133.38(d,J=3.5 Hz),131.95(d,J=11.4 Hz),130.95,129.73(d,J=5.6 Hz),128.84,128.65(d,J=8.4 Hz),128.21.31P NMR(162 MHz,CDCl3)δ: 50.73.
S,S-bis(3-bromophenyl)phenylphosphonodithioate(3r).White oil.Yield: 45%.1H NMR(400 MHz,CDCl3)δ: 7.81(dd,J=7.6,14.3 Hz,2H),7.57(s,3H),7.45(dd,J=7.8,16.2 Hz,6H),7.16(t,J=7.9 Hz,2H).13C NMR(101 MHz,CDCl3)δ: 138.12(d,J=4.4 Hz),134.41(d,J=4.3 Hz),133.51(d,J=3.4 Hz),133.35,132.94(d,J=2.9 Hz),132.26,131.91,131.80,131.69,130.76(d,J=2.2 Hz),130.60,129.02,128.89(d,J=2.0 Hz),128.21(d,J=6.1 Hz),127.97,122.95(d,J=2.7 Hz).31P NMR(162 MHz,CDCl3)δ: 50.24.
S,S-bis(4-(tert-butyl)phenyl)phenylphosphonodithioate(3s).White oil.Yield: 61%.1H NMR(400 MHz,CDCl3)δ: 7.80(dd,J=7.1,13.8 Hz,2H),7.49(dd,J=5.9,7.7 Hz,1H),7.38(dd,J=2.3,8.7 Hz,6H),7.31~7.26(m,4H),1.28(s,18H).13C NMR(101 MHz,CDCl3)δ: 152.88(d,J=3.0 Hz),135.66(d,J=4.1 Hz),133.23,132.79(d,J=3.4 Hz),131.87(d,J=10.8 Hz),128.62,128.48,126.65(d,J=2.4 Hz),126.39,122.93(d,J=6.2 Hz),34.93,31.43.31P NMR(162 MHz,CDCl3)δ: 51.20.
S,S-diphenyl phenylphosphonodithioate(3t).
White oil.Yield: 58%.1H NMR(400 MHz,CDCl3)δ: 7.79(dd,J=7.6,14.1 Hz,3H),7.46(d,J=7.5 Hz,6H),7.25(t,J=7.4 Hz,6H).13C NMR(101 MHz,CDCl3)δ: 135.94(d,J=4.3 Hz),132.97(d,J=3.3 Hz),131.94,129.64(d,J=2.8 Hz),128.59,126.44(d,J=6.1 Hz).31P NMR(162 MHz,CDCl3)δ: 51.35.
S,S-dicyclohexyl phenylphosphonodithioate(3u).
White oil.Yield: 67%.1H NMR(600 MHz,CDCl3)δ: 7.94~7.87(m,2H),7.54~7.42(m,3H),3.44~3.34(m,2H),2.12~2.06(m,2H),1.87(dd,J=7.3,12.6 Hz,2H),1.74~1.67(m,2H),1.53(dd,J=4.0,12.9 Hz,4H),1.47~1.16(m,8H).13C NMR(126 MHz,CDCl3)δ: 136.94,136.07,132.26(d,J=3.3 Hz),131.10,131.01,128.53,128.42,46.17(d,J=2.9 Hz),35.43(dd,J=4.4,13.8 Hz),25.84(d,J=17.0 Hz),25.31.31P NMR(202 MHz,CDCl3)δ: 51.59.
S,S-dicyclopentyl phenylphosphonodithioate(3v).
White oil.Yield: 22%.1H NMR(400 MHz,CDCl3)δ: 7.92(dd,J=7.4,14.1 Hz,2H),7.54~7.46(m,3H),3.57(dd,J=6.5,10.3 Hz,2H),2.13(q,J=8.4 Hz,2H),1.93(q,J=7.3 Hz,2H),1.68(d,J=15.5 Hz,6H),1.53(dd,J=6.8,14.0 Hz,6H).13C NMR(101 MHz,CDCl3)δ: 136.69,133.66~130.34(m),128.75(d,J=14.1 Hz),45.39(d,J=3.1 Hz),35.60(t,J=5.2 Hz),24.50(d,J=10.3 Hz).31P NMR(162 MHz,CDCl3)δ: 52.47.
S,S-dibenzyl phenylphosphonodithioate(3w).
White oil.Yield: 50%.1H NMR(600 MHz,CDCl3)δ: 7.86(dd,J=7.0,14.4 Hz,2H),7.54~7.48(m,1H),7.42(dd,J=6.9,8.8 Hz,2H),7.30~7.17(m,10H),4.20~4.09(m,4H).13C NMR(151 MHz,CDCl3)δ: 136.55(d,J=5.7 Hz),134.80,134.07,132.67(d,J=3.3 Hz),131.10,131.03,129.10,128.63,128.55,127.58,77.96~74.41(m),35.16(d,J=2.9 Hz).31P NMR(202 MHz,CDCl3)δ: 53.24.
S,S-diphenethyl phenylphosphonodithioate(3x).
White oil.Yield: 23%.1H NMR(400 MHz,CDCl3)δ: 7.97~7.87(m,2H),7.56(dd,J=3.8,7.4 Hz,1H),7.50(dd,J=4.2,7.5 Hz,2H),7.28(t,J=7.3 Hz,4H),7.22(d,J=7.0 Hz,2H),7.18~7.11(m,4H),3.16(dd,J=7.7,13.0 Hz,4H),2.97(t,J=7.7 Hz,4H).13C NMR(101 MHz,CDCl3)δ: 139.57,132.98,131.40,129.06,126.91,37.29(d,J=4.4 Hz),32.55.31P NMR(162 MHz,CDCl3)δ: 55.73.
3? 結束語
簡而言之,利用簡單易得的硫醇或者硫酚作為硫源,苯基次磷酸作為磷源,在三氟甲磺酸酐與N,N-二甲氨基吡啶的作用下,在溫和條件下通過磷雙陽離子與SH化合物的偶聯(lián)反應實現(xiàn)了雙硫代磷酸酯的合成.該反應提供了一種簡便的合成雙硫代磷酸酯的途徑,具有條件溫和、操作簡便和范圍廣泛等特點.
參考文獻:
[1]? DEMKOWICZ S,RACHON J,DAS′KO M,et al.Selected organophosphorus compounds with biological activity:Applications in medicine[J].RSC Adv,2016,6(9):7101.
[2]? LI W,ZHANG J.Recent developments in the synthesis and utilization of chiral β-aminophosphine derivatives as catalysts or ligands[J].Chem Soc Rev,2016,45(6):1657.
[3]? XU J,LIU R Y,YEUNG C S,et al.Monophosphine ligands promote Pd-catalyzed C-S cross-coupling reactions at room temperature with soluble bases[J].ACS Catal,2019,9(7):6461.
[4]? MANGHI M C,MASIOL M,CALZAVARA R,et al.The use of phosphonates in agriculture.chemical,biological properties and legislative issues[J].Chemosphere,2021:283131187.
[5]? GUTERMAN R,RABIEE K A,GILROY J B,et al.Polymer network formation using the phosphane-ene reaction:A thiol-ene analogue with diverse postpolymerization chemistry[J].Chem Mater,2015,27(4):1412.
[6]? WU K,LI Q,SU W,et al.Experimental and theoretical study of phosphine-catalyzed reaction modes in the reaction of α-substituted allenes with aryl Imines[J].Angew Chem Int Ed,2023,62(51):e202314191.
[7]? ZHANG A,SUN J,LIN C,et al.Enantioselective interaction of acid α-naphthyl acetate esterase with chiral organophosphorus insecticides[J].J Agric Food Chem,2014,62(7):1477.
[8]? DURGAM G G,VIRAG T,WALKER M D,et al.Synthesis,structure-activity relationships,and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands,activators of PPARγ,and inhibitors of autotaxin[J].J Med Chem,2005,48(15):4919.
[9]? ROUX L,PRIET S,PAYROT N,et al.Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates:Synthesis,antiviral activity and decomposition study[J].Eur J Med Chem,2013:63869.
[10]? KUMAR T S,YANG T,MISHRA S,et al.5′-Phosphate and 5′-phosphonate ester derivatives of (N)-methanocarba adenosine with in vivo cardioprotective activity[J].J Med Chem,2013,56(3):902.
[11]? KABOUDIN B,EMADI S,HADIZADEH A.Synthesis of novel phosphorothioates and phosphorodithioates and their differential inhibition of cholinesterases[J].Bioorg Chem,2009,37(4):101.
[12]? KOUKOURAKIS M.Amifostine in clinical oncology:Current use and future applications[J].Anti-Cancer Drugs,2002,13(3):181.
[13]? PRATT-JOHNSON J A,DRANCE S M,INNES R.Comparison between pilocarpine and echothiophate for chronic simple glaucoma:A comparison between 4% pilocarpine and 0.06% echothiophate iodide in the diurnal management of chronic simple glaucoma[J].Arch Ophthalmol,1964,72(4):485.
[14]? TIMPERLEY C M,SAUNDERS S A,SZPALEK J,et al.Fluorinated phosphorus compounds:Part 8.The reactions of bis(fluoroalkyl) phosphorochloridates with sulfur nucleophiles[J].J Fluorine Chem,2003,119(2):161.
[15]? LIU Y C,LEE C F.N-Chlorosuccinimide-promoted synthesis of thiophosphates from thiols and phosphonates under mild conditions[J].Green Chem,2014,16(1):357.
[16]? PANMAND D S,TIWARI A D,PANDA S S,et al.New benzotriazole-based reagents for the phosphonylation of various N-,O-,and S-nucleophiles[J].Tetrahedron Lett,2014,55(43):5898.
[17]? LU G,CHEN J,HUANGFU X,et al.Visible-light-mediated direct synthesis of phosphorotrithioates as potent anti-inflammatory agents from white phosphorus[J].Org Chem Front,2019,6(2):190.
[18]? HUANGFU X,WANG Y,LU G,et al.Direct synthesis of phosphorotrithioites and phosphorotrithioates from white phosphorus and thiols[J].Green Chem,2020,22(16):5303.
[19]? ZHANG Y,CAO Y,CHI Y,et al.Formation of N-P(O)-S bonds from white phosphorus via a four-component reaction[J].Adv Synth Catal,2022,364(13):2221.
[20]? LIU T,ZHANG Y,YU R,et al.An alternative metal-free aerobic oxidative cross-dehydrogenative coupling of sulfonyl hydrazides with secondary phosphine oxides[J].Synthesis,2020,52(2):253.
[21]? ZHANG P,LI W,ZHU X,et al.Photoredox and copper-catalyzed sulfonylphosphorothiolation of alkenes toward β-sulfonyl phosphorothioates[J].Adv Synth Catal,2022,364(18):3316.
[22]? CHEN Z W,PRATHEEPKUMAR A,BAI R,et al.Cesium carbonate-catalyzed synthesis of phosphorothioates via S-phosphination of thioketones[J].Chem Commun,2022,58(78):11001.
[23]? LIU X,JIANG W,HUANG C,et al.Electrochemical phosphorothiolation and 1,4-S→C phospho-Fries rearrangement:Controlled access to phosphorothiolated and mercapto-phosphono substituted indolizines[J].Org Chem Front,2023,10(20):5198.
[24]? SHI S,CHEN J,ZHUO S,et al.Iodide-catalyzed phosphorothiolation of heteroarenes using P(O)H compounds and elemental sulfur[J].Adv Synth Catal,2019,361(13):3210.
[25]? XU J,ZHANG L,LI X,et al.Phosphorothiolation of aryl boronic acids using P(O)H compounds and elemental sulfur[J].Org Lett,2016,18(6):1266.
[26]? SHI S,ZHANG P,LUO C,et al.Copper-catalyzed remote C(sp3)-H phosphorothiolation of sulfonamides and carboxamides in a multicomponent reaction[J].Org Lett,2020,22(5):1760.
[27]? ZHANG P,YU G,LI W,et al.Copper-catalyzed multicomponent trifluoromethylphosphorothiolation of alkenes:access to CF3-containing alkyl phosphorothioates[J].Org Lett,2021,23(15):5848.
[28]? JONES D J,OLEARY E M,OSULLIVAN T P Synthesis of symmetrically and unsymmetrically substituted S,S-dialkyl phosphonodithioates[J].Tetrahedron Lett,2017,58(44):4212.
[29]? NISHIYAMA Y,HAZAMA Y,YOSHIDA S,et al.Synthesis of unsymmetrical tertiary phosphine oxides via sequential substitution reaction of phosphonic acid dithioesters with grignard reagents[J].Org Lett,2017,19(14):3899.
[30]? NISHIMURA K,HIRANO K,MIURA M.Direct synthesis of dibenzophospholes from biaryls by double C—P bond formation via phosphenium dication equivalents[J].Org Lett,2020,22(8):3185.
(責任編輯? 陸泉芳)